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Nonlinear Vibration Systems 
with Two Parallel Random Excitations 

J. vom Scheidt and U. Wöhrl 

In memory to Prof. Dr. P. Gunther 

Abstract. Systems of nonlinear vibration differential equations are investigated where the 
non-linearities are given by polynomials of any degree. The random excitations are induced 
by two parallel processes. These random excitations of an often applied type are expressed by 
linear functionals of weakly correlated processes with correlation length E. The moments of the 
solutions and their first and second derivatives are expanded with respect to s where all terms 
up to order e 2 are included. Approximations of the correlation functions are given explicitely. 
Only the quadratic and cubic non-linearities have an influence on the correlation functions in 
this approximation order. 
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1. Problem 
Discrete mechanical models of n degrees of freedom are described by systems of n 

ordinary differential equations of second order. Defining the vector 

Z = (±1,±2 .....,±; x 1 , x 21 . . . )x,,)" 

where X1, x 2 ,. . . , x,, are the deviations of the masses the mathematical model leads to 
a system of 2n differential equations of first order 

Mi + Nz + 71	 Bk( z ) = F(t,) 
k-2
	

(1) 

Z(to) = zo 

where M and N are (2rm x 2n)-matrices and 77 is a small parameter. In the following let 
the matrices M and N be regular. Furthermore, the matrix M 1 N is assumed to have 
cigenvalues with positive real parts only. 
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The nonlinear terms are approximated by polynomials, i.e. the coordinates of the 
vectors Bk are defined by

Bk,p( z ) =	 . . . zik 

kl 

where the coefficients b,, 1, k are symmetrical with respect to the indices i i ,. . . , ik and 
bpI,z k = 0 for ri <p < 2n. Furthermore, 

F(t,w) = PoLJL( t , w ) + PI JL(t.w ) + P2LJL(t,w)	
()


+ PoJfR(,w) + PjRfR(, w ) + P2ffR(t,w) 

with (2n x 2n)-matrices P31. and PjR and 

l fL(+ vk, w) ifk=1,...,r 
ILk(t,W) =
	 if k = r + 1,... ,2n.

< 

{

fn(i + vk, w) ifk=1,...,r	
(r	n)	(4)



0	 ifk=r+1,...,2n.


are the coordinates of the vector processes IL and JR, respectively. That means, the 
time-shifted excitations fLk and fRk are induced by two centred random processes fL 
and In, respectively. 

A vehicle considered as multibody vibration system (cf. [3, 4 1 6]) is an example for 
such models. The discrete masses are coupled by springs and dampers whose charac-
teristics are nonlinear functions approximated by polynomials. The model is excited by 
two parallel tracks IL and fR of random road surfaces, fi.k and fRk are the time-shifted 
random excitations at the left and right wheels, respectively. 

The excitations are random processes. Hence, the deviations xk of masses and 
subsequently their velocities thk and accelerations 1k are random processes, too. The 
aim is to obtain characteristics with respect to their stochastic behaviour in form of 
expectations and correlation functions which are the basis for further characteristics, 
e.g. spectral densities and expected numbers of threshold crossings. 

2. Remarks on weakly correlated processes 
A wide-sense stationary process h = f(t,w) with expectation (f(t)) 0 is called 
weakly correlated if the influence of the process does not reach far, i.e. the values of this 
process at two points t 1 and t 2 do not correlate if their distance t 2 - t 1 exceeds a certain 
quantity e > 0. The correlation length E is always assumed to be sufficiently small. 
Hence, weakly correlated processes can also be characterized as processes without "dis-
tant effect" or as processes of "noise-natured character". In particular, the correlation 
function has the property 

Rj1jt2 - t 1 )	(f(t1)f(t2)) = 0	for t2 - t >E.
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The precise definition includes a decomposition property with respect to all higher 
moments (f( i 1 )f( t2) f(t)) (in > 2) (cf. [5: p. 23 if]). A characteristic quantity 
of a weakly correlated process is the intensity a defined by 

+e 
a=limfRf. f (t)dt.	 (5) 

10 C
- 

Let f = f(t, w) be a weakly correlated and weakly stationary process with almost 
surely sample functions and (If( t )I') < c1 < oo for all t E I, I C R some intervall, and 

> 1. Let O i (i = 1,... ,m) be bounded deterministic functions on subintervals 1i c I 
with O i E L 1 (11 ) fl L 2 (1). Then all moments of the linear functional 

=	
(t)f(t,w) dt 

can be expanded with respect to the correlation length . The approximation order of 
the k-th moments is given by

(tI) = 0 

zfk)	

0(,-2)	 if k > 2 is even	 (6)

= I 

(O (E 
2 ) 

ifk>3isodd 

Especially, the second moments are 

() = ea J	(t) ) (t)dt + O(E2).	 (7) 
ij nI 

A detailed theoretical concept of these random processes and proofs of the above prop-
erties can be found in [5: p. 25 if], [7: p. 152 if] and [8]. 

3. Model of excitations 

In many applications weakly stationary excitations (e.g. random road profiles) are 
expressed as processes with a correlation function 

	

R(t) = a2ehI	(y > 0)	 (8) 

and corresponding spectral density 

S(&)=  ii .y2+2 

(cf. [3: p. 27 if] and [4: p. 206 if]). The correlation function (8) is not differentiable 
at t = 0, and therefore these processes need not be differentiable. Hence, processes of
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this type are not suitable as excitations in system (1) if derivatives of the excitations 
are included. 

To obtain differentiable processes of a similar type the process f is expressed by a 
linear functional of a weakly correlated and weakly stationary process f in the form 

f(t,w) =J Q(t -	 ( 9) 

where Q is a twice continuously differentiable function with 

	

Q(0) = 0,	Q'(0) = 0,	Q"(0) = 0	 (10) 

(cf. [1], [6: p. 58 ff] and [9]). Hence, the process f is twice continuously differentiable 
with a uniform presentation of the process and its derivatives, i.e. 

f(k)(tw) = J Q") (t - s)ff (s.w)ds	(k = 0,1,2).	 (11) 
-00 

Applying approximation theorems for linear functionals of weakly correlated processes 
(cf. (6) and (7)) the correlation functions are calculated as 

R f( k )f( , ) (t I , 12) = (f(k)( 11 )f(o)(t2)) = R )f( , ) (ti, 12) + 0(E 2 )	( k, 1 = 0, 1,2) 
where

min(t, ,i2) 

R )f( , ) (t ,12) = Ea J	Q(k)(j - s)Q(t 2 - s) ds. 

Linear transformations lead to 
Dl	(	_ Dl	( 1 Lf(k)f(I)	) - i Lf(k)f(j)t2 - 11 

I	
-	f Q(k)(3)Q(I)(1 + s) ds if t > 0 

	

Rf(k)f()(t) -	__ 
Ea f Q(k) (S - t)Q ( ' ) ( s) d.s if t < 0. 

Choosing Q(t) = Qo(t)c
	(y,S > 0) where 

(0	 ift<0 
Qo(t)
	6(fl - 15 

(1)4 +io()3 if  <t <8 
ift>6 

the first approximations of the correlation functions are calculated as 

R ( k )f() (t) =	—1 )k+1.) k+ 1-I	It 1+26) 

f Q(k)(5)Q(I)(1 + .$) ds if t > 0 
+Ea	 (/c,l=0,1,2). 

f Q(s - t)Q( ' ) ( s) ds if I < 0
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Setting 1 = k 0 the Lebesgue theorem on dominated convergence leads to 

lim	 Ca
R 1 (t) = 

Therefore, this method can also be interpreted as smoothing of the correlation function 
(8) in a 6-neighbourhood of t = 0. The parameters and 6 of Q as well as Ca can be 
determined by comparison with given correlation functions (8) or with measurement 
results (cf. 16: p. 66 ffJ). 

To model the parallel excitations IL and fR orthotropic behaviour is assumed, i.e 

RJL JL (t) = RfRIR(t) = 0.2cItI	

} RfLffl(t) = 02e_tD (b > 0). 

Defining a mean profile in and a difference profile d by 

m(t,w)	(fL(t,) + fn(t,w)) 

the correlation functions 

Rmd(t) = 0 

Rmm(t) = 

Rdd(t) = ae_tI

and	d(t,w) = (fL( t , w ) - fj(t,w)) 

with am = 'a2(1 + e) 

with ci = 1a2(1 - e) 

are obtained. Hence, as above the presentations 

m(t,w) =f Q(t - s )fi( s , w ) ds and d(t,w) =J Q(i - s)f2(s,w)ds 

are used where fi and f2e are independent, weakly correlated and weakly stationary 
processes with correlation length C and intensities a 1 and a2 , respectively. It follows 

= J Q(t - s )(fi( s , w ) + f2 (s,w)) ds

(k = 0,1,2).	(12) 

f(t,w) = J Q(k)(t - s )(f1( s , w) - f2e(s,w)) ds 
—00
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4. Linear systems 

First, the linear system (1) with i = 0 is considered. The solution z of (1) has the form


z(t,w) = G(t - to)Mzo + f G(t - s)F(s,w)ds 
to 

where the matrix function G is defined by 

G() = exp(—M1Nt)M' 

The vector process

(t, w) =f G(t - s)F(s,w)ds 

is a solution of the differential equation (1), but z does not satisfy the initial condition. 
Because the matrix M 1 N has eigenvalues with positive real parts only the difference 
- z converges exponentially to 0 as t tends to infinity. Hence, the vector process 

can be regarded as a solution of the system (1) after a sufficiently large transient time. 
Using (3), (4) and (12) the coordinates of i can be expressed by 

t+ vi 

ii (t = E J Ô(t + Vi - 

j=1 —11, 

(13) r 

	

+	J	(t+v —u)f2e(u,w)du	(z = 1,...,2n) 
j=1 —00 

with matrix functions 

=	] G(t - v)PQ(v)dv where P, = PIL ± Pj.	(14) 
0 

To investigate the accelerations of the deviations the first derivatives of z i are deter-
mined. Using equations (13) and (14) a uniform representation of the processes and 
their derivatives can be obtained, i.e. 

t+v1 
_(k) 

	

z (t,w) =	f 6+( ' ) (t + v - u)fi(u,w)du 
•j=1 00 r t+v, 

+	f :(k) +v - u )f2(u , w ) du	(k = 0, 1). 
j=I 00
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The equation

2 =	f G(t - v)PQ'"(v) dv	(k = 0, 1) 
1-0 

follows from partial integration and conditions (10). Now, approximation theorems 
for linear functionals of weakly correlated processes can be used to calculate moments 
of the deviations and their first and second derivatives. Especially, (7) leads to the 
approximations

-( k) R(k)	(i 1 ,t 2 ) = (z	(t1 )(1) (t2)) 

min( 1, +v9 ,t2+v) 

= cal	 J	+(k)(t1 + 
ip	 - )' ( t + vq - S) d-5 

pg-I

min( t, +v ,t2+Vq)
-(k), + Ea2	 J	G	t1 + v - s)Ô'(i 2 + v - s) dsjq 

pg 1	-00 
+ 0(E2) 

of the correlation functions. Some transformations yield 

t2) = EDJ(t 2 - t 1 ) + 0(E 2 )	( k, I = 0,1)	(15) 

where

	

r	 r 
D	 Vg - v) + a2	T7 (t) = a 1	T ,(t + vq - v) J	 ' t +  

pq=I	 p,q=1 

and
{ f15±(k) 

	

T± d I (s)	0	
- s)Y(u)du ifs < 0ip 

tjpg = To	o ±(k)±(l)( + s)du ifs >0. 
0 

These approximations of the correlation functions depend only on the difference i 2 - 
i.e. the corresponding processes are weakly stationary.
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5. Nonlinear systems 

The solutions of nonlinear systems (1) can be deduced by perturbation methods. Sub-
stituting the series

z(t,w) =(16) 

into the nonlinear terms (2) it follows 

Bk( z ) =%,,(2) i 

	

'Bk , p(z) =	 1'zi, 

Now, a comparison of coefficients in system (1) leads to a system of linear systems of 
differential equations

M°+N°z = F(t,w) 
m 

M+N= -	' 'Bk(z) (1? 1)}	
(17) 

k=2 

which can be solved recursively. As in the linear case the vector processes 

°(t, w) = f G(t - s)F(s, w) ds

(18)


	

(t,w) = -	f G(t - s) '1Bk((s,w)) ds (1 > 1) 
k=2 __ 

can be regarded as solutions of system (17) after a transient time. The vector process 
is the solution of the corresponding linear system and was investigated in the previous 
section. Because of the recursive presentation (18) all coordinates 1k of '. (1 ? 1) 
can be expressed as sums of integrals in dependence of the coordinates of 0z which 
are linear functionals of weakly correlated processes (cf. (13)). The integrands of 1k 
include products of processes ... It can be shown inductively that the minimal 
number of factors is I + 1. Subsequently, it follows from (6) that 

	

-	-  O '
E 2) iflodd ('z(t))	

{
al 
2 ) ifleven 

al 
2 ) ifleven 

= {
(l=P+V). 

2 ) iflodd
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Especially,

= 0	 = 0(e) 

((t)) = 0(E)
and
	 = 0(e2) 

(2(j)) = 0(E2)	 = 0(62) 

= 0(e2)	 = 0(62) 

while all the other first and second moments are at least of order 0(e3 ). Hence, the 
expansion (16) leads to the mean values 

= i(,(i)) + i 2 ( 2 (i)) + 773 (2,(t)) + 0(E3) 

and finally to the correlation functions 

R(t 1 ,t 2 ) = (((i) - (, ( t1)))((t2) - (j(t2)))) 

=
+ 17{°i ! 't	+ 

+772 {('(t 1 )'(i 2 )) - ((tI))(1(t2))	
(19)


+ OE1(t1)2(t2)) + (2j(ii)01j(t2))} 

+ 0(e3). 

These investigations show that it is necessary to consider all terms up to order e2 to 
obtain differences to linear models. 

Now, all the first and second moments of (19) are expanded with respect to the 
correlation length e where only the terms of order e and E 2 have to be calculated 
explicitely. Using approximation theorems for linear functionals of weakly correlated 
processes all these terms can be expressed analogously to (7) (cf. [5: p. 25 if] and [81). 

Here, for simplification it is assumed that f l , and f2c are weakly correlated processes 
with

J (t) dt = ea i + 0(e3 )	and	f Rj212 (t) di = ea2 + 0(e3) 

(cf. (5) and [5: p. 88 if], [6: p. 44 if] and [81). Then all terms of order e2 vanish in the 
expansions (15). Additionally, it is supposed that lie and f2e are Gaussian processes. 
Hence, all even moments of these processes can be expressed by second moments and 
all odd moments vanish (cf. [2. p. 149]). These properties can be transferred to the 
moments of the coordinates of	In this case some straight forward calculations and
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approximation theorems lead to the following expressions: 

	

= eD(t 2	t 1 ) + O(e) (cf. (15)) 

	

n	2n 

	

= 362 i	b	D°° (0) 

	

p212323	1 3 
P=I IjI3I3I 

00 

X J G p(s)D°(t2 - t 1 + s)ds + O(e) 
0

	

n	2n 
= 62 {

	

N1	 (0D90 (0) 1113\ /	2324 
Pt ,P2 1 Ii,..., 141 

	

n	2n	 0000 

+ 2	 f I Gip , (u)Gp2(v) 

	

PI ,P2 =1 l .....141	 0	0 

x Do 3 (t 2 - t 1 + u - v)D(t 2 - t 1 + u - v)dvdu} + O(e) 

n	2n 

( 2E1 (t 1 )°E(t2 )) = E	 N1T2bp1112bp2134D14(o) Ip p2= 1 lj ,.,24=1 
00 

x J Gip, (s)DOO 	- t i + s) ds 
0

	

n	2n 

+4 > 
Pt p2=1 lt,.,141 
0000 

	

Jf G11	 - t i + u + s) duds} 232

00 

+ O(e)
2n 

= —N'Ie	b	D°° (0) p2122	j1j2 

	

l	1. I1,2=1 
2n 

+ 362	 b	D°° (0)D90 4 (0)  + p21232324	1112 
241 

All these moments only depend on the difference t 2 - t i and therefore the correlation 
functions (19) only depend on the difference i2 - ti up to terms of second order, too, 
i.e. the corresponding processes are weakly stationary. 

The correlation functions of the derivatives of the solutions are calculated on the
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base of
(t) = ((z	t) - (_(k)(j))) ('(t2) - ((i2)))) z i z

_______	- ((ii)))(Ej(t2) - 

3k+I 
= 	Rj j 	- t1) 

= (_l)kRt)(t)	(k, 1 = 0, 1; t = i 2 - ti). 

The equations

dk4.i (_i)k	D°9(i + s) = DJ(t + s)	 .1 7ij 

	

dk+i	 k	I	 I 
(1)k —D°° (I + s)D 4 (t + s) =	'V D' (t + s)D' T ''(t + s) ( 

Zj	1112	1314 

	

k+I	1112\
=O91=0	 I 

(k,l=0,1)	 J 
derived from (15) lead to the following final result for the correlation functions of the 
vibration deviations and their velocities and accelerations: 

' d 
R(k) (i)(i) = (1)k	Rz z, (I) 

z i	Z1 

ii	2n 
=Dj(i) + E2 I - 3i

P=I ll2t31	
ili2i3	111 

00	 00 

x	G(s)D(t + s) ds + (-1)' J G(s)D(—t + s) ds] 

2n 00

I
 k 1 

+ 277 2	j	 b11113b21314 	I I G1(s)C3(u) 
Pt ,71 3 1 Ij ,..,i 4=1 	40 v=O o a 

x D' (I + s - u)DkTl ''(i + s - u) duds 1j13	 1214 
+N 7 IDOO 12 

x
 [

00

	

	 00 

J G 1 (s)D(t + s) ds + (-1)' J Gp 1 (s)D(—i + s) ds] 

0000 

+ 2 11 
G,, 1 (s)G 11 2 (u)D°° (u)D(t + u + s) duds i3i2 

00
0000 

+2(—1 )k+I  jJ G 1 (s)G 12 (u)D90. (u)D(—i + u + s)duds} } 1312 
00 

+O()	(k,l=0,1).
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It is obvious that only the quadratic and cubic non-linearities have an influence to these 
correlation functions in this approximation order. 

The method presented allows also the approximation of higher moments in a similar 
way. Furthermore, it is possible to approximate the distribution functions. In the first 
approximation Gaussian distributions are obtained (cf. [5: p. 36 if] and (8)). 
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