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Abstract. This paper is a continuation of the authors' former studies on generalized Nehari 
problems (see [40, 44, 47]). We indicate the stochastic background of the generalized Nehari 
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of prediction theory for stationarily cross-correlated stationary sequences. 
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0. Introduction 
Throughout this paper, let p and q be positive integers, and let H be an infinite-
dimensional complex Hilbert space with inner product (, .). Further, let No and C 
be the sets of all non-negative integers and complex numbers, respectively. We will 
use the notation C < " to denote the set of all (p x q)-matrices all entries of which are 
complex numbers. A kernel K: No x No __+ Cqxq is said to be non-negative definite if, 
for all j E N0 , the block matrix (K(m,n))_ 0 is non-negative Hermitian. It is known 
that, for several interpolation problems as the classical interpolation problems of Schur, 
Carathéodory, Nevanlinna-Pick and Nehari (and their matricial generalizations), the 
solvability of the problem can be described by the fact that some kernel appropriately 
constructed from the given interpolation data is non-negative definite (see, e.g., E331)• 
A famous result due to Kolmogorov [53] shows that if IC No x No -+ Cqlq is a given 
kernel, then K: is non-negative definite if and only if there is a sequence (h) 0 from 
H" such that )C(rn, n) is exactly the Gramian of hm and h for all non-negative integers 
rn and n. In particular, one can choose H as the subspace of all equivalence classes of 
square-integrable complex-valued random variables on a probability space (Il, 21, F) with 
finite variance and zero expectation. For this reason, one can expect that mathematical 
objects describing non-negative definite kernels have a clear probabilistic meaning. In 
[37, 42], the authors stated how the matricial versions of the interpolation problems 
of Carathéodory and Schur are associated with multivariate stationary sequences. A 
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correlation-theoretical interpretation of Schur analysis of non-negative Hermitian block 
matrices is given in [43]. 

The main goal of the present paper is to work out the stochastic meaning of the 
Nehari-Type Problem for matrix-valued Carathéodory functions defined on the unit 
disc D := {z E C : Izi .( 11. A matrix-valued function cJ : . qxq is called 
(q x q)-Carathéodory function (on D) if it has the following two properties: 

(i) cI is holomorphic in D. 

(ii) For each z E ID, the real part Re 4(z) := ((z) + [(z)]) of the matrix (z) 
is non-negative Hermitian. 

The Nehari-Type Problem for matrix-valued Carathéodory Functions can then be for-
mulated as follows. 

Problem (NTPCF). Let a : ID -* CP ' P , : ID - Pxq and 5: II) - Cqlq be 
given matrix-valued functions holomorphic in D. 

(a) Describe the set A1o[a, 8, 5] of all matrix-valued functions : ID - C><P such 
that

c:=(	
)	

(1)


is a ((p + q) x (p + q))-Caratheodory function (on ID) satisfying [Q(0)] = 11(0). 

(b) If k is a non-negative integer and if (7j)0 is a given sequence of complex 
(q x p)-matrices, then describe the set jVo[a, , 5; (y3)...0] of all E No[a, , 8] satisfying 
(0) = yo and, if k E N,

1 d 
3! dzJ
	= 2Yj 

for all integers j such that 1 j	k. 

Part (a) of problem (NTPCF) was posed by Katsrielson [51, 52]. It turns out to 
be a reformulation of a generalization of a classical problem studied by Nehari [57]. 
Fundamental results associated with this classical problem and its matricial version 
were obtained by Adamjan, Arov and Krein in their famous papers [1 - 41. The solution 
of problem (NTPCF) leads to the study of certain non-negative definite kernels of 
mixed Toeplitz-Hankel type. Those kernels originate in a series of papers by Arocena, 
Cotlar, Leon and Sadosky and were intensively studied in [7 - 19, 25 - 28] (see also 
Alegria [5]). In [40] the authors gave a necessary and sufficient condition for the case 
that problem (NTPCF) has a solution. Moreover, all solutions were described by their 
Taylor coefficients. This description shows that the set of all solutions contains an 
element which is distinguished for geometrical reasons, namely the so-called central 
solution. We will indicate that the central solution can be also characterized as the 
unique solution of an appropriate approximation problem in the framework of prediction 
theory.
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1. The Nehari-type completion problem 
for matrix-valued Carathéodory functions 

In this section, we will state an answer to problem (NTPCF). For this reason, we will give 
some notation. Thoughout this paper, let Z be the set of all integers. If r E Z U { -oo} 
and s E 7L U {+oo} satisfy r s, then let Zr,, be the set of all integers k which fulfill 
r < k < s. If A is a complex (p x q)-matrix, then A+ designates the Moore-Penrose 
inverse of A. We will use the Löwner semi-ordering for Hermitian matrices. If A E 
and B E q>(q are Hermitian, then A > B (or B A) means that A-B is non-negative 
Hermitian. Let I,, be the identity matrix which belongs to CPXP, and let IKp x q be the 
set of all A E (CPxq which are contractive, i.e., which satisfy the inequality I,, > AA*. 
If ME Cpxq A e CP X P and B E Cqlq are given, then the set 

.(M;A,B) := {M + AKB: K E Kpxq} 

is called the closed matrix ball with center M, left semi-radius A and right radius B. For 
a detailed study of matrix (and operator) balls, we refer to the paper [58] of Smuljan. 

Now we assume that (a)_ and (5j)._oo are sequences of complex (p x 
and (q x q)-matrices, respectively. Then, for all m E N0 , let A n and '.m be the block 
Toeplitz matrices defined by 

A ._ f	\m	 .1	A ._ (J	\m 
s0	and	m	tUr_s)r s0 

If /c E N0 , and if a sequence (/9j)_k of complex (q x q)-matrices is given, thenlet 

B 1,	(/3r-5+l)s=o 

IAm.n Bn,m+n 
Tfl,fl	t TD

	Am \ ''n,m+n	 +n

(n E N0 , 1 E Z_k,) 

(m E Z2,k, n E No fl Z_m, 00 )	( 2) 

and, for all ii E No and all m E No which fulfill 1 - ii <ni < k + 1, 

dmn := (/3(m_1),I3-(m_2), ,n,m+n,m+n-1, ...,), 

em,n	(a-1,a-2, ., a_ (m+n), On, n-1, 

and
Lmn	60 - dm,nS_2,n+id,n, 
Rm	 * 

- em,fl..m_2fl+Iemfl, 

Mm,n	dm,nS_2,n+1em,n. 

Furthermore, let L00 := 80 , R00 := ao and M00	Oqxp where Oqxp stands for the null 
matrix that belongs to C qxp 

Comparing parts (a) and (b) of problem (NTPCF), we immediately see the follow-
ing.
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Remark 1. If Q is a ((p + q) x (p + q))-Caratheodory function (on D) which has 
the block partition (1), then [1(0)]	11(0) implies (0) = [fl(0)]* . Hence, 

.	o	- fVo[a,fl,6] if yo = L8(0)]* 
o[a, '	-	

0	if	[fi(0)]. 
In view of Remark 1, we can focus our attention to part (b) of problem (NTPCF) 

where	= [8(0)]. The following theorem gives an answer to this problem. 

	

Theorem 1. Suppose that a : IIJ - C'" 7 , 3 : D -f C' and	11J - Qxq are

holomorphic matrix-valued functions with Taylor series representations 

a ( z ) = ao+2aiz' and	(z)=flo+2z)	(zED)	(3) 

and

b(z)=o+25z	(zE).	 (4) 

Let k E N0 , and let (y j )_ 0 be a sequence of complex (q x p)-matrices where y = /30*. 
Then: 

(a) The following statements are equivalent: 

(i) The set A10 [a, fi ; (7i)=o1 is non-empty. 

(ii) For all n e N0 , the matrix Sk,n is non-negative Hermitian where 

7;	(i E Z l,k) .	 (5) 

(iii) The kernel Kk NO x No .....* (p+q)x(p+q) given by (5), 

a_ i := a;	and 6-, := 6,	(j E N)	 (6)


and

k(m,n) := (;.-n  fi+n_k 	 (7) 
+n—k	flTfl 

is non-negative definite, i.e., for all i e N0 , the matrix (1Ck(m,	is non-negative

Hermitian. 

	

(b) Suppose that Al0 [a,,3, 6;	is non-empty. Then the following procedure 

yields all functions E Al0 [a,,3, 6; (7i)=o] by their Taylor series representations 

CO

(zED): 

Step (I) Set	:= 7i for all j E Zok.
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Step (II) Assume that m E Zk+ 1,co and that, in the case in > k + 1, the coefficients 
k+1, k+21 ..., are already determined. If 6-j for all  E Z i rn—i, then there 

exist the limits 

M,,, , .:= urn Mrn,n,	Lm,. : urn Lm,n,	Rrn,. : urn Rrn,n n co n — oo	 n-.c,3 

where Lrn,. > 0 and Rrn, * > 0. Choose 

m E (Mm.; \/E, 
A proof of Theorem 1 was given in [40: Theorems 1 and 2]. There the formulation 

of the theorem was stated only in the case k = 0. However, a closer analysis of the proof 
given in [401 shows that it goes also through for the more general situation considered 
here.

Remark 2. If k E N and if the kernel K.1k : No > NO 
I ( p—f q)x(p+q) is given by (7), 

then it is readily checked that 1.Ck is non-negative definite if and only if all the kernels 
Co, K i , ..., kk are non-negative definite. 

If the set Al0 la " M; 8; (-y)0] is non-empty, then we see from Theorem 1 that it 
contains an element which is distinguished for geometrical reasons, namely the function 

the Taylor coefficients of which are successively chosen as the centers of the matrix 
balls in question (see Theorem 1/(b)): 

= Mk+i,.,	k+2 = M'k+2,.,	k+3 = Mk+3,.. --- . 

This function will be called the central element of Al0 [a,/3,5;(7j)0]. Later we will 
see that it can be also characterized by a certain extremality property in the context of 
prediction theory. 

2. Some facts on multivariate stationary sequences 
In this section, we will summarize some facts later on stationary sequences in Hilbert 
space. For a comprehensive survey on this topic, we refer the reader to Masani's paper 
[56].

In the following, we again suppose that H is a complex Hilbert space with inner 
product (.,.) and associated norm II . Further, let H q be the Cartesian product of 
H with itself q times, i.e.. the set of all column vectors g = col(g('), g (2) , ..., g()) with 
g(k) E H for each k E Z 1,q (k = 1,..., q). Obviously, if g E	and if A = ( a k) 11 e 

pxq then the vector 

Ag = col
(k= I	k=1	 k=1 

belongs to H. If  E H" and g E	then the Gramian (f, g) of the ordered pair [f, g]

is defined by the matrix

(f,g) := ((f,g)'11.
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If trA denotes the trace of a complex (q x q)-matrix A, then H q turns out to be a 
complex Hubert space with inner product (, )j.j q and associated norm	1 1 H1 given by 

(1 g) H I 
:= tr (f, g)	and	110 11, :=	tr ( g , g) 

for every choice of f and g in	Let U be a closed linear subspace of H, and let 
9 E	Then (P is a closed matrix-linear subspace of H q , and there is a unique vector 

E Uq such that ( g - , h) = Oqxq for all h E (J • One can also characterize as the 
unique vector g. which belongs to (P and which satisfies 

ll - g.11ii	g - hu119 

for each h E (P. We will write (g l) for this so-called Gramian orthogonal projection 
of g onto (P. Observe that this projection admits the representation 

(gj(P) = col((g(1)U), (
g2 l U ), ..., (gNU)) 

Remark 3. Wiener and Masani (see [59: Lemma 5.8] and [60: Lemma 1.17]) 
proved that (g l) can also be characterized as the unique vector 90 which belongs to 
U q and which fulfills the matrix inequality 

(g - 9o,9 - go) (g - h,g - h) 

for all h E U. 

Wiener and Masani (see [59, 60]) also observed that if the linear subspace U of 
H is finite-dimensional, then Gramian orthogonal projections onto (P admit useful 
representations: 

Remark 4. Let f E H, and let splf(1), f'2)'...' f(P)] denote the linear span of the 
components f(l),f(2),f(P) of f . Then for each g E H q the vector 

1= (g  (Sp [f,f(2),...,f])) 

admits the representation
I= (g,f)(f,f)f 

and satisfies
(9— ', g - ) = (9,9) - (g,f)U,fY(f,g). 

In the following, we will continue to use the notation spf(l) , f(2)'...' 
1 (P) ] introduced 

in Remark 4. It will be advantageous to give some further properties of Gramian 
orthogonal projections. 

Remark 5. Let U be a closed linear subspace of the complex Hubert space H. Let 
g €	and let := (gj(P). Then it is readily checked that the vector 

=	g— , g— ) (g — ^)
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satisfies	)2 =	) and

g —= 

If C is the smallest closed linear subspace £ of H with U c £ and g(3) E £ for all 
3 E Z i,q , then

ceu =5p[1)2)(q)] 

where (I) , (2) ••,(q) are the components of . 

Lemma 1. Let f E H" and g E H q . Further, let U be a closed linear subspace of 
H, let

	

1= (fU")	and
	

(8) 

and let

f:=(f-1,f-1)(f-1)	and
	

(9) 

Then (, f) is a contractive matrix:

	

f)&f	 (10) 

Proof. Because of Remark 5, both matrices (1 f) and (, ) are idempotent and 
Hermitian. Therefore, 1,, > (f, f) and 'q ^! (,)• Thus we see that 

	

( Ip-	
(J,)\\=((J,j) 

(f,)'(I—(11)	0 

	

\. (, 1)	Ig I	f) (,	I	\	0	- (, ) 
-	

) 

	

...	-	//-\	/....\ \	 (11) 
>( (f L) (f, g1((f\ (1 

&' f)	 g1I	\\g)\g 

As a Gramian the matrix stated on the right-hand side of (11) is non-negative Hermitian. 
Therefore, the matrix on the left-hand side of (11) has this property as well. Conse-
quently, applying a lemma which characterizes non-negative Hermitian block matrices 
(see, e.g., [33: Lemmas 1.1.9 and 1.1.12]) we obtain (10) I 

Lemma 2. Suppose that U is a closed linear subspace of the complex Hilbert space 
H. Let f E H" and g E H", and let f,g,f and j be given by (8) and (9). Further, let 
M := (, f), L := (g - , g - ) and R := (f - f, f - f) . Then there is a unique matrix 
K E qXP such that

(g,f)=M+'/LKv',	 (12) 

	

LLK = K	and KRR = K.	 (13) 

This matrix K is contractive and admits the representations 

	

K = (,f)	and	K = /L [(g,f) - M] V' +
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In particular, the matrix (g, f) belongs to the matrix ball (M;	 Moreover, 
(g, f) = M if and only if	f) = °qxp• 

Proof. If there is a matrix K E Cqxp satisfying the three identities stated in (12) 
and (13), then in view of LL = LL = v'L	/JJ/L , 

K = /L	= /L + LIvr	+ = A + [ (g, f) - M]	.	(14) 

In particular, there is at most one matrix K E Cqxp satisfying the equations given in 
(12) and (13). Because of (, I - f) = Oqxq and (g - , 1) = ° q>< q, we have 

(g,f)=(+g—,1+f-1)=M+(g—,f-1). 

In view of Remark 5, then

(g, f) = M + VrL(f)v	 (15) 

and
+ K g ,f) - M]	+ = /L	7(,f)//	= (,f) .	(16) 

Thus, if there is a matrix K E Cq xp satisfying the equations given in (12) and (13), then 

it follows from (14) and (16) that K = (, f) . From (15) and (16) one can conversely see 

that the matrix K = (, f) really satisfies (12) and (13). Lemma 1 shows that the matrix 


f) is contractive. Hence, the identity (15) providesfinally (g, f) E .(M; /L, /) U 

The following lemma due to Masani [56] will play a key role in our further consid-
erations. 

Lemma 3. Let (Un), E N be a sequence of closed linear subspaces of the complex 
Hubert space H which satisfy U, c U i for each n E N. Let U denote the smallest 
closed linear subspace of H which fulfils U,, c U for all n E N. Then, for each f E H", 

( P UP ) = lim(fIU,) 

with respect to the norm II Ili-z of the Hilbert space H". 

Assume that r,p e Z  {—o} and s,a E Z  {+oo} satisfy r <sand p <a, and 
that ft E H" (t E Zr,,) and g,- E H" (T E Z,,,a) are given. Then we will use	to 
denote the closed linear subspace of H generated by all f	(i E Z 1, ,t E Z) and 
all gY (ii Z i,q ,r E	Now let r,s,p,a E Z be such that r s and p a. Then

we set

fr\	 fgp 

	

fr+i	 I gp+i 
Fr,:=	.	

and 

I 
Let I E Z. If ft E H P and g i e H') are given, then, in view of Remark 4, the Gramian 
orthogonal projections

	

r	._f: rP 

	

J1.rs/p	.— '\ it	r,s/p,o
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and
gI.r,,/p,o \ 

r,s/p,o)' 
admit the representations

Gp,g 

	

Fr,, \\ f/Fr,, \ / Fr,, \\	/ Fr,, 
fl.r,,/p,a = (i (G , )) ( c) 	G	H	)	(17) 

\ p,JJ 

and
Fr,, \\\ f/ 

pa 
Fr, 3 \ / Fr,, \\\+ 1Fr,, 

gz.r,s/p,a = (91, (
Gp,a)i ( ( C	) 'G , ))	C	

(18) 
\ pa] 

respectively. Furthermore, we will work with the vectors 

fi.r,,p,a	- fi.r,,ip,a, ft - fi.r,,ip,a) (ft - fi.r,,Ip,a) 

and
- gt.r,,/p,a, g i - gi.r,,/p,a) (9 - 

Now we will turn our attention to stationary sequences in H q. We again assume 
that r,pE ZU{—} and s,a EZU{+oo}, where r <s and p a. Asequence 
(gj)jEz,.. in H q is called stationary if ( g +t, g,+i) = (gm, gn) for all rn,n E Zr,, and 
I E Z with r <rn + I s and r n + I s. The sequences (fj))EZ, and (g3)z,, in 
HP and H q are said to be stationarily cross-correlated if (fm+1, gn+t) = (fm,gn) for all 
rnEZp,a ,flEZ r,s and lEZwithp<m+lJandrn+l<8. 

Theorem 2. Suppose that H is an infinite-dimensional complex Hubert space and 
that k is a non-negative integer. Let (ai)'°_.0, (flm)_k and	be sequences from


j,Xj, CP and Cqlq, respectively. Then the following two statements are equivalent: 

(i) The kernel 1 k No x No -	 given by (6) and (7) is non-negative 
definite.

(ii) There are stationarily cross-correlated stationary sequences 
in H" and	respectively, such that the identities 

(f,,fo)=cs 3	and	(go,g—j)=i	 (19) 

and
(fj,gk)=13,—k	 (20) 

are satisfied for all j E No 

If (ii) holds true, then

((

 

fm ) , ( In \) = k(m,n)	 (21) 
\gk_m	gk_nj) 

for all non-negative integers m and n, and 

((Ij J (Ioi\fcj ',\	 (22) \ k\ g	go J)	i3:	s) 
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for all integers j satisfying 0 <j < k. 

Proof. (i) =. (ii): By virtue of a famous result due to Kolmogorov (see [53: Lemma 
2]), there exists a sequence (h m )_0 in HP I q such that (hm,hn) = Kk( m , n) for all 
m,n (=-No. For m (E No, let fm : (Ip,Opxq)hm and gk-m	(0qxp,1q)hm. Then 

(fm+i,fn+i) = am-n, (gk-m-1,gk-n-I) = 6n-m, (fm, gk-n) = 13m+n-k 

for all non-negative integers rn,n and I. Consequently, (fm)0=o and are 
stationary sequences which are stationarily cross-correlated. Moreover, we see that (19) 
and (20) are fulfilled for all j E N0. 

(ii) =. (i): Let (hm)'=0 he defined by hm = ( g"- 
)• Then, for all m,n E No with 

m 2 ri, in view of (6)

—
(

(f,., fn)	(fm,gk-n) \

(gk-m,fn) 

(hm,hn)
	(gk_m,gk_n))


— ((fmfo) (fm+n,gk) \ 
— (fm+a,gk)* (go,gfl_rn )*) =	(m, n). 

In particular, for all j E No 

(k(m, n))'= ((hm, h))_0 2 °(p+q)x(p+g). M n 0  

This implies (i). The rest of the assertion follows by straightforward calculation U 

Lemma 4. Let (a,) 0 ,and (ö,)	be sequences from CPXP, pxq and

qxq respectively, and let the sequence (C). 0 be given by 

C _( aj 13i 
1\\/3:	6 

Then the following statements are equivalent: 

(1) For all k E N0 , the kernel Kk : No < No — (P+q)x(P+q) given by (6) and (7) is 
non-negative definite. 

(II) The sequence (C). 0 is non-negative definite. 

Proof. Assume that H is an infinite-dimensional complex Hubert space. 
(i)	(ii): Let k E N0 . From Theorem 2 we see that there are stationarily cross-

correlated stationary sequences (f).0 and (gj)_,, in H and	respectively, such

that (22) holds for all j E Zo,t . Hence,

Co CI ... 
C1 Co ...	C 1 (((f,)	(f")))k

 

gr	93 

CC1 • CO.

(23) 
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As a Gramian, the right-hand side of (24) is non-negative Hermitian. Since k is an 
arbitrarily chosen non-negative integer, statement (ii) follows. 

(ii) = (i): By virtue of Kolmogorov's result [53: Lemma 2] there is a stationary 
sequence (h) 0 in ffP+ q such that (h, h0 ) = C, for all  E No. Now let k E N0 . To 
verify (i) we consider an arbitrary non-negative integer r, and we will show that the 
matrix (ftCk(rn, n)),_0 is non-negative Hermitian. Setting 

f3 := (Ip ,Op x q )h r+j	and	9k—j := (Oqxp,Iq)hr+k_.j


for all j E ZO , r, we have 

(fm, fn) = (Ip , Opxq)( hr+rn . h r+n)( Ip, Opxq) = (In , Opxq)Crn_n(Ip, Opxq), 

(9k-rn, 9k-n) = (Oqxp, Iq )(h r+ k-rn, hr+kn)(Oqxp, Jq)* = on_rn, 

(frn, 9k—n) = (I,,, Op x q )(hr+ m , hr+kn)(Oqxp, Iq)* = I3rn+n-k 

for every choice of in and ii in Z O r. Therefore 

frn \ /	r 
(k(m,n))_0 

=	9k_rn) 'gk_n))rn,n=O 
^ 0(p+q)x(p+q) 

Consequently, statement (i) holds true I 

For our further considerations, we need a modification of the already mentioned 
result due to Kolmogorov [53: Lemma 21. 

Theorem 3. Let (C)_ 00 be a sequence of complex (q x q)-matrices. Further, let 
H be an infinite-dimensional complex Hilbert space. Then the following statements are 
equivalent: 

(i) There exists a sequence \' 
(1 / 

fl00 
00	from H q such that 

(h a , ha)	Cp _ c,	 (25) 

for every choice of p and a in Z. 

(ii) The sequence (C)°= _ 00 is non-negative definite, i.e., for each r E N the block 
Toeplitz matrix Br = (Crn_n),,n=o is non-negative Hermitian. 

For a proof of Theorem 3, we refer the reader to [6: Theorem 7]. 

Corollary 1. Suppose that H is an infinite-dimensional complex Hilbert space. Let 
(a)_0 , (I3j)-00 and (Oj )	be sequences from C", CPX(1 and qxq respectively, 
and let (a 5 ) 1 and (L,)	be given by (6). Then the following two statements are 

equivalent: 

(i) The sequence	))j
00

0 given by (23) is non-negative definite. 

	

(1 '00	/ \ (ii) There are stationarily cross-correlated stationary sequences 9j)0
0
j..00 

in H P and H , respectively, such that (19) and (20) are satisfied for every choice of  E Z 
and k E Z.
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11(u) holds, then (21) is satisfied for all non-negative integers k,m and n, and (22) 
is valid for all integers j. 

Proof. If (ii) holds, then we see from (22) that (1i)_ given by 

h	(fn)	(nEZ)	 (26)

"gn 

is a stationary sequence in H" which satisfies (25) for all integers p and a. Conversely, 
if a stationary sequence (1i)°_ in H" is given which fulfills (25) for all integers p 
and a, then (fn )' n=-c,. and (g)°_ defined by 

f,1	(Ip,Opxq)hn	and	gn	(O q x p , Ig )hn	 (27) 

are stationarily cross-correlated stationary sequences in H P and H. respectively, which 
satisfy (19) and (20) for all integers j and k. Obviously,	= (f, f)	cr and 

= (g-j, go) = , and hence C_ = C for all j E N0 . Using Theorem 3, we then 
obtain the asserted equivalence. Thus, the rest of the assertion follows from Lemma 4 
and Theorem 2 I 

3. Prediction-theoretical interpretation of the parameters

which describe the solution set of problem (NTPCF) 

In Section 1, we stated that the solution set of an arbitrary Nehari-type problem for 
matrix-valued Carathéodory functions can be described by a sequence of matrix balls. 
This section is aimed to give a stochastic interpretation of the parameters of these 
matrix balls. 

Lemma 5. Let (cs) 0 and (8'be sequences of complex (p x p)- and (q x q)
matrices, respectively. Let k E N0 , and let (0.)_ 

= 
- k be a sequence of complex (p x 

matrices. Suppose that the kernel lCk : No x No	(p+q)><(p+q) given by (6) and 
(7) is non-negative definite. Let and j=-00 be stationarily cross-correlated 
stationary sequences in H P and H q , respectively, such that (19) and (20) are satisfied 
for all  EN0 . Then: 

(a) For all integers m and all non-negative integers n and j which satisfy rn+rr? 0, 
in -2 and m + j < k, the matrix Sm,n given in (2) admits the representation 

Sm n - ((Gj-n,,+.
Fj,j+m+n\ (Fj ,j+m+n \'\

) 'Gj_n,)+m))	
(28) 

(b) For all non-negative integers m, n and j which satisfy in + n > 1 and in + j 
k + 1, we have

dm,n = (9k_ (_m_n_i)),	 (29)

G k_m_n_j,k_1 -i 

em,n = (i  I (Fj+l,j+m+n))	 (30)
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Lm,n	(gk_j - k-j.k-m+1-j,k+n-j/k-m-n-j,k-l_ii 

	

gk-j - k_j.k_rn+I_jk+n_j/k_rn_n_j,k_I_j),	 (31) 

	

Rm,n	(i - fj.j+l,j+m+n/jnj+rn1, fj - fj.j+i,j+m+nij_n.j+m_i)	(32)


and, if the inequality m + j < k additionally holds, 

M., n = (9k_j.k_m+1_jk+n_j/k_m_n_j,k_l_j, 1k_rn_i) 

= (gm+j, Ii -
(33) 

= (9k_j.k_m+I_j,k+n_j/k_rn_n_j,k_1_j) 

fk-m-j.k-rn+l -j,k+n-j/k-m-n-j,k-1 

whereas L00	(gk,gk) and R00 = ( fo,fo). 
Proof. The identities (28) - (30) follow by straightforward calculation. Let m,n


	

and j be non-negative integers with in + n > 1 arid m + j	k + 1. Then 80 = 

(gk_j,gk_j), a0 = (f,, f) and 

-
((Gk-m—n—j,k-1—j)

Fk_m+1_j,k+n_j(Fk_rn+l_j,k+n_j 
Srn_2 , n + i 'ir' ii \'Jk-m-n-j,k-l-j J / 

S m-2,n+I -  
((Gj-n,j+m-1)

Fj+i,j+rn+n ' (Gj-n
,j+m-1

Fj+i,j+rn+n 
'-'	-

 	)) - 

Applying Remark 4 we then get (31) and (32). If in + j k, the equations stated in 
(33) can be verified analogously from 

- I	(1'j+i,j+rn+n mn - gm+j, I \L7jnj+rn_1 

and
• - ((Fk_m+1_j,k+n_j\ ç 

em , n - 	jk-m-j

\ \ k-m-n-j,k-1-j / 

Thus the assertion is proved I 

Proposition 1. Let(aj),c_o and (8)"f 0 be sequences of complex (pxp)- and (qxq)
rnatroccs. Let k E N0 , and let (/3m)r_k be a sequence of complex (p x q)-matrices. 
Suppose that the kernel ICk No x No	(p+q)x(p+q) defined by (6) and (7) is non-
negative definite. Let (f,)'?..0 and (gj)_ be stationarily cross-correlated stationary 
sequences in H P and H", respectively, such that (19) and (20) are satisfied for allj € No. 
Let in E 7L0,k, and let n E N0 . Then there is a unique complex (q x p)-matrix Kmn such 
that

(g., A) = Mrn,n +	TKynn/PFnn 
and

	

T	T	+ 7	-	 ,7	n'	j	+ P	- .Lrn n mn	mu - m,n	an	m,n mn mn - m,n•
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This matrix Km,n is contractive and admits the representations 

and 

Km,n	
{ (\/(go)go,\/(fo,fo)fo)	 ifrn=n=0 

(gk.k—m+1k+n/k_m_nk_1 fk_m.k_m+1,k+n/k_m_n,k_I) if m + n > 1. 

In particular, the matrix (gm, fo) belongs to the matrix ball .(Mm,n; 

Proof. The case in = n = 0 is trivial. Assume that m + n > 1. If we set U := 
Lk_m+1,kfm/k_m_n,k-I, then the application of Lemmas 2 and 5 yields the assertion I 

Observe that Proposition 1 can be also obtained from Theorem 2 in [43]. 

In Theorem 1 we already stated that the matrix sequences (Mmn)o, (Lm,n)0 
and (Rm,n) 0 converge. The proof of the existence of these limits given in [40] uses 
Smuijan's (58] results on sequences of nested matrix halls. Applying Lemmas 3 and 5, 
one can not only get an alternative proof, but also further statements on the existence 
of certain other limits which are of interest. 

If complex (p x q)-matrices Amn are given for all non-negative integers m and n, 
then we will use the notation

lim Am,n m n -.00 

if there is a matrix A E Cplq such that for all positive real numbers e there is a non-
negative integer r such that IAmn - AlE < c for all m,n E Z, 00 where I IE denotes 
the Euclidean matrix norm. In this case, we will write limm,n 00 Am,n for this unique 
limit A. 

Theorem 4. Let (a) 0 and (6i)°=o be sequences of complex (p x p)- and (q x 
matrices. Let k E N0 , and let (0m)_k be a sequence of complex (p x q)-matrices. 
Suppose that the kernel ?Ck : 

No x No - C(p+q)x(p+q) defined by (6) and (7) is non-
negative definite. Then: 

(a) For all m E 7Z0 , k+i, both sequences (L mn ).o and (Rm,n)o are monotonously 
non-increasing (with respect to the Löwner semi-ordering of Hermitian matrices). 

(b) For each n E N0 , both sequences (Lmn)20 and (Rm,n),t'o are monotonously 
non-increasing. 

(c) For each in C Zok •+l, there exist the limits 

	

Lm,. := limLm,n	and	Rm,, : limRm,n	 (34) 

which satisfy
	

n co

0 Lm,, Lm,n	and	0 Rrn, * Rm,n
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for all ii E No. Moreover, both sequences (Lrn.)20 and (Rrn, * )t'0 are monotonously 
non-increasing. 

(d) For each ni E Zo,k, there exists the limit 

M,,- := IimMm,n.	 (35) 

(e) Suppose that (f)° and (gj)_, be stationarily cross-correlated stationary 
sequences in H P andH 7 , respectively, such that (19) and (20) are satisfied for allj E N0. 
Then, for all non-negative integers m and j which satisfy m + j k + 1, 

= (9k_i - 

9k-f 9k_j.k_rn+1_j,00/_oo,k_1_j)1	 (36) 

Rrn, * = (i) - fj.j+1,00/-ooj+rn-I, ii - fj.j+iooi_,j+m_i)	(37) 

and, ifrn+j	k, 

Mrn. = (Yk_).k_m+I_j/_k_I_j 1k_rn_i) 

= (9rn+f , fj.j+i,/_,j+rn_i) 

= (9k_j.k_m+i_j,/_,k_1_j fk_rn_j.k_rn+1_j,/_k_1_j). 

Proof. By virtue of Theorem 2, there are stationarily cross-correlated stationary 
sequences (f)° 0 and (g)_ in H and respectively, such that (19) and (20) 
are satisfied for all j E N0 . Then Lemma 5 yields the representations (31) and (32) for 
all non-negative integers rn, n and j with rn + n > 1 and m + j k + 1. Since 

£pc7 +r1pv+ 3	 (39) 

is satisfied for all p,a,s,r E No and all u,v E 7L with p a and ii < k - s, we 
obtain from Remark 3 the assertion stated in parts (a) and (b). Lemma 3 shows that 
the limits stated in (34) exist and that the representations ( 36) and (37) are valid for 
all rn,j E No with m k + 1. Similarly, we get from (33) that the limit (35) exists 
for all m E Zo,k and that the representations stated in (38) are fulfilled for all rn,j E No 
with m + j < k. Remark 3 yields the rest of the assertion I 

Theorem 5. Let (ci), ()'o and ()_ be sequences from CP>P, QXq 

and Cp1q, respectively. Suppose that the sequence (C) 0 given by (23) is non-negative 
definite. Then: 

(a) For each in € Zo,k+1, there exist the limits 

	

Lmm,n	and	R., := limRmn	 (40) 

which satisfy
0	Lrn,n	and	0 < R. ,	Rrn,n
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for all n E N0 . Moreover, both sequences (L. , ) 0 and (R,) 0 are monotonously 
non-increasing (with respect to the Löwner semi-ordering of Hermitian matrices). 

(b) There exist the limits 

	

L := lim L.,n	and	R:1imR	 (41)


and, furthermore, they admit the representations 

	

L = 1imL,1 ,	and	R = 1L Rm, *	 (41)
M-00  

and
L =	 m,n	and	R=	Rm,n	 (43) 

	

m	c,o	 m	oo  

(c) If(f)and are stationarily cross-correlated stationary sequences 
in HP and Hq , respectively, which satisfy (19) and (20) for all non-negative integers j 
and k, then

L = (9k - 9k.—,/—,k-1, gk - 9k._,/_oO,k_1)	 (44)


and
R = (1k - fk.k+1,001—oo,00, fk - fk.k+1oo/_oo,00)	 5)


for all k E Z. Morover, 

	

= (9k - gk.—,k+n/—,k-1	k - 9k._k+/_,k_1)	(46) 

and
R., = (fk fk.k+1,00/k—n,00 1k - fk.k+1oo/k—n,00)	 (47) 

for all non-negative integers n and all integers k. 

Proof. We see from Lemma 4 that, for all k E N0 , the kernel Kk : NO x No - 
given by (6) and (7) is non-negative definite. Let H be an infinite-dimen-

sional complex Hubert space. According to Corollary 1, let (f)f._ and 
be stationarily cross-correlated stationary sequences in H and H, respectively, which 
satisfy (19) and (20) for all j E 7L and all k E Z. Then we see from Lemma 5 that 

	

Lm,n = (gm 9m.1,m+n/—n,m—I, 9m gm.i,m+n/_n,m_i)	(48)


and
Rm,n = (fo - fo.i , m + n i —n , m—i, fo - fo.i,m+nin,m_i)	 (49) 

hold for all non-negative integers m and n with m + n 2 1. By virtue of the stationarity 
properties of (f?., and (g)_, we get from Remark 4 that 

Lm,n = (9k - 9k.k—m+I,k+n/k—m—n,k-1) 9k - 9ksk_m+1,k+n/k_m_n,k_I) 

and

Rm,n = (fk - fk.k+1,k+m+n/kn,k+m1, 1k - fk.k+1,k+m+n/k_n,k+m_1) 

are satisfied for all k E 7Z and all rn, n E No with m + n 2 1. From Lemma 3 we obtain 
then the existence .of the limits stated in (40) and the representations (46) and (47), 
which hold true for all n E No and all k E Z. Then (39) and Lemma 3 provide that the 
limits stated in (41) exist and admit the representations ( 44) and (45) for all k E Z. In 
view of (39), one can analogously verify that (42) and (43) are satisfied I
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Observe that, in general, the sequences (Mm,n )°_ o and (K. ,.) =0 (n E No), and 
(Km,n)o (in E N0 ) do not converge. 

Theorem 6. Let (a) 0 and (5	be sequences of complex (p x p)- and (q x q)-




matrices, respectively. Let k E No, and let (I3m)=_k be a sequence of complex (p x q)-

	

matrices. Suppose that the kernel kk : No x No	(p+g)x(p+q) defined by (6) and (7)

is non-negative definite. For m E Zo,k+1, let the matrices Lm, * and Rm, * be defined by 
(34), whereas the matrices Mm,. (ni E Zak) are given by (35). Then: 

(a) For all rn E Zak, there is a unique complex (q x p)-matrix Km such that 

131m = Mm. +	 ( 50) 

and
Lm,.Lm,.+Km = Km	and	KmRm,,+Rm,. = Km, 

namely
Km =	 - 

This matrix Km is contractive. 

(b) For all m E Zak, the identities 

Lm+ i ,, = /L(I - KmK,n)fL ,	 (52) 

Lm+. = Lm,. - (I3.m - Mm,.)Rm,.(13.m - MM ' * ) * 1	 (53) 

Rm+ i ,, = /(i K,, Km ) /	 ( 54) 

and
Rm+ i ,, = Rm,. - (film - Myn, * )Lm,.(/3l m -- Mm,.)	 (54) 

hold true.	- 

(c) Let in E 7Zo , k. Then the following statements are equivalent: 

(i) Lm+i. = Lm.. 
(ii) Rm+i,. = Rm,.. 

(iii) 1-m = Mn,*- 

(d) If (f)0 and (gj)_ are stationarily cross-correlated stationary sequences 
in H P and H , respectively, such that (19) and (20) hold true for all j E N0 , then, for 
all m E Zak, the matrix Am admits the representation 

Km = (m0I,/_00,m_1)	.1,1_00,m_1) .	 ( 56) 

Proof. Let H be an infinite-dimensional complex Hubert space. According to The-
orem 2, let (f)	and	be stationarily cross-correlated stationary sequences 
in HP and	respectively, which satisfy (19) and (20) for all j E N0 . Let m e Zo,k.

Then we see from Lemma 2 and Theorem 41(e ) that the matrix given in (56) is the
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unique complex (q x p)-matrix Km which satisfies (50) and (51). Furthermore, we get 
that Km is contractive. In order to prove the identity (52) we observe that 

9m9I,00/-00,m-1 + Ym 

where
:= (gm I (o,i-m_i e £ 

fulfills (gm.i,/-c,om-i, m) = 0. Thus, we obtain from Theorem 4 

L m+i, * = (gm - 9m.0/-m-1, gm - 

= (Ym, gm) - (gm.o,i-,m-i, m.o,,_,m_i)	
(57) 

= (gm, gm) - (gm.i,i-,m_i, gm.i,j_,m_i) - ( gm, gm) 

Lm. - (gm,gm). 

In view of Remark 5 we have 

£O,00/....00,m..I e £I,00/_oom_I 
(1)	 (2)	(2)	 f(P)	(p) = sp(f1) - f (l)

	,fo - f06I1,m-1 , ' o - 

Hence, Remarks 4 yields 

(g., f. - fo.i,_,rn_i)  

• (fo - fO.I1-00m-1,fO - fo.i,i_m_i) + 

• (fo - 

This representation of gm implies 

\	I	:	r	 \n	r	r gm) - Ym, JO - JO.Ioo/-oo,m--1)t.m.+( JO - JO.1oo/-oo,m-1 , 

Obviously, Theorem 4/(e) yields 

(gm,fo - fo.i,00i-c,,m-i) = ( gm,fo) - Mm,..	 (59) 

The identities (58) and (59) immediately imply (53). From 

(m.i,/_m_i , fo - fü.ii_,m_i) = 0, 

Remark 5 and Theorem 4/(e) we see 

(gm) fo - fo.i,i-,m_i) = (gm - gm.i,/-,m-i, fo - fo.i,i_,m_i) 

=	(m01,/_,m_1, Jo - fo.ii_,m_i)
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Therefore, by virtue of (58) and (56), there follows 

(m,m) =	 (m.I,I_m_I, fo - fo.i,i_,m_i)Rm,.+ 

X (fo fo.i,mi—m,rn—i) Ym.I,00/_,m_I)	 (60) 

= /JJKm K,, 

Now we can conclude from (57) that (52) holds true. The identities (54) and (55) can 
be verified analogously. 

It remains to show part (c). If (I) holds, then (52) and the first identity in (51) 
imply K, = °gxp Hence, in view of (54), (ii) follows. Similarly, condition (ii) implies 
Km = Oqxp and, by virtue of (50), then (iii) as well. If we suppose (iii), then (50) 
and (51) yield Km = Oqxp and, according to (52), condition stated in (i). The proof is 
complete I 

Identities of the types stated in (52) and (54) are characteristic for one-step exten-
sion problems for contractive or non-negative Hermitian schemes (see, e.g., Dym and 
Goliberg [34], Constantinescu [22, 23] and the authors' papers [32], [33: Sections 3.2 
and 3.3] and [36, 38, 41]). Slightly modified formulas occur in the papers of Ro yal-
ishina and Potapov [54] and Dubovoj (see [31] and [33: Theorem 5.5.6]). Taking into 
account the representations of the semi-radii as Gramian matrices given in Theorem 4 
the extensions stated in Theorem 6 admit a clear prediction-theoretical interpretation. 
They describe the improvement of the accurracy of prediction error matrices in forward 
and backward prediction. In particular, the formulas (53) and (55) express explicit 
interrelations between certain forward and backward prediction error matrices. 

4. A characterization of the central element 
of .,V0 [,3,;(yj)=o] 

In [45] and [46] the authors investigated a pair of functions the values of which are non-
negative Hermitian (in x m)-mnatrices that is associated with a given non-degenerate 
(rn x ri)-Caratliéodory function via Weyl matrix balls. In this section, for a given 
inatricial Carat héodoryfunction Q with prescribed block partition, we will consider 
appropriate matrix balls to construct a pair of non-negative Hermitian matrices which 
will be used for a characterization of central elements. 

Let Q be a ((p+ q) x(p+q))-Carathéodory function (on D) which satisfies [(0)]' = 
l(0). If

cl(z)=C0+2>CzJ	(z E U)	.	 (61) 

is the Taylor series representation of Q, then the combination of the matricial ver-
sions of the F. Riesz-Herglotz Theorem and the Herglotz-Bochner Theorem shows that 
the sequence (C) 0 is non-negative definite. Conversely, if an arbitrary non-negative
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sequence (C) 0 of complex ((p + q) x (p + q))-matrices is given, then the function 
ci: 11) .. (p+q)x(p+q) defined by 

ci(z) := Co + 2Cz	(z ED)	 (62) 

is a ((p + q) x (p + q))-Caratheodory function which fulfils (ci(0)} = 11(0) (see, e.g., 
(33: Theorems 2.2.1 and 2.2.21). In this sense, if (a).0, ( öj) and (/3)00 are 
sequences of complex (p x p)-, (q x q)- and (p x q)-matrices, respectively, and if the 
sequence (C) 0 is given by (23), then Lemma 4 shows that (62) defines an 11 which 
belongs to Cp + q (D) and which satisfies [ci(0)]	11(0) if and only if, for every non-
negative integer k, the kernel Kk : No x No - ( P+q)x(P+q) given by (6) and (7) is 
non-negative definite. In view of Theorem 1, we thus have the following situation if a 
function ci E C(p+q)x(p+q)(D) with [Q(0)] = 11(0) is given: 

If (61) is the Taylor series representation of ci around the origin and if, for each 
j E N0 , the matrix C3 is partitioned into blocks via 

	

C_(aj #j
\ -' – )	.7 ) 

with (pxp)-block a 3 , then the matrix sequences (L, ,.)'	(R", * ) —_ i and 1 M	°°  Tn=1 
are well-defined. (It is readily checked that, for each m E N, all the matrices Lm,., Rrn,, 
and Mrn, * only depend on the matrix sequences (a)°=0, (6j)	and 
We set

L.Lm,.,	 ML=Mrn,, 

for all rn E N. Moreover, we see from Theorem 5 that there exist the limits 

Lln	 and	R101 lim R" 

Remark 6. Let a : D - CPXP, 3 : D —* PXq and 8 : D .' qxq be holomor-
phic matrix-valued functions. Let k E N0 , and let (-yj)	be a sequence of complex 
(q x p)-matrices with -y = [i3(0)]. Suppose that the set .iVo(a, /3 6; (Yi)=o] is non-
empty. If d[a, /3, 8 ;	denotes the set of all L E Cp + q (D) which admits the block

representation

L	
(/3 

8 

with some function belonging to .iVo[a, 0, 8; (-i=]' then in view of (5) and Theorem 
1, it is readily checked that 

= L 1 ,,	R, = R.	and	Mj. = MJ. 

for all 	E 7L 1, k+ I and every choice of 11 and E in
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Theorem 7. Let a: IIJ —+ CP ' P , 0 : 11) .' pXq and 8 : ii) - qxq be holomorphic 
matrix-valued functions. Let k E N0 , and let (yj)0 be a sequence of complex (q x 
matrices where yo = [i3(0)]. Suppose that the set Al0 [a, /3,6; (i)=] is non-empty. 
Further, let	Ho[a,3,8;(7j)0], and let ci be given by (1). Then the following 

statements are equivalent: 

(1) The function is the central element of .Alo[a, /3,6; (y3)_0]. 

(ii) L (° ) = 

(iii) R11I =	k+1,. 

Proof. In view of the considerations above and Remark 6, Theorem 4/(c) shows 
that both sequences (L) 0 and (R.). 0 are monotonously non-increasing. Thus, 
assertion (ii) is equivalent to L f1 =.L * for all m E Zk+l, whereas assertion (iii) 

[ is satisfied if and only if R[cl 
m + i .	Rm ] . for each m E Zk+I. Hence, Theorem 6/(c) 

provides all the asserted equivalences I 

Corollary 2. Let a : D - CPXP, 0 : D —* CP '9 and 6 : D —*	be holomorphic

matrix-valued functions. Let k E N0 , and let (-yj) 0 be a sequence of complex (q x p)
matrices where Yo = [/3( 0)] such that the kernel Kk : No x No .. (p+q)x(p+q) given by 
(5 — 7) is non-negative definite. Suppose that Lk+i,. = O	or Rk+i,, = °qxq Then 
Al0 (a, 0, 6; (y	contains exactly one element, namely its central element. Moreover,


= Lk+,. and Rk+i+,. = Rk+I for all positive integers j. 

Proof. In view of Theorem 1, the set (-y)0J is non-empty. Let	E 

be arbitrary, and let ci be given by (1). Then Theorem 1/(c) and 
Remark 6 show that Lk+i,. = O,><p implies L101 = OPXP and that R[n] = °qXg is 
necessary'for Rk+1, Oqxq. Thus the application of Theorems 6 and 7 completes the 
proof I 

The determination of elements of extremal entropy in the image of a linear frac-
tional transformation of matrices the generating functions of which have a particular 
type can be traced back to the fundamental work of Arov and Krein [20, 211. This was 
the beginning of a period of intensive studies of entropy optimization in the context of 
interpolation problems (see, e.g., Constantinescu [22, 23], Dewilde and Dym (29, 301, 
Dyrn and Gohberg [34, 351, Gohberg, Kaashoek and Woerdeman [48 - 501, Landau [55] 
and the authors' papers [37, 39, 41]). Constantinescu [24] indicated a maximum entropy 
principle for the set of contractive intertwining dilations. This work was extended by 
Arocena [11] who developed a prediction theory approach that characterizes a distin-
guished element in the set of all unitary extensions of a given isometric operator which 
can be considered as the most innovative one. Finally, it should be mentioned that Cot-
lar and Sadosky [26] discussed some interrelations between generalized Tocplitz kernels, 
stationarity and harmonizability.
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