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Abstract. This paper is a continuation of the authors’ former studies on generalized Nehari
problems (see [40, 44, 47]). We indicate the stochastic background of the generalized Nehari
problem for the Carathéodory class. Moreover, we discuss some intimately related questions
of prediction theory for stationarily cross-correlated stationary sequences.
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0. Introduction

Throughout this paper, let p and ¢ be positive integers, and let H be an infinite-
dimensional complex Hilbert space with inner product (-,-}. Further, let Ng and C
be the sets of all non-negative integers and complex numbers, respectively. We will
use the notation CP*? to denote the set of all (p x ¢)-matrices all entries of which are
complex numbers. A kernel K : Ny x Ng — €C?9%? is said to be non-negative definite if,
for all j € Ny, the block matrix (K(m,n))], ._, is non-negative Hermitian. It is known
that, for several interpolation problems as the classical interpolation problems of Schur,
Carathéodory, Nevanlinna-Pick and Nehari (and their matricial generalizations); the
solvability of the problem can be described by the fact that some kernel appropriately
constructed from the given interpolation data is non-negative definite (see, e.g., {33]).
A famous result due to Kolmogorov [53] shows that if X : Ng x Ng — C9%7 is a given
kernel, then K is non-negative definite if and only if there is a sequence (h,)32, from
HY such that K(m,n) is exactly the Gramian of hy, and h, for all non-negative integers
m and n. In particular, one can choose H as the subspace of all equivalence classes of
square-integrable complex-valued random variables on a probability space (2,2, P) with
‘finite variance and zero expectation. For this reason, one can expect that mathematical
objects describing non-negative definite kernels have a clear probabilistic meaning. In
[37, 42], the authors stated how the matricial versions of the interpolation problems
of Carathéodory and Schur are associated with multivariate stationary sequences. A
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correlation-theoretical interpretation of Schur analysis of non-negative Hermitian block
matrices is given in [43].

The main goal of the present paper is to work out the stochastic meaning of the
Nehari-Type Problem for matrix-valued Carathéodory functions defined on the unit
disc D := {z € C: |z|] < 1}. A matrix-valued function & : D — C9%9 is called
(g x g)-Carathéodory function (on D) if it has the following two properties:

(i) @ is holomorphic in D.

(ii) For each 2 € D, the real part Re &(z) := § (®(z) + [#(2)]*) of the matrix ®(z)
is non-negative Hermitian.

The Nehari-Type Problem for matrix-valued Carathéodory Functions can then be for-
-mulated as follows.

Problem (NTPCF). Let o : D — CP*P, 3: D — CP*% and § : D — C9%9 be
given matrix-valued functions holomorphic in D.

(a) Describe the set My[a, B, 6] of all matrix-valued functions € : D — C9%P such

that
(2 o

is a ((p+¢) x (p + ¢))-Carathéodory function (on D) satisfying [2(0)]* = Q(0).

(b) If kis a non-negative integer and if (’7j)§=0 is a given sequence of complex
(¢ x p)-matrices, then describe the set Ap[a, 8,8; (v; ;9:0] of all £ € Ny[a, 8, §] satisfying
£(0) =vp and, if k € N,
1 d’¢

7 ;0 =27

for all integers j such that 1 < j < k.

Part (a) of problem (NTPCF) was posed by Katsnelson [51, 52]. It turns out to
be a reformulation of a generalization of a classical problem studied by Nehari {57].
Fundamental results associated with this classical problem and its matricial version
were obtained by Adamjan, Arov and Krein in their famous papers [1 - 4]. The solution
of problem (NTPCF) leads to the study of certain non-negative definite kernels of
mixed Toeplitz-Hankel type. Those kernels originate in a series of papers by Arocena,
Cotlar, Leon and Sadosky and were intensively studied in (7 - 19, 25 - 28] (see also
Alegria [5]). In [40] the authors gave a necessary and sufficient condition for the case
that problem (NTPCF) has a solution. Moreover, all solutions were described by their
Taylor coefficients. This description shows that the set of all solutions contains an
element which is distinguished for gecometrical reasons, namely the so-called central
solution. We will indicate that the central solution can be also characterized as the

unique solution of an appropriate approximation problem in the framework of prediction
theory.



Interrelations between Nehari Problem and Prediction Theory 167

1. The Nehari-type completion problem
for matrix-valued Carathéodory functions

In this section, we will state an answer to problem (NTPCF). For this reason, we will give
some notation. Thoughout this paper, let Z be the set of all integers. If r € Z U {—o0}
and s € ZU {+oo} satisfy r < s, then let Z,, be the set of all integers k which fulfill
r <k <s. If Aisacomplex (p x ¢g)-matrix, then A* designates the Moore-Penrose
inverse of A. We will use the Lowner semi-ordering for Hermitian matrices. If A € C7*9
and B € C9*? are Hermitian, then A > B (or B < A) means that A — B is non-negative
Hermitian. Let I, be the identity matrix which belongs to CP*?, and let Kyx4 be the
set of all A € CP*? which are contractive, i.e., which satisfy the inequality I, > AA*.
If M e CP*9, A e CP*P and B € C?*9 are given, then the set

A(M; A,B) := {M + AKB: K € Kpx,)

is called the closed matriz ball with center M, left semi-radius A and right radius B. For
a detailed study of matrix (and operator) balls, we refer to the paper [58] of Smuljan.

Now we assume that (@;)32_., and (6;){2_,, are sequences of complex (p x p)-
and (g x ¢)-matrices, respectively. Then, for all m € Ny, let Ap, and A, be the block
Toeplitz matrices defined by )

Am = (ar—s)7 and A= (b6r—s)r

r,s=0 r,s=0"

If k € Ng, and if a sequence (;)j2_; of complex (¢ x g)-matrices is given, then.let

Bl,n = (ﬂr—s—*—l):,,:o (n eNg,le Zn—k,oo)

Smn = (BA‘m-iv-n BAfl,m+n) (MmeZ 2k, neNN Z—m,oo) (2)
n,m+n m+n

and, for all n € Ny and all m € Ng which fulfill 1 - n <m <k + 1,

dm,n = (ﬂ:(m—1)1ﬂ:(m—2)a"'a ﬂ;75m+n:6m+n—ly'"u61)a
€m,n ‘= (0—130—2:“'1a—(m+n)7ﬂnalgn—ly~~~yﬂ—(m—l))

and

Lm,n = 50 - dm,nsz—z,n+ld:n,m

Rpni=ap — em,nS:_Z,nHe;’n,

Mm,n = dm,ns;:;—z,n-{-le:n,n'
Furthermore, let Lgo := 6o, Roo := ¢ and Moo := Ogxp where Oyxp stands for the null
matrix that belongs to C 9%P.

Comparing parts (a) and (b) of problem (NTPCF), we immediately see the follow-
ing. ‘
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Remark 1. If Qis a ((p + ¢) x (p + ¢))-Carathéodory function (on D) which has
the block partition (1), then [Q(0)]* = Q(0) implies £(0) = {8(0)]*. Hence,

Nola, B,6; (7)) = {N‘)[a 5.8 :i o - }ZES?}

'In view of Remark 1, we can focus our attention to part (b) of problem (NTPCF)
where vo = [8(0)}*. The followmg theorem gives an answer to this problem.

Theorem 1. Suppose that & : D — CP*?, B: D — CP*? gnd § : D — CI%7 are
holomorphic matriz-valued functions with Taylor series representations

alz) =ag +2 Z a;27  and  B(z) =B + 253 B;z (2 €D) (3)

j=1 =1

and

8(z) = 6o + 2i &2 (z eD). (4)
j=1

Let k € Ny, and let ('yj)_’;=0 be a sequence of complez (¢ x p)-matrices where vy = .
Then:

(a) The following statements are equivalent:
(i) The set Ny [a,ﬂ,&; (’Yj)f:o] 13 non-empty.
(ii) For alln € Ny, the matriz Sk n is non-negative Hermitian where
B-j:=7;  (J€Zx). (5)

(iii) The kernel Ky : No x Ng — CPrOx(P+9) giyen by (5),

a-j:=a; and b6 ;:=¢; (j eN) (6)
and
Am—n ﬂm+n—k
,Ck(m n):= (ﬁm+n—k Snerm ) (7)

is non-negative definite, i.e., for all j € Ny, the matriz (ICk(m,n)){n n=p 18 NON-neEgative
Hermitian.

(b) Suppose that Ny [a,ﬂ,&;(‘yj)fzo] 13 non-empty. Then the following procedure
yrelds all functions € € N [a,ﬂ,é; (7j)§=0] by their Taylor series representations

£z)=6&+2) &2 (zeD):

J=1

Step (I) Set & :=; for all j € Zy 1.
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Step (II) Assume that m € Zg41,00 and that, in the case m > k +1, the coefficients
Ext1:8k+2, -, Em—y are already determined. If f_; := §; for all j € Zy ;m-1, then there
ezist the limits

Mpm .= lim My, ., Ly.:= lim Ly g, Ryp.:= lim Rng

n—oo n—oo n-—o0o

;xuhere L. >0 and Ry. 2 0. Choose

€m € A(Mm,o; /Loy /R +).

A proof of Theorem 1 was given in [40: Theorems 1 and 2]. There the formulation
of the theorem was stated only in the case k = 0. However, a closer analysis of the proof
given in [40] shows that it goes also through for the more general situation considered
here.

Remark 2. If k € N and if the kernel Ky : Ny x Ny — C(P+0)x(p+a).i5 given by (7),
then it is readily checked that Ky is non-negative definite if and only if all the kernels
Ko,K1,...,Kk are non-negative definite.

If the set A [a,B,ﬁ; (7j)§=0] is non-cmpty, then we see from Theorem 1 that it
contains an element which is distinguished for geometrical reasons, namely the function
€ the Taylor coefficients of which arc successively chosen as the centers of the matrix
balls in question (see Theorem 1/(b)):

60)617"':{k:§k+1 = Mk+|,'7 £k+2 = Mk+2,'a £k+3 = M’C+3,*: ERR

This function £ will be called the central element of Ny [a,ﬂ,é; (v; )fzo]. Later we will
see that 1t can be also characterized by a certain extremality property in the context of
prediction theory.

2. Some facts on multivariate stationary sequences

In this section, we will summarize some facts later on stationary sequences in Hilbert
space. For a comprehensive survey on this topic, we refer the reader to Masani’s paper
(56).

In the following, we again suppose that H is a complex Hilbert space with inner
product (-,-) and associated norm || - ||. Further, let H9 be the Cartesian product of
H with itself ¢ times, i.e., the set of all column vectors g = col(g¢V, ¢, ..., ¢{?) with
g*) € Hioreachk € Z; 4 (k=1,...,q). Obviously,if g € H? and if A = (ajx)iciiz, €
CP*9, then the vector ’

9

q q .
Ag = col <Z ak g(k), Z Aok g(k), s Z apk g(k)>
k=1 .

k=1 k=]

belongs to H?. If f € HP and g € HY, then the Gramian (f,g) of the ordered pair [f, g
is defined by the matrix

(f,9):= ((f,9"N)7_ 1L,
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If trA denotes the trace of a complex (¢ x ¢)-matrix 4, then H? turns out to be a
complex Hilbert space with inner product (-, ) g+ and associated norm || - || g+ given by

(fig)ye :=tr(frg)  and  |lgllne := Vtr(g,g)

for every choice of f and g in H?. Let U be a closed linear subspace of H, and let
g € H. Then U7 is a closed matrix-linear subspace of H7, and there is a unique vector
g € U7 such that (g9 — g, h) = Oyxq for all A € U?. One can also characterize g as the
unique vector gg which belongs to U9 and which satisfies

lg — gullue < llg — hllne

for each h € U9. We will write (glU7) for this so-called Gramian orthogonal projection
g of g onto UY. Observe that this projection admits the representation

(glU?) = col((¢|U), (¢ |V, ..., (¢P|U)).

Remark 3. Wiener and Masani (see (59: Lemma 5.8] and [60: Lemma 1.17))
proved that (g|U9) can also be characterized as the unique vector g5 which belongs to
U? and which fulfills the matrix inequality

(9 — 90,9 —9go) < (g —h,g—h)
for all h € U1.

Wiener and Masani (sce [59, 60]) also observed that if the linear subspace U of
H is finite-dimensional, then Gramian orthogonal projections onto U? admit useful
representations:

Remark 4. Let f € HP, and let sp[f(!), f®), .., f()] denote the lincar span of the
components f(1), f2)  f(P) of f Then for each g € HY the vector

3= (gl(sp[fV, f®, .., fP])9)

admits the representation _
3= f
and satisfies

(9-99-9)=1(9.9) - (9. NF, )T (f.9).

In the following, we will continue to use the notation sp{f{!), f® ..., f(P)] introduced
in Remark 4. It will be advantageous to give some further properties of Gramian
orthogonal projections.

Remark 5. Let U be a closed linear subspace of the complex Hilbert space H. Let
g € H?, and let g := (g|U?). Then it is readily checked that the vector

i=vVy-5.9-9) (-9
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satisfies (g,9)? = (g,9) and
g—§= (9—@9—?)5

If G is the smallest closed linear subspace £ of H with U C £ and ¢/ € £ for all
] €Z,,, then

GoU =sp[f,5?,..,5)
where (1), (2 5(9 are the components of g-

Lemma 1. Let f € H? and g € H9. Further, let U be a closed linear subspace of
H, let

F=0lU?)  and  §:=(glU%), (8)
and let

~ ~ -~ + -~
F=U-F1-D ¢-H i §:=V-39-9 (-3 (9
Then (g, f) 1S a coniractive matriz:

@ H@H <1, (10)

Proof. Because of Remark 5, both matrices (f, f) and (g,¢) are idempotent and
Hermitian. Therefore, I, > (f, f) and I; > (§,9). Thus we sce that

(5 UP%(E?% %g)‘“([ﬂéf’) o)

JO ~ ~ (11)
>((f,f~) <f,a>): AWEANY
“\@f) 4.9 g g
As a Gramian the matrix stated on the right-hand side of (11) is non-negative Hermitian.
Therefore, the matrix on the left-hand side of (11) has this property as well. Conse-

quently, applying a lemma which characterizes non-negative Hermitian block matrices
(see, e.g., {33: Lemmas 1.1.9 and 1.1.12]) we obtain (10) i

Lemma 2. Suppose that U 13 a closed linear subspace of the complez Hilbert space

H. Let f € HP and g € HY, and let f,ﬁ,f and g be given by (8) and (9). Further, let

M = (g, f), L:=(¢g-9,9—9)and R:=(f - f,f - f) Then there is a unique matriz
K € C9*P such that

(9.f) =M + VLKVR, (12)

LL*K=K end KRY'R=K. (13)

This matriz K 1s contractive and admats the representations

K =(4,f) and K =vVL"((g,f)- MIVE".
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In partzcular the matriz (g, f) belongs to the matriz ball A M;VL,VR). Moreover,
(9,f) = M if and only if (§, f) = Ogxp.

Proof. If there is a matrix K € C7*P satisfying the three identities stated in (12)

and (13), then, in view of LY L = LL* = \/f +\/Z =vVLVL *
K=vVL'VIK=VI "VIKVERVE  =VI [0,/ -MVR®. (4)

In particular, there is at most one matrix K € C9*? satlsfymg the equations given in
(12) and (13). Because of (g, f — f) = Ogxq and (g — g,f) = 0gxq, We have

0.)=@G+9-3.f+f-N=M+(-3.f-
In view of Remark 5, then

(9.f) =M +VL(F, f)VR (15)

and
+ + + =~ o~
VI ' [(9./) = MIVR" = VL "VI@G )VRVR " = (3, 7). (16)
Thus, if there is a matrix K € C?*? satisfying the equations given in (12) and (13), then
it follows from (14) and (16) that K = (g, f). From (15) and (16) one can conversely see
that the matrix K = (7, f) really satisfies (12) and (13). Lemma 1 shows that the matrix
(9, f) is contractive. Hence, the identity (15) provides finally (g, f) € &M; VL, VR) i

The following lemma due to Masani [56] will play a key role in our further consid-
erations.

Lemma 3. Let (Un)nen be a sequence of closed linear subspaces of the complex
Hilbert space H which satisfy U, C Upyy for each n € N. Let U denote the smallest
closed linear subspace of H which fulfils U, C U for alln € N. Then, for each f € HP,

(FIUP) = Lim (fIUE)

with respect to the norm || - ||g» of the Hilbert space HP.

Assume that r,p € ZU {—o00} and s,0 € ZU {+oo} satisfy r < s and p <-0, and
that f, € HP (t € Z,,) and g, € H? (7 € Z, ) are given. Then we will use £, /oo
denote the closed linear subspace of H generated by all f,(") (n € Zyp,t € Z,,) and

all gg") (v €Zy,4,7m €Z,s). Now let r,s,p,0 € Z be such that r < s and p < ¢.-Then
we set

to

fr e

fre1 9p+1
Fr,a = . a.nd Gp,q = P.

fs Go

Let l € Z. If fi € HP and g; € HY) are given, then, in view of Remark 4, the Gramian
orthogonal projections _
flor,s/p,a = (fllﬁfys/p’g)
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and
Gler,s/p,o ‘= (gllﬁz,,/p_,),

admit the representations

+

pone = (0:(62))-((82)-(82)) (&) o
+

o= (o (g2)) (1) () (e2) oo

respectively. Furthermore, we will work with the vectors

~ +
ror,s/p,u = \/(fl - fIOr,s/p,oa fl - flor,a/p,a) (fl - fln‘,s/p,a)

and

+
Gler,s/p,0 *= \/(gl — Gler,s/p,0 91 — glor,s/p,a) (gl - glor,s/p,o)'

Now we will turn our attention to stationary sequences in H9. We again assume
that r,p € ZU {—o0} and s,0 € ZU {400}, where r < s and p < 0. A sequence
(g9j)jez., in HY is called stationary if (gm4t,gnt1) = (gm,gn) for all m,n € Z,, and
l€Zwithr <m+ 1< sandr <n+ 1< s The sequences (fj)jez, ., and (g5)jez,, in
H? and HY are said to be stationarily cross-correlated if (fmtt,gnt1) = (fm,gn) for all
meEZyg, N E Ly, and € Zwithp<m+i<ocandr<n+l<s.

Theorem 2. Suppose that H is an infinite-dimensional complez Hilbert space and
that k is o non-negative integer. Let (a;)520, (Bm)me—i and (6;)52, be sequences from
CrPxP C9*P and C9%*9, respectively. Then the following two statements are equivalent:

(i) The kernel Ky : Ny x Ng — CPHOx(p+9) ginen by (6) and (7) is non-negative
definite. .

(ii) There are stationarily cross-correlated stationary sequences (fj)?io,(gj)f=_°°
in HP and HY, respectively, such that the identities

(s fo) = a; and (90,9-5) = 6; ' (19)
and
(f5,9%) = Bj-x (20)
are satisfied for all j € Ng.
If (i1) holds true, then

((9{'—"m) ’ <gkfjn)) = Ki(m,n) | (21)

for all non-negative integers m and n, and

((ﬁ)(go))z (;:jj ?’) : (22)
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for all integers j satisfying 0 < j < k.

Proof. (i) = (ii): By virtue of a famous result due to Kolmogorov (see [53: Lemma
2]), there exists a sequence (hm)%_y in H?*? such that (hm,hn) = Ki(m,n) for all
m,n € No. For m € Ny, let f := (I,0pxq)hm and gk—m := (Ogxp, g )hAm. Then

(fm-{»—lyfn-{-l) =Um-n, (gk—m—lygk—n—f) = 6n—m; (fm,gk—n) = ﬂm—}-n—k

for all non-negative integers m,n and [. Consequently, (fn)%_, and (gm)X,-_., are
stationary sequences which are stationarily cross-correlated. Moreover, we see that (19)

and (20) are fulfilled for all j € No.
(i) = (i): Let (hm)3_q be defined by hm = (,/= ). Then, for all m,n € No with

m > n, in view of (6)

— (f"h.f'!) (fm;gk—n)
(hm?h‘") - <(gk—m,fn) (gk—mxgk—n))

— (fm—mfo) (fm+n,gk) _ .
a ((.fm+n,g}c). (90,9n—m)‘> = Kk( , )

In particular, for all 7 € Ny

(’Ck(m’")){n,nﬂ) = ((hm’hn))fn,n=o 2 Op+q) x(p+a)-

This implies (i). The rest of the assertion follows by straightforward calculation il

Lemma 4. Let (a;)520, (B))52 o0 and (6;)32, be sequences from CP*P, CP*9 and
C7%9, respectively, and let the sequence (C;)52, be given by
a; B
Cj = (ﬂ‘]' 6;) B : (23)
i

Then the following statements are equivalent:

(i) For all k € Ny, the kernel Ki : No x Ny — CP+OX(P+9) giyen by (6) and (7) is
non-negative definite.

(ii) The sequence (C;)$2, is non-negative definite.

Proof. Assume that H is an infinite-dimensional complex Hilbert space.

(i) = (ii): Let k € Ny. From Theorem 2 we see that there are stationarily cross-
correlated stationary sequences ( f; )32 and (gj)fz_oo in H? and HY, respectively, such
that (22) holds for all j € Zg x. Hence,

Co C; -+ C;

RGO

Cv Crx -+ Co
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As a Gramian, the right-hand side of (24) is non-negative Hermitian. Since k is an
arbitrarily chosen non-negative integer, statement (ii) follows.

(i) = (i): By virtue of Kolmogorov’s result [53: Lemma 2] there is a stationary
sequence (h;)22, in HP*9 such that (h;, ho) = C; for all j € Ng. Now let k € Ny. To
verify (i) we consider an arbitrary non-negative integer r, and we will show that the
matrix (Ke(m,n)); | _, is non-ncgative Hermitian. Setting

fi = (Ip,0pxq)hrs;j and 9k—j = (Ogxp, Ig)hrik—;

for all ; € Zg -, we have

(fm, fa) = (Ip, Op'xq)(hr+m>hr+n)(1p)0pxq)‘ = (IP’OPXQ)C"‘—"(IP’OPX?)*I
(gk-m,gk-n) = (OqXPuIq)(hr+k—mahr+k—n)(0q><paIq)‘ = bn—m,
(fm7gk—n) = (Ip,opxq)(hr-*-ma hr-}-k—n)(oq)(pyjq)‘ = ﬂm-f-n—k

for every choice of m and n in Zg . Therefore

(}Ck(m’n)):n,rmo = ((g{zﬂ) ’ (gkfzn )) 2 0(p+q)x(p+9)-

m,n=0
Consequently, statement (i) holds true 8

For our further considerations, we need a modification of the already mentioned
result due to Kolmogorov [53: Lemma 2].

Theorem 3. Let (C;)2_,, be a sequence of complez (g x q)-matrices. Further, let
H be an infinite-dimensional complez Hilbert space. Then the following statements are
equivalent: :

(i) There ezists a sequence (h,)S% _o, from HI such that
(horho) = Coo (25)

for every choice of p and o in Z.

(ii) The sequence (C,)32_, is non-negative definite, i.e., for each v € N the block
Toeplitz matriz By = (Crm—n)m n=o 18 non-negative Hermitian.

For a proof of Theorem 3, we refer the reader to [6: Theorem 7].

Corollary 1. Suppose that H is an infinite-dimensional complez Hilbert space. Let
(@j)320, (Bi)j2—oo and (6;)32, be sequences from CP*P, CPX9 and CI*9, respectively,
and let (a—;)%2, and (86-;)2, be given by (6). Then the following two statements are

J/3=1 2/5=1
equivalent:

(i) The sequence (C;)%2, given by (23) is non-negative definite.

(ii) There are stationarily cross-correlated stationary sequences (f; )52 —00r (95)R 0o
in H? and HY, respectively, such that (19) and (20) are satisfied for every choice of j € Z

J
and k € Z.
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If (ii) holds, then (21) is satisfied for all non-negative integers k,m and n, and (22)
18 valid for all integers j.

Proof. If (ii) holds, then we see from (22) that (h,)32 __, given by

ho = (;’:) (n€2) (26)

is a stationary sequence in H?P*? which satisfies (25) for all integers p and o. Conversely,
if a stationary sequence (hn)32. _, in HP*7 is given which fulfills (25) for all integers p
and o, then ()% _, and (gn)32 _, defined by

fr:=(Ip, 0pxgq)hn and 9n := (Ogxp, Ig)hn (27)

arc stationarily cross-correlated stationary sequences in H? and HY, respectively, which
satisfy (19) and (20) for all integers j and k. Obviously, a_; = (fo, f;) = a; and
6-; = (9-j,90) = 65, and hence C_; = C; for all j € Ny. Using Theorem 3, we then
obtain the asserted equivalence. Thus, the rest of the assertion follows from Lemma 4
and Theorem 2

3. Prediction-theoretical interpretation of the parameters
which describe the solution set of problem (NTPCF)

In Section 1, we stated that the solution set of an arbitrary Nchari-type problem for
matrix-valued Carathéodory functions can be described by a sequence of matrix balls.

This section is aimed to give a stochastic interpretation of the parameters of these
matrix balls.

Lemma 5. Let («;)32, and (8;)72, be sequences of complez (p x p)- and (g x q)-
matrices, respectively. Let k € No, and let (Bm)%__, be a sequence of complez (p x q)-
matrices. Suppose that the kernel Ky : No x Ny — CP+Ox(r+9 gien by (6) and
(7) 1s non-negative definite. Let (f;)72; and (g; ;‘=_oo be stationarily cross-correlated
stationary sequences in HP and HY, respectively, such that (19) and (20) are satisfied
for all j € Ny. Then:

" (a) For all integers m and all non-negative integers n and j which satisfy m+n > 0,
m > =2 and m + 3 < k, the matriz Spm n given in (2) admits the representation

e (B (B ). "
’ ((G,-_,,,,+m Gj-n.jtm (28)

(b) For all non-negative integers m,n and j which satisfym +n>1and m+j <
k +1, we have

Fk—m+l—j k+n—j .
= -y ! 2
dm,n. (gk FE) (Gk—m—n—j,k—l—j ) ( 9)

em. n = f], F}+l,j+m+ﬂ I’ (30)
’ Gj—n,j+m—-1
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Lmn= (gk—j ~ Gk—jek—m+1—jk+n—j/k—m—n—jk—1—j,
Gk—j — gk—jok—m+l—j,k+n—j/k-m—n—j,k—1—j)a (31)
Rmn = (fj = fjoi41,j4mtn/j—nj+m—1, fj — fj0j+l,j+m+n/j—n,j+m—l) (32)

and, if the inequality m + j < k additionally holds,

My, = (gk—j-k—m+1—j,k+n—j/k—m—n—j,k-l—j: fk—m—j)
= (gm+j; fj - fjoj+],j+m+n/j-n,j+m—l)

(33)

= (gk—jok—m+l—j,k+n—j/k—m—n—j,k—l—ja

fk—m—jok-—m+]—j,k+n—j/k—m—n-—j,k—l—j)

whereas Loo = (g, gk) and Roo = (fo, fo)-

Proof. The identities (28) - (30) follow by straightforward calculation. Let m,n
and j be non-negative integers with m +n > 1and m+ 3 < k + 1. Then 6§ =
(9k-i>9x-j)y @0 = (f}, f;) and

S _ Fyomt1—jktn—j Fromi1-jk4n—j
m=2,n+1 = G . )\ G . R )
- k~m—-n—jk—1-j3 k—m-n—jk—1-j
S _ Fip1,j4m4n Fit1,j4+m+n
m=-2,n+1 = G . "\ G, . .
Jj—n,j+m-—1 J—n,;+m-—1

Applying Remark 4 we then get (31) and (32). If m + j < k, the equations stated in
(33) can be verified analogously from

F. .
dm,n = (gm-!-j) (G;.-{r-l.):m-fr: ))
=nj3rm-—

et _ Fk—m+l—j,k+n—j fk .
= —m— .
mn Gk—m—n—j,k—l—j ’ J

Thus the assertion is proved B

and

Proposition 1. Let (a;)32, and (§;)32, be sequences of complez (px p)- and (gxq)-
matrices. Let k € Ny, and let (Bm)X__, be a sequence of complez (p x q)-matrices.
Suppose that the kernel K : Ng x Ng — CP+OX(P+9) defined by (6) and (7) is non-
negative definite. Let (f;)72, and (gj)f=_°° be stationarily cross-correlated stationary
sequences in HP and HY, respectively, such that (19) and (20) are satisfied for all j € Np.
Letm € Zo, and let n € Ng. Then there is a unique complez (g x p)-matriz Kpm o such

that :
(gm, fO) = Mm,n + AV Lm,nKm,n v Rm,n

Lm,an,n+Km,n = Km,n and Km,an,n+Rm,n = Km,n‘

and
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This mairiz K n 18 contractive and admits the representations

I\’m,n =V Lm,n+(,3:m - Mm,n)\/ Rm,n+

K _ ( (90,90) 90, v/(fo, fo +fo) tfm=n=0

(‘§k>ok—m+l,k+n/k—m—n,k—l; fk—mok—m+1,k+n/k—m—n,k—l) zfm +n 2 1.

In particular, the matriz (gm, fo) belongs to the matriz ball RA(Mm n; /L n,/Rmn)-

Proof. The case m = n = 0 is trivial. Assume that m +n > 1. If we set U :=
Lk_mi1,k4m/k—m—nk-1, then the application of Lemmas 2 and 5 yields the assertion il

Observe that Proposition 1 can be also obtained from Theorem 2 in [43].

In Theorem 1 we already stated that the matrix sequences (Mm »)3%0, (Lm,n)3%0
and (R n)3%, converge. The proof of the existence of these limits given in [40] uses
Smuljan’s [58] results on sequences of nested matrix balls. Applying Lemmas 3 and 5,
one can not only get an alternative proof, but also further statements on the existence
of certain other limits which are of interest.

If complex (p x g)-matrices A,,  are given for all non-negative integers m and n,

then we will use the notation
im Ama
m,n-—oco

if there 1s a matrix A € CP*? such that for all positive real numbers ¢ there is a non-
negative integer 7 such that |Am . — A|lg < € for all m,n € Z, o where | - |g denotes
the Euclidean matrix norm. In this case, we will write limp, n—oo Am,» for this unique
limit A.

Theorem 4. Let ()52, and (§;)52, be sequences of complez (p x p)- and (g x q)-
matrices. Let k € Ny, and let (Bm)__; be a sequence of complez (p x g)-matrices.

Suppose that the kernel Ky : No x Ng — C(P+0*x(P+9) defined by (6) and (7) is non-
negative definite. Then:

(a) For allm € Zg k41, both sequences (Lm )52 and (Rm,n)oro are monotonously
non-increasing (with respect to the Lowner semi-ordering of Hermitian matrices).

(b) For each n € Ny, both sequences (L,,,,,,)fn‘;lo and (R )5, are monotonously
noON-1NCTEASING.

(c) For each m € Zy k4, there ezist the limits

Lpm,.:= lim Lyyn and Ry := lim R, (34)
which satisfy :
0L Lnme<Lmn and 0<Rn.<Rmn

¥ - [
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for a.(l ne No. Moreover, both sequences (L,,,,.)fn’*":]0 and (Rm . )5t are monotonously
non-increasing.

(d) For each m € Zg , there ezists the limit

My = lim Mp ,. (35)

n—+-00

(e) Suppose that (f;)32, and (gj)§=—m be stationarily cross-correlated stationary
sequences tn H? and HY, respectively, such that (19) and (20) are satisfied for all j € Np.
Then, for all non-negative integers m and j which satisfy m+j3 <k +1,

Lm,; = (gk—j — Gk—jek—m+1-j,00/~00,k=1—j
Gk—j — gk—jolc—m+l—j,oo/—oo,k—l—j)» (36)
Rm,t = (f] - fjoj-f—l,oo/—oo,j-}-m-—l’ f] - fj0j+l,oo/—oo,j+M—l) (37)

and, tf m+ 3 <k,

Mn. = (gk—]ok—m-H—j,oo/—oo,k—l—j: fk—m—j)
= <gm+j ) fjoj+1,oo/—oo,j+m—1)

= (gk—j-k—m+l—j,oo/—oo,k—l—j7 fk—m—j-k—m+l—j,oo/—oo,k—l—j)'

Proof. By virtue of Theorem 2, there are stationarily cross-correlated stationary
sequences (f;)52, and (gj);?:_°c> in H? and HY, respectively, such that (19) and (20)
are satisfied for all j € Ng. Then Lemma 5 yields the representations (31) and (32) for
all non-negative integers m,n and j withm+n>1and m+j <k + 1. Since

Ep,o/p,u g ‘cp,a+r/y,u+a (39)

is satisfied for all p,0,s,7 € Ny and all y,v € Zwith p < ocand p < v < k-5, we
obtain from Remark 3 the assertion stated in parts (a) and (b). Lemma 3 shows that
the limits stated in (34) exist and that the representations (36) and (37) are valid for
all m,j € Ng with m + j < k + 1. Similarly, we get from (33) that the limit (35) exists
for all m € Zg x and that the representations stated in (38) are fulfilled for all m,j € Ny
with m + j < k. Remark 3 yields the rest of the assertion il

Theorem 5. Let (a;)32,, (8;)520 and (B;);2_o, be sequences from CP*P, CI*¢
and CP*9, respectively. Suppose that the sequence (C;)52, given by (23) is non-negative
definite. Then:

(a) For each m € Zg 41, there exist the limits

Len:= lim Lmn  and  Run:= lim Rmn (40)
which satisfy
0L L.n<Lmn and 0< Run < Rmpn
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for all n € No. Moreover, both sequences (L. n)sry and (R. )2, are monotonously
non-increasing (with respect to the Lowner semi-ordering of Hermitian matrices).

(b) There ezist the himits

L:= "h_’né° Len and R .= n]ergo R. . (41)
and, furthermore, they admit the representations
L= 'r}l_r'noo Ly, and R= "}Enoo R+ (41)
and
L= m’lrilrgoo Lyn and R= m}’ilem R on. (43)

() If (fi)2 —oo and (95);2 _o are stationarily cross-correlated stationary sequences
in H? and HY, respectively, which satisfy (19) and (20) for all non-negative integers j
and k, then

L= (gk — Gke—oo,00/—c0,k—11 Gk — gk.—oo,oo/—oo,k—l) (44)
and
R= (fk — frek+1,00/—00,000 Sk — fkok+1,oo/—oo,oo) (45)
for all k € Z. Morover,
L.,= (gk — Gke—oco,k+n/—cok—11 Jk = gk.—oo,k+n/-oo,k-1) (46)
and
R.n= (fk — frek+1,00/k=n,000 fk = fkok+l,oo/k—n,oo) (47)

for all non-negative integers n and all integers k.

Proof. We see from Lemma 4 that, for all k¥ € Ny, the kernel Ky : Nog x Ny —
C(p+a)x(p+9) given by (6) and (7) is non-negative definite. Let H be an infinite-dimen-
sional complex Hilbert space. According to Corollary 1, let (f;)72_., and (g;)52 -
be stationarily cross-correlated stationary sequences in H? and HY, respectively, which

satisfy (19) and (20) for all j € Z and all k¥ € Z. Then we see from Lemma 5 that

Lypn= (gm ~ 9mel,m4n/-nm—-1, gm — gmtl,m+n/—n,m—l) (48)

and '
Rm,n = (fO - fOfl,m-f-n/—n,m—h fO - fOOl,m+n/~ﬂ,m—l) (49)

hold for all non-negative integers m and n with m+n > 1. By virtue of the stationarity
properties of (f;)72_o, and (9;)72 _ ., We get from Remark 4 that

Lm,n = (gk - gkok—m+l,k+n/k—m—n,k—h gk — gkok—m+1,k+n/k—m—n,k—l)

and

Rm,n = (fk - fk0k+l,k+m+n/k—n,k+m—lq fk - fkok+1,k+m+n/k—n,k+m—l)

are satisfied for all k € Z and all m,n € Ny with m+n > 1. From Lemma 3 we obtain
then the existence of the limits stated in (40) and the representations (46) and (47),
which hold true for all n € Ny and all k € Z. Then (39) and Lemma 3 provide that the
limits stated in (41) exist and admit the representations (44) and (45) for all k € Z. In
view of (39), one can analogously verify that (42) and (43) are satisfied



Interrelations between Nehari Problem and Prediction Theory 181

Observe that, in general, the sequences (M n)3o and (Km 2 )%, (n € Ng), and
(Km,n)xo (m € Ny) do not converge.

Theorem 6. Let ()32, and (8;)320 be sequences of complez (p x p)- and (g x q)-
matrices, respectively. Let k € Ny, and let (Bm )35 _; be a sequence of complez (p x gq)-
matrices. Suppose that the kernel Ky : No x Ng — C(P+9)x(P+9) defined by (6) and (7)
i3 non-negative definite. For m € Zg k41, let the matrices Ly . and Ro,,. be defined by
(34), whereas the matrices M. (m € Zo ) are given by (35). Then:

(a) For all m € Zg x, there is a unique complez (¢ x p)-matriz K,, such that

ﬂ:m = Mm + vV Lm,‘Km vV Rm,t (50)
and
Lm,th,t+Km =Kn and KmRm,t+Rm,t &S Km‘:
namely
Km =V Lm,t+(ﬁ—m - Mm,t)\/ Rm,t+-
This matriz K,, is contractive.

(b) For all m € Zg k, the identities

Lm+l,t =V Lm,t(I - KmK:n)V Lm,‘y . (52)

Lm+1,t = Lm,t - (ﬂ:m - Mm,t)Rm,'+(ﬂ:m - Mm,‘).) (53)
Rmi1e = /RmeI ~ K3 Km)\/Rom s (54)

and

Rm-H.* = Rm,t - (:B:m - Mm.')‘Lm,-+(ﬂ:m - Mm,') (54)
hold true.

(c) Let m € Zok. Then the following statements are equivalent:
(i) Lm+1,. = Lm,n-
(i) Rm41,+ = Ren e
(iii) B2, = Mp ..
(d) If (fj)32, and (g;)% j=—oo aTe Stationarily cross-correlated stationary sequences

in HP and HY, respectively, such that (19) and (20) hold true for all j € Ny, then, for
all m € Zy x, the matriz Ky admits the representation

K, = (?jmol,oo/—-oo,m—l’ E)ﬂ,oo/—oo,m—l) . . (56)

Proof. Let H be an inﬁnite-dimensional complex Hilbert space. According to The-
orem 2, let (f;)$2, and (9;)% j=—oo De stationarily cross-correlated stationary sequences
in HP and HY, rcspectwely, which satisfy (19) and (20) for all j € Ny. Let m € Zg 4.
Then we see from Lemma 2 and Theorem 4/(e) that the matrix given in (56) is the
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unique complex (g x p)-matrix K, which satisfies (50) and (51). Furthermore, we get
that K, is contractive. In order to prove the identity (52) we observe that

Jme0d,c0/—0c0,m—1 = gmol,oo/—oo,m—l + gm

where
gm = (gml (CO,oo/—oo,m—l o C],oo/_oo,m_l)q)

fulfills (¢me1,00/~00,m~1, gm) = 0. Thus, we obtain from Theorem 4

Lm+!,t = (gm — Gme0,00/—co,m—1y G — gmoo,ao/—oo,m—l)

= (gmagm) - (ngO,oo/—oo,m—l, gmoo,oo/—oo,m—l)

(57)
= (gmmgm) - (gmﬂ,oo/—oo,m—lv gm-],oo/—oo,m—l) - (/g\m,gm
=Lms = (§m,qm).
In view of Remark 5 we have
ACo,co/—oo,m—l S ﬁl,oo/—oo,m—l
— (1) _ (1) (2) _ ((2) (p) _ £(p)
=spl\Jo Oel,00/—co,m—11/0 Oel,0c0/~c0,m—12"""J0 Oel,00/—00,m—1 /"

Hence, Remarks 4 yields

gm = (gm,fo - fo.l,oo/—oo,m—l)
x (fo — foe1,00/~c0,m~1:fo — fo.l,oo/_oo,m_1>+
X (fo - fOﬂ,oo/—oo,m—l)gm)'
This representation of g,, implies
(§ma§m) = (9maf0 - fo-l,oo/—oo,m—l)Rm,-+(f0 - fo-l,oo/—oo,m—hgm)~ (58)
Obviously, Theorem 4/(e) yields
(gmafo - f001,oo/—co,m—l) = (gm, fo) = Mm,. , (59)

The identities (58) and (59) immediately imply (53). From
(gmd,oo/—oo,m—_l s fO - fOﬂ,oo/—oo,m—l) = 07
Remark 5 and Theorem 4/(e) we see

(gm,fo - fOol,oo/—oo,m—l) = <gm — 9mel,c0/—c0,m—15 fO - fOol,oo/—oo,m—l)

= Lm,t (ngI,w/—m,m—la f0 - fOo},oo/—oo,m—-l)'
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Therefore, by virtue of (58) and (56), there follows

(§m,§m) =V Lm.t (gmol,oo/—oo,m—ls fO - fOol,oc/—oo,m—l)}2m,t+

X (fO - fOﬂ,oo/—oo,m—h 5mol,oo/—-oo,m—l)\/ Lm,' (60)
= VI KK/,

Now we can conclude from (57) that (52) holds true. The identities (54) and (55) can
be verified anaiogously.

It remains to show part (c). If (i) holds, then (52) and the first identity in (51)
imply A, = Ogxp. Hence, in view of (54), (ii) follows. Similarly, condition (i1) implies
Km = Ogxp and, by virtue of (50), then (iii) as well. If we suppose (iii), then (50)
and (51) yield Ky, = Oyxp and, according to (52), condition stated in (i). The proof is
complcte il

Identities of the types stated in (52) and (54) are characteristic for one-step exten-
sion problems for contractive or non-negative Hermitian schemes (see, e.g., Dym and
Gohberg [34], Constantinescu (22, 23] and the authors’ papers [32], [33: Sections 3.2
and 3.3] and [36, 38, 41]). Slightly modified formulas occur in the papers of Koval-
ishina and Potapov [54] and Dubovoj (see {31] and [33: Theorem 5.5.6]). Taking into
account the representations of the semi-radii as Gramian matrices given in Theorem 4
the extensions stated in Theorem 6 admit a clear prediction-theoretical interpretation.
They describe the inprovement of the accurracy of prediction error matrices in forward
and backward prediction. In particular, the formulas (53) and (55) express explicit
‘interrelations between certain forward and backward prediction error matrices.

4. A charactefization'of the central element
of No [a, B,6; (75)5=0)

In [45] and [46] the authors investigated a pair-of functions the values of which are non-
negative Hermitian (rn x m)-matrices that is associated with a given non-degenerate
(m x m)-Carathéodory function via Weyl matrix balls. In this section, for a given
matricial Carathéodory.function € with prescribed block partition, we will consider
appropriate matrix balls to construct a pair of non-negative Hermitian matrices whlch
will be used for a characterization of central elements.

Let Q be a ((p-+q) x (p+q))-Carathéodory function (on D) which satisfies {Q(0)]* =
Q(0). If ‘

Q(z)=Cy +2§:0ij (zeD) - : (61)

is the Taylor series representation of €2, then the combination of the matricial ver-
sions of the F. Riesz-Herglotz Theorem and the Herglotz-Bochner Theorem shows that
the sequence (C;)52, is non-negative definite. Conversely, if an arbitrary non-negative
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sequence (C;)32, of complex ((p + ¢) x (p + ¢))-matrices is given, then the function
Q: D — CP+tax(r+9) defined by

Qz) :=Co + Qic]'zj (z €D) (62)

i=1

is a ((p + q) x (p + g))-Carathéodory function which fulfils [Q(0)]* = Q(0) (see, e.g.,
[33: Theorems 2.2.1 and 2.2.2]). In this sense, if (@;)52,, (6;)520 and (B;)%2 _,, are
sequences of complex (p x p)-, (¢ x ¢)- and (p x ¢)-matrices, respectively, and if the
sequence (C;)$2, is given by (23), then Lemma 4 shows that (62) defines an Q which
belongs to Cpi¢(D) and which satisfies [2(0)]* = Q(0) if and only if, for every non-
negative integer k, the kernel Ki : Ng x Ny — CP+Ox(p+a) given by (6) and (7) is
non-negative definite. In view of Theorem 1, we thus have the following situation if a

function Q € C(,4q)x(p+q) (D) with [Q2(0)]* = (0) is given:

If (61) is the Taylor series representation of Q around the origin and if, for each
J € Ny, the matrix C; is partitioned into blocks via

with (p x p)-block a;, then the matrix sequences (Lm,.)3_;, (Rm,)P-, and (M ),
are well-defined. (It is readily checked that, for each m € N, all the matrices Ly, Rn s
and My, . only depend on the matrix sequences (a;)$2,, (6;)%2, and (Bi)32 —(m-1y-)
We set

L[yg,]t = Lm,., R[riz,]' = Rm,‘, Mylr?lla = Mm’#

for all m € N. Moreover, we sec from Theorem 5 that there exist the limits

= tim ¥, and  R® .= im R,

m— 00 m—00

Remark 6. Let a : D — CP*P, B : D — CPX9 and § : D — C?%9 be holomor-
phic matrix-valued functions. Let k¥ € Ny, and let (7j)f=0 be a sequence of complex
(¢ x p)-matrices with v9 = [8(0)]*. Suppose that the set No[a,ﬂ,&('yj)f:o] is non-
empty. If C[a, B,6; ('yj)f=0] denotes the set of all A € Cp44(D) which admits the block

representation
_(a B
a=(% %)

with some function ¢ belonging to Ap(a, 8,6; (v; );9:0], then in view of (5§) and Theorem
1; it is readily checked that

=18, R, =RE, and M9 - ME.

for all m € Z; x4, and every choice of  and Z in Ca, 8, §; (7j)§=0].
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Theorem 7. Leta: D — CP*P B: D — CP*? and § : D — CI%9 be holomorphic
matriz-valued functions. Let k € Ny, and let ('yj)f=0 be a sequence of complez (¢ x p)-
matrices where yo = [B(0)]*. Suppose that the set Nola,B,6;(7;)5=0] 15 non-empty.
Further, let € € Nyla,B,6;(7j)5=0], and let Q be given by (1). Then the following

statements are equivalent:

(i) The function € is the central element of Ny[a, B, 6;(71-);?:0].

(i) 21 = L .
(i) R = R .

Proof. In view of the considerations above and Remark 6, Theorem 4/(c) shows

that both sequences (L(,g,].)fﬂ, and (R[,g}.)f=0 are monotonously non-increasing. Thus,

assertion (ii) is equivalent to L[72]+1,‘ =,L[,?,]. for all m € Zi 4,00, whereas assertion (iil)

is satisfied if and only if R["?Ll,‘ = R[,s,]. for each m € Zg41,00. Hence, Theorem 6/(c)
provides all the asserted equivalences B

Corollary 2. Leta:D — CP*P . D — CP*9 and § : D — C9%9 be holomorphic
matriz-valued functions. Let k € Ny, and let (7_,~)§=0 be a sequence of complez (¢ X p)-
matrices where o = [B(0)]* such that the kernel Ky : Ny x Ng — CP+Ix(p+0) giyen by
(5 = 7) 1s non-negative definite. Suppose that Liyy« = Opxp 07 Riy1 s = Ogxq. Then
NMle, 8, 6; (v; )f=0] contains ezactly one element, namely its central element. Moreover,
Lig14j2 = Ligy,« and Riq145,0 = Rigy for all positive integers j.

Proof. In view of Theorem 1, the set Myla, 5, §; (71);?:0] is non-empty. Let & €
Nola, B,8; (75)%=o] be arbitrary, and let Q be given by (1). Then Theorem 1/(c) and
Remark 6 show that Ly, . = Opx, implies L = Opxp and that R = Ogxq 1s
necessaryfor Riy1,« = Ogxq. Thus the application of Theorems 6 and 7 completes the
proof il

The determination of elements of extremal entropy in the image of a linear frac-
tional transformation of matrices the generating functions of which have a particular
type can be traced back to the fundamental work of Arov and Krein [20, 21]. This was
the beginning of a period of intensive studies of entropy optimization in the context of
interpolation problems (see, e.g., Constantinescu [22, 23], Dewilde and Dym [29, 30],
Dym and Gohberg [34, 35|, Gohberg, Kaashoek and Woerdeman [48 - 50|, Landau [55]
and the authors’ papers (37, 39, 41]). Constantinescu [24] indicated a maximum entropy
principle for the set of contractive intertwining dilations. This work was extended by
Arocena [11] who developed a prediction theory approach that characterizes a distin-
guished element in the set of all unitary extensions of a given isometric operator which
can be considered as the most innovative one. Finally, it should be mentioned that Cot-
lar and Sadosky [26] discussed some interrelations between generalized Toeplitz kernels,
stationarity and harmonizability.
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