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On the Integral Giving the Degree of a Map
and a Rouché Type Theorem

T. Hatziafratis and A. Tsarpalias

Abstract. An analytic approach to the degree of a map f : 8D — R™ \ {0} is given (where
D c R" is 2 bounded domain with smooth boundary) and a Rouché type theorem is proved.
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1. Introduction

In this paper we give a simple analytic proof that the integral
I'(n/2)
2qniz / " & Z( 1Y fidfy Ao (5) - Adfa

is an integer for a continuously differentiable map
f: 0D — R™\ {0},

where D is a bounded domain in R™ with smooth boundary; this integral gives the
degree of f.

The basic idea of this proof is the following: if we call n(f) the integrand in the
above integral then, although n(f) is not, in general, d-exact on the (n — 1)-dimensional
manifold 3D, its derivative

In(f(-,t))

ot

is d-exact, when we let f depend on a parameter t; and this is proved by constructing
explicitly a d-primitive (see Lemma 2). As for the parametrization of f, it is done with a
perturbation argument, based on Sard’s theorem. For another analytic proof see Heinz
[2]. For the history of the above integral as well as its connections with polynomial
equations and the Gauss-Bonnet theorem see Siegberg [3]. We also prove a version of
Rouché’s principle which gives a proof of Brouwer’s fixed point theorem. A special case
of it is contained in [5].
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2. Preliminaries

Let us recall some basic facts about differential forms in R®. A p-form in an open set
G in R" is a function w, symbolically represented by the sum

w= Z firrip(z)dziy A+ Adzy ),

1<8;,..,ip<n

which assigns to each smooth p-surface X' in G a number w(X) = Jy w according to the

rule
o(z TR 2
[o= % [ o mxo?pemt e,

where  is the parameter domain of X, and fi1,~~~,ip are real C!-functions on G. The
number [, w is called also the integral of w on X. The algebra of differential forms
obeys the laws of exterior algebra. We recall that a basic rule of exterior algebra is the
general anticommutative law:

dzj A---Adzj, =sign(l.l .”2.”)111:.'1 A ANdzi,
]l P ]P P
where (j1 - - Jp) is a permutation of (¢; ---1,) and 51gn( "‘ ) is the sign of the permu-
tation. Also the differentiation of differential forms is done accordmg to the rule

dw =Y dfi,, i,(z) Adzi, Ao Adzy,,

where df = ) aﬁé dz;.
With the above terminology and notation Stokes’ theorem takes the following form.

Stokes’ Theorem. If D C R™ is an open bounded set with smooth boundary 8D,
and w i3 an (n — 1)-form tn a neighborhood of D, then

Joto= L

We will use determinants with entries differential forms: if a;; are differential forms,
then

ay - " Gny
det | : o | =detfay,... an;) = Zsign(o)al,(l) A A Gng(n)s

Qin °** Qpn ’

where the summation is extended over all permutations o of {1,...,n}. (The elements
of each column are assumed to be differential forms of the same degree; this degree
may change from column to column.) Thus when we write det [a,j,...,as;], we mean
that j runs from 1 to n forming the n rows of the determinant. The value of such a
determinant does not change if we add to a row a multiple of another row (we mean
multiplied by a function). In some determinants a column may be repeated, and we
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put an index to indicate how many times this column is repeated. For example, in the
determinant

a;y a;z2 b - b
det,,_g .
Gny Gnz bp ot bn
the column [by,...,5,]7 is repeated n — 2 times. A determinant of the form
a; bl Ce bl
det,,..l . .
an bn . bn

is denoted by det; n_i[a,, b;]. Now if the a; are functions and the b; are 1-forms then,
expanding the above determinant, we obtain

detinoafaj, bl = (n = 1)) (=1)'aj by A+ (5) - Abn.
j=1

If furthermore db; = 0, then
d(det) n-1(ay, b;]) = dety n_i[daj, b;].

All these properties follow from the corresponding properties of the usual determinants
if we take into consideration the anticommutative law for differential forms:

WA= (=1)" Aw,

where i
p = degw and q = deg7.

For more properties of such determinants see [1: p. 8] and for the calculus of differential
forms, that we are using, see [4: Chapter 4].

Definition. Let D C R" be a bounded domain with smooth boundary. For a
C'-map f: 8D — R"\ {0} we define

n
c i .
1) = g VT i d A () A d
Jj=1
where |f|* = 377, f? and ¢ = %2,—) The degree 6(f) of f is defined by the integral

5(f) = /a .
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3. The main results
We start be proving some lemmas from which the main results, Theorems 1 and 2, w1ll

follow; Lemma 2 is the main step.

Lemma 1. Let D C R" be a domain and f : 3D — R™\ {0} a C?-map. Then
dn(f) =0 in D, and for a C?-function ¢ : D — (0, oo) we have n(¢ - f) = n(f).

Proof. Let us notice that

n(f) = dety nma[f, df5]

lf |
where ¢’ = (‘,,chj'i Therefore,

7](¢f) detln l[¢f1a¢df1+f1d¢]

" Ifl"

¢" llflndetl n— l[f)’¢df1 +f] dd’]

l

¢" 'Ifl"
——-dety n- 1[f]ade}

——————det; n-1(f5, ¢ df;]

T4 |f|"
=n(f)

which proves the second assertion of the lemma; for the first assertion apply what we
have just proved with ¢ = |f|~! in order to obtain

n(f) = n(g) = ¢ dety,n-1g;,dg;]

where ¢ = |f|~! f. Then
dn(f) = dn(g) = c' dety n-1[dg;,dg;] = ' nldgy A--- Adg,.

But 2;;1 g;‘r = 1 and therefore Z;-':l g;jdg; = 0 which implies dg; A--- Adgn = 0, i.c.
dn(f)=08

Lemma 2. If f = f(z,t) : (D) x [0,1] — R"\ {0} s a C%*-map, then the
differential form g—;n(f( -,t)) i3 d-ezact; more precisely,

2 n(f(0) = dub ~ M)

where d d
0 = u_c' f fl',l fl .'fl
TIE

det"_z

f.n fn,t dfn dfu
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with fj = Fi.

Proof. Exactly as in the case of 7 (see Lemma 1), 8 remains the same if f is
multiplied by a C2-function

#(z,t) : (OD) % [0,1] — (0, 00).

Hence we may assume, without loss of gencrality, that
> Sz =1 @)
=1

We may also assume that, ncar the point at which we want to prove (1), fi # 0. Then

i hdh - fidh
fo dfs o df
fin(CL0) = ¢ detuny | 6 :
fn dfn Tt dfn
(Throughout this proof d = d..) Now multiplying each j-th row of this determinant by
f; (2 €7 < n)and adding them to the first row we obtain, in view of (2),

1 0 - 0

fo dfs - dfs

flr)(f(~,t)):cldet,._| =Cdf2/\"'/\df".

f:n dfn te dfn

Hence

UMwU=%%AmA%
and therefore

fi.e

C—
ft
On the other hand, as a similar computation shows,

2 Ahe hdh - fidh
fa fau dfy - dfa

%U(f(',t)):" dfzf\“’/\dfn+;—lzdle\"'/\dfj,z/\"'/\dfm (3)
=2

fi-8=(n—-1)c" det,—,

Lfn fn,t dfn dfn
r 1 0 0 0 0

fa far dfe - dfy
=(n-1)c det,_o | . . ) .
Lfn fap dfn - dfn
[ far dfa - dfa
=(n-1)c' detp_2 : : :

far dfa - dfs
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, foi dfs - dp
9=(n—1)c det"_g[ }

/i fai dfa - dfa

Hence

and therefore

n 1) fre df oo dfe
df = — 72 dfy ANdet,—2 | : :
1 frt dfa - dfa @)
, [m,m~~%}
(n—-1)c .
+ dety,—» . : M-
fl ) . . .
} dfn,t dfn e dfn
Now (2) gives
fdfi==> fidfi and fifie=-> ffie
j=2 =2
Hence
foe dfs - dfs
Hidfi ndeta_p | : :
fn,t dfn e dfn
n fapy dfs - df
= (_ 7 dfj) Adetn—z | @ :
1=2 fn,t df" df"
(5)

= —(n-2)! (Z fi dfj) A (Z(—l)jfj,zdfz Aa(G) N dfn)
= —(n—-2)! (z 5 fj,,) dfa A -+ Adfn

=(n=2)'fi fixdfa A - Ndfn.
Also,

df2  df2 dfz n
detn_z | @ Dl = =2)) dfa A Adfs A Ndfa (6)
dfn,t dfn e dfn

Substituting (5) and (6) into (4) and comparing with (3), we obtain (1). The proof is
complete i

=2
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Lemma 3. If f = f(z,t): (8D) x[0,1] — R™\ {0} is a C2?-map, then the integral
S = [ atse0)
aD

i3 independent of t.

Proof. In view of Lemma 2 and Stokes’ theorem, we obtain

a g
56(“ )= /ao afl(f( )= /ao 40 = /a(aD) #=0

and the assertion of the lemma follows B

Lemma 4. Let f: D — R™ be a C'-map with f(z) # 0 for allz € dD. Then for
€ > 0 there is an y € R™ with |y| < € so that the equation f(z) =y has at most a finite
number of solutions, say z',...,zP € D, at which Jy(z') # 0 fori = 1,...,p (here Js
denotes the Jacobian of f) and such that f(z) # y for all z € OD.

Proof. Let C = {z € D: Js(z) = 0}. Then, by Sard’s theorem, the set f(C), the
image of C under f, has measure zero. Hence there is an y € R™ with |y| < € so that

y ¢ f(C). Since f(z) # 0 for all z € 8D, we may also choose y sufficiently close to 0 so
that f(z) # y for all z € D.

We claim that the equation f(z) = y has at most a finite number of solutions; for
otherwise there would exist a sequence {z”},>1 C D of distinct points with

¥ -z€D as v— o0 and f(z¥) =y forall v>1. )

But then f(z) = y whence z € D and Jy(z) # 0. Therefore, by the inverse function
theorem, f is one-to-one on a neighborhood of z, which contradicts (7) and the proof
i1s complete B

Lemma 5. Suppose that f : U — R™ is a C%-map on an open set U C R™ such
that f is a diffeomorphism on e neighborhood of a point a € U to a neighborhood of
b= f(a). Then

[oag-n=1 o [ a-p=-1
3B(a,c) 3B(a,e)

for sufficiently small € > 0, where B(z,e) = {y € R": |y — z| < €}.
Proof. We have
1 o » :
-t S Ty - b A G A
-/(')B(a,e) f(B(a,e)) |y - bl ; ’ ’

But, by Lemma 1 and Stokes’ theorem, the above integral becomes

(1) =c/m I A (G)- A

Jj=1
(here 8B(0, 1) could have either orientation depending upon f). Therefore, by Stokes’
theorem again,

8(f) = :tc/ ndy, A Adyn = £cVol(B(0,1)) = +1
B(0,1)

and the proof is complete i
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Theorem 1. Let D C R" be a bounded domain with smooth boundary and f :
0D — R\ {0} a C'-map. Then 6(f) is an integer.

Proof. Let us assume first that f is a C?-map and let f : D — R™ be a C2-
extension of f. By Lemma 4 there is an y € R", sufficiently close to zero so that the
equation f(:c) = y has finitely many solutions z',...,z? € D with J/-(:r:") # 0 and
f(z) #u for z € 9D and |u| < |y|-

But, by Lemma 3, §(f) = é6(f — y). Also, for small ¢ > 0,

5(f—y)=/a n(f-y)= Z/aB( )nf )

where B(z',e) = {z € R": |z —z'| < e}; the last equation follows from Stokes’ theorem
applied to n(f — y) and the domain

P
Q=D\{J B(z"e),
=1
since dn(f —y) = 0 by Lemma 1.

But f — y is a C?-diffeomorphism on a neighbothood of z* and therefore, if ¢ is

“sufficiently small, :
/ Con(f-y)=+1
8B(z',¢)

by Lemma 5. Hence §(f — y) is an integer and so is §(f). This completes the proof
in the case f is of class C?%. If f is only of class C!, then we can approximate f by
C?-functions, uniformly on 8D and prove that, in this case too, 6(f) is an integer. This
completes the proof

Theorem 2. Let D C R™ be a bounded domain with smooth boundary. Suppose
that f : D — R™ is a continuous map and g : D — R™ is a C'-map with g(z) # 0
for all x € D and 6(g) # 0. If |f(z)] < lg(z)| for every z € OD, then the equation
f(z) + g(z) = 0 has at least one solution z in D.

Proof. Let us prove the statement first in the case f is of class C! and |f(z)| <
lg(z)| for every z € dD. Then for t € [0,1] and z € 8D we have

lg(=) +tf(2)] 2 lg(z)] - tif(<)| > O.

Therefore §(g +t f) is independent of ¢, since it is continuous in ¢ and integer-valued (by
Theorem 1). Hence 6(0) = §(1), ie. 6(g) = §(f + g) and therefore 6(f + g) # 0. But if
f(z) + g(z) # 0 for all z € D, then

6(f+g)=/aon(f+g)=0,

by Lemma 1 and Stokes’ theorem, since din(f+g¢)]=01in D. This is a contradiction
which completes the proof in this case.
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‘Now we consider the general case in which f is only continuous and |f(z)| < |¢(z)|
for z € OD. Then, by the Stone-Weierstrass theorem, for each A € (0,1) there is a
sequence of polynomials p, so that V

Py — Af uniformly on D and |p,| < |g| on D.

Thus, by the first case considered, there is z¥ € D so that p,(z*) + g(z*) = 0. Passing
to a subsequence, we may assume that ¥ — z, € D. Therefore

Af(za) +g(za) =0.

Finally, choosing A; — 1 so that z5; — z € D, we obtain that f(z) + g(z) = 0 and the
proof is complete il

The following immediate consequence of Theorem 2 is Brouwer’s fixed point theo-
rem. It follows from Theorem 2 by applying it with D the closed unit ball of R" and
g(z) = —-=z. .

Corollary. Let B = {z € R" : |z| < 1}. Every continuvous map f : B* — B"®
has a fized point.
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