On the Integral Giving the Degree of a Map and a Rouché Type Theorem

T. **Hatziafratis and** A. **Tsarpalias**

Abstract. An analytic approach to the degree of a map $f : \partial D \longrightarrow \mathbb{R}^n \setminus \{0\}$ is given (where $D \subset \mathbb{R}^n$ is a bounded domain with smooth boundary) and a Rouché type theorem is proved.

Keywords: *Degree of a map, differential forms, fixed points* AMS subject classification: Primary 58A 10, secondary 58C30

1. Introduction

In this paper we give a simple analytic proof that the integral

ive a simple analytic proof that the integral
\n
$$
\frac{\Gamma(n/2)}{2\pi^{n/2}} \int_{\partial D} \frac{1}{|f|^n} \sum_{j=1}^n (-1)^{j-1} f_j df_1 \wedge \cdots (j) \cdots \wedge df_n
$$

is an integer for a continuously differentiable map

$$
f: \, \partial D \longrightarrow \mathbb{R}^n \setminus \{0\},
$$

where D is a bounded domain in \mathbb{R}^n with smooth boundary; this integral gives the degree of f.

The basic idea of this proof is the following: if we call $\eta(f)$ the integrand in the above integral then, although $\eta(f)$ is not, in general, d-exact on the $(n-1)$ -dimensional manifold *OD,* its derivative

$$
\frac{\partial \eta (f(\,\cdot\,,t))}{\partial t}
$$

is d-exact, when we let f depend on a parameter t ; and this is proved by constructing explicitly a d -primitive (see Lemma 2). As for the parametrization of f , it is done with a perturbation argument, based on Sard's theorem. For another analytic proof see Heinz [2]. For the history of the above integral as well as its connections with polynomial equations and the Gauss-Bonnet theorem see Siegberg [3]. We also prove a version of Rouché's principle which gives a proof of Brouwer's fixed point theorem. A special case of it is contained in [5].

T. Hatziafratis: University of Athens, Dept. Math., Panepistimiopolis, 15784 Athens, Greece A. Tsarpalias: University of Athens, Dept. Math., Panepistimiopolis, 15784 Athens, Greece

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

2. Preliminaries

Let us recall some basic facts about differential forms in \mathbb{R}^n . A p-form in an open set G in \mathbb{R}^n is a function ω , symbolically represented by the sum Let us recall some basic facts about differential forms in \mathbb{R}^n . A *p*-form
 G in \mathbb{R}^n is a function ω , symbolically represented by the sum
 $\omega = \sum_{1 \leq i_1, ..., i_p \leq n} f_{i_1,...,i_p}(x) dx_{i_1} \wedge \cdots \wedge dx_{i_p},$

whic

and A. Isarpalias
\nS
\nS
\n
$$
\omega
$$
, symbolically represented by the sum
\n
$$
\omega = \sum_{1 \leq i_1, ..., i_p \leq n} f_{i_1, ..., i_p}(x) dx_{i_1} \wedge \cdots \wedge dx_{i_p},
$$

according to the rule

tratis and A. Isarpaias

\naries

\nare basic facts about differential forms in
$$
\mathbb{R}^n
$$
. A p-for:

\nfunction ω , symbolically represented by the sum

\n
$$
\omega = \sum_{1 \leq i_1, \ldots, i_p \leq n} f_{i_1, \ldots, i_p}(x) dx_{i_1} \wedge \cdots \wedge dx_{i_p},
$$
\neach smooth p-surface \mathcal{X} in G a number $\omega(\mathcal{X}) = \int_{\mathcal{X}} \omega$

\n
$$
\int_{\mathcal{X}} \omega = \sum \int_{\Omega} f_{i_1, \ldots, i_p}(\mathcal{X}(t)) \frac{\partial(x_{i_1}, \ldots, x_{i_p})}{\partial(t_1, \ldots, t_p)} dt_1 \cdots dt_p,
$$
\nparameter domain of \mathcal{X} , and f_{i_1, \ldots, i_p} are real C^1 -func.

\ncalled also the integral of ω on \mathcal{X} . The algebra of \mathcal{X} .

ratis and A. Ts:

ries

: basic facts a

ion ω , symbo
 $\omega = \sum_{1 \le i_1,..}$

ach smooth p
 $\omega = \sum \int_{\Omega}$

rameter dom

alled also the

exterior algeb Let us rectain some basic racts about underential forms in \mathbb{R}^n . A p-form in an open set G in \mathbb{R}^n is a function ω , symbolically represented by the sum
 $\omega = \sum_{1 \leq i_1, ..., i_p \leq n} f_{i_1,...,i_p}(x) dx_{i_1} \wedge \cdots \wedge dx$ where Ω is the parameter domain of \mathcal{X} , and f_{i_1,\dots,i_p} are real C^1 -functions on G . The number $\int_{\mathcal{X}} \omega$ is called also the integral of ω on \mathcal{X} . The algebra of differential forms number $J_{\chi} \omega$ is called also the integral of ω on χ . The algebra of differential forms obeys the laws of exterior algebra. We recall that a basic rule of exterior algebra is the general anticommutative law:
 dx_{j general anticommutative law:

$$
dx_{j_1}\wedge\cdots\wedge dx_{j_p}=\text{sign}\left(\frac{i_1\cdots i_p}{j_1\cdots j_p}\right)dx_{i_1}\wedge\cdots\wedge dx_{i_p},
$$

where $(j_1 \cdots j_p)$ is a permutation of $(i_1 \cdots i_p)$ and $sign(\overline{j_1 \cdots j_p})$ is the sign of the permutation. Also the differentiation of differential forms is done according to the rule

$$
d\omega = \sum df_{i_1,\ldots,i_p}(x) \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_p},
$$

where $df = \sum \frac{\partial f}{\partial x_i} dx_i$.

With the above terminology and notation Stokes' theorem takes the following form.

Stokes' Theorem. *If* $D \subset \mathbb{R}^n$ *is an open bounded set with smooth boundary* ∂D *,* and ω is an $(n - 1)$ -form in a neighborhood of \overline{D} , then.

d notation Stoke
\nⁱ is an open bou
\n*hborhood of*
$$
\overline{D}
$$
, *t*
\n
$$
\int_D d\omega = \int_{\partial D} \omega.
$$
\nentries differentiating

We will use determinants with entries differential forms: if a_{ij} are differential forms, then

e
$$
df = \sum \frac{\partial f}{\partial x_i} dx_i
$$
.
\nWith the above terminology and notation Stokes' theorem takes the following
\ntokes' Theorem. If $D \subset \mathbb{R}^n$ is an open bounded set with smooth boundary
\n ν is an $(n-1)$ -form in a neighborhood of \overline{D} , then
\n
$$
\int_D d\omega = \int_{\partial D} \omega.
$$
\nWe will use determinants with entries differential forms: if a_{ij} are differential f
\n
$$
\det \begin{bmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{bmatrix} = \det [a_{1j}, \ldots, a_{nj}] =: \sum_{\sigma} sign(\sigma) a_{1\sigma(1)} \wedge \cdots \wedge a_{n\sigma(n)},
$$

\ne the summation is extended over all permutations σ of $\{1, \ldots, n\}$. (The elec

where the summation is extended over all permutations σ of $\{1,\ldots,n\}$. (The elements of each column are assumed to be differential forms of the same degree; this degree may change from column to column.) Thus when we write det $[a_1, \ldots, a_n]$, we mean that *j* runs from 1 to n forming the *n* rows of the determinant. The value of such a determinant does not change if we add to a row a multiple of another row (we mean multiplied by a function). In some determinants a column may be repeated, and we

put an index to indicate how many times this column is repeated. For example, in the determinant times this colured a_{11} a₁₂ b₁

$$
\det_{n-2}\left[\begin{array}{cccc} a_{11} & a_{12} & b_1 & \cdots & b_1 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & b_n & \cdots & b_n \end{array}\right]
$$

the column $[b_1, \ldots, b_n]^T$ is repeated $n-2$ times. A determinant of the form $\begin{bmatrix} a_1 & b_1 & \cdots & b_1 \end{bmatrix}$

$$
\det_{n-1}\left[\begin{array}{cccc} a_1 & b_1 & \cdots & b_1 \\ \vdots & \vdots & & \vdots \\ a_n & b_n & \cdots & b_n \end{array}\right]
$$

is denoted by $\det_{1,n-1}[a_j, b_j]$. Now if the *a_j* are functions and the *b_j* are 1-forms then, expanding the above determinant, we obtain
 $\det_{1,n-1}[a_j, b_j] = (n-1)! \sum_{j=1}^n (-1)^{j-1} a_j \cdot b_1 \wedge \cdots (j) \cdots \wedge b_n.$ expanding the above determinant, we obtain

$$
\det_{1,n-1}[a_j,b_j]=(n-1)!\sum_{j=1}^n(-1)^{j-1}a_j\cdot b_1\wedge\cdots(j)\cdots\wedge b_n.
$$

If furthermore $db_i = 0$, then

$$
d(\det_{1,n-1}[a_j,b_j]) = \det_{1,n-1}[da_j,b_j].
$$

All these properties follow from the corresponding properties of the usual determinants if we take into consideration the anticommutative law for differential forms: from the corresponding properties

on the anticommutative law for different words of the degree of $\omega \wedge \eta = (-1)^{pq} \eta \wedge \omega$,
 $p = \deg \omega$ and $q = \deg \eta$.

and determinants see [1: p. 8] and for

$$
\omega \wedge \eta = (-1)^{pq} \eta \wedge \omega,
$$

where

$$
p=\deg \omega \qquad \text{ and } \qquad q=\deg \eta.
$$

For more properties of such determinants see [1: p. 8) and for the calculus of differential forms, that we are using, see [4: Chapter 4].

Definition. Let $D \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. For a C^1 -map $f: \partial D \longrightarrow \mathbb{R}^n \setminus \{0\}$ we define

of such determinants see [1: p. 8] and for the c
\nsing, see [4: Chapter 4].
\n
$$
D \subset \mathbb{R}^n
$$
 be a bounded domain with smooth
\n
$$
\mathbb{R}^n \setminus \{0\}
$$
 we define
\n
$$
\eta(f) = \frac{c}{|f|^n} \sum_{j=1}^n (-1)^{j-1} f_j df_1 \wedge \cdots (j) \cdots \wedge df_n
$$

\n
$$
F_j^2
$$
 and $c = \frac{\Gamma(n/2)}{2\pi^{n/2}}$. The degree $\delta(f)$ of f is defir

 $\eta(f) = \frac{c}{|f|^n}$ where
 $|f|^2 = \sum_{j=1}^n f_j^2$ and $c=$ The *degree* $\delta(f)$ of f is defined by the integral

$$
\delta(f)=\int_{\partial D}\eta(f).
$$

242 T. Hatziafratis and A. Tsarpalias **∂**

3. The main results

We start be proving some lemmas from which the main results, Theorems 1 and 2, will follow; Lemma 2 is the main step.

Lemma 1. Let $D \subset \mathbb{R}^n$ be a domain and $f : \partial D \longrightarrow \mathbb{R}^n \setminus \{0\}$ a C^2 -map. Then $d\eta(f) = 0$ in D, and for a C^2 -function $\phi : D \longrightarrow (0,\infty)$ we have $\eta(\phi \cdot f) = \eta(f)$.

Proof. Let us notice that

step.
\nbe a domain and
$$
f : \partial D
$$
 --
\nfunction $\phi : D \longrightarrow (0, \infty)$ to
\nt
\n
$$
\eta(f) = \frac{c'}{|f|^n} det_{1,n-1}[f_j, df_j]
$$

where $c' = \frac{c}{(n-1)!}$. Therefore,

$$
\eta(\phi \cdot f) = \frac{c'}{\phi^n |f|^n} \det_{1,n-1}[\phi f_j, \phi df_j + f_j d\phi]
$$

\n
$$
= \frac{c'}{\phi^{n-1} |f|^n} \det_{1,n-1} [f_j, \phi df_j + f_j d\phi]
$$

\n
$$
= \frac{c'}{\phi^{n-1} |f|^n} \det_{1,n-1} [f_j, \phi df_j]
$$

\n
$$
= \frac{c'}{\phi^n |f|^n} \det_{1,n-1} [f_j, df_j]
$$

\n
$$
= \eta(f)
$$

\ncond assertion of the lemma; for the first asset
\n
$$
\phi = |f|^{-1}
$$
 in order to obtain
\n
$$
\eta(f) = \eta(g) = c' \det_{1,n-1} [g_j, dg_j]
$$

which proves the second assertion of the lemma; for the first assertion apply what we which proves the second assertion
have just proved with $\phi = |f|^{-1}$ in order to obtain

$$
\eta(f) = \eta(g) = c' \det_{1,n-1}[g_j, dg_j]
$$

where $g = |f|^{-1}f$. Then

$$
d\eta(f) = d\eta(g) = c' \det_{1,n-1} [dg_j, dg_j] = c' n! dg_1 \wedge \cdots \wedge dg_n.
$$

which proves
have just prov $% \rho _{0}=\frac{1}{2}$
But $\sum_{j=1}^{n}\frac{g_{j}^{2}}{g_{j}^{2}}$
 $d\eta (f)=0$ \blacksquare
Lemma $\sum_{i=1}^{n}$ = 1 and therefore $\sum_{i=1}^{n}$ $g_j dg_j = c' n! dg_1 \wedge \cdots \wedge dg_n.$
 $g_j dg_j = 0$ which implies $dg_1 \wedge \cdots \wedge dg_n = 0$, i.e. $d\eta(f) = 0$

Lemma 2. *If* $f = f(x,t) : (\partial D) \times [0,1] \longrightarrow \mathbb{R}^n \setminus \{0\}$ is a C^2 -map, then the *differential form* $\frac{\partial}{\partial t} \eta(f(\cdot, t))$ *is d-exact; more precisely,*

$$
\frac{\partial}{\partial t}\eta(f(\,\cdot,t))=d_x\theta\tag{1}
$$

where

$$
f(x) = d\eta(g) = c' \det_{1,n-1}[dg_j, dg_j] = c' n! dg_1 \wedge \cdots \wedge
$$

and therefore $\sum_{j=1}^{n} g_j dg_j = 0$ which implies $dg_1 \wedge$

$$
f f = f(x, t) : (\partial D) \times [0, 1] \longrightarrow \mathbb{R}^n \setminus \{0\} \text{ is a}
$$

$$
\frac{\partial}{\partial t} \eta(f(\cdot, t)) = d_x \theta
$$

$$
\frac{\partial}{\partial t} \eta(f(\cdot, t)) = d_x \theta
$$

$$
\theta = \frac{(n-1) \cdot c'}{|f|^n} \det_{n-2} \begin{bmatrix} f_1 & f_{1,t} & df_1 & \cdots & df_1 \\ \vdots & \vdots & \vdots & \vdots \\ f_n & f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$

with $f_{j,t} = \frac{\partial f_j}{\partial t}$.

Proof. Exactly as in the case of η (see Lemma 1), θ remains the same if f is *multiplied by a C2-function* $($ in the line gran shown
the case of η (see Lemma 1),
 (x, t) : $(\partial D) \times [0, 1] \longrightarrow (0, \infty)$
out loss of generality, that

$$
\phi(x,t):(\partial D)\times[0,1]\longrightarrow(0,\infty).
$$

Hence we may assume, without loss of generality, that

On the Integral Giving the Degree of a Map
with
$$
f_{j,t} = \frac{\partial f_j}{\partial t}
$$
.
Proof. Exactly as in the case of η (see Lemma 1), θ remains the same if f is
multiplied by a C^2 -function
 $\phi(x,t): (\partial D) \times [0,1] \longrightarrow (0,\infty)$.
Hence we may assume, without loss of generality, that

$$
\sum_{j=1}^n f_j^2(x,t) = 1.
$$
 (2)
We may also assume that, near the point at which we want to prove (1), $f_1 \neq 0$. Then

$$
\oint(x,t) : (\partial D) \times [0,1] \longrightarrow (0,\infty).
$$

sume, without loss of generality, that

$$
\sum_{j=1}^{n} f_j^2(x,t) = 1.
$$

me that, near the point at which we want to prove

$$
f_1 \eta(f(\cdot,t)) = c' \det_{n-1} \begin{bmatrix} f_1^2 & f_1 df_1 & \cdots & f_1 df_1 \\ f_2 & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots \\ f_n & df_n & \cdots & df_n \end{bmatrix}.
$$
proof $d = d_x$.) Now multiplying each j -th row of the
and adding them to the first row we obtain, in view

$$
\oint_{\mathcal{I}} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ f_2 & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots \\ f & df & \cdots & df \end{bmatrix} = c df_2 \wedge \cdots
$$

(Throughout this proof $d = d_x$.) Now multiplying each j-th row of this determinant by f_j $(2 \leq j \leq n)$ and adding them to the first row we obtain, in view of (2), $\begin{bmatrix} f_n & df_n \end{bmatrix}$
 1 0 ... 0
 1 0 ... 0
 1 $\begin{bmatrix} 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$

y also assume that, near the point at which we want to prove (1),
$$
f_1 \neq 0
$$
. Then
\n
$$
f_1 \eta(f(\cdot, t)) = c' \det_{n-1} \begin{bmatrix} f_1^2 & f_1 df_1 & \cdots & f_1 df_1 \\ f_2 & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_n & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
g_1 \text{but this proof } d = d_x.
$$
 Now multiplying each j-th row of this determinant by $f_1 \eta(f(\cdot, t)) = c' \det_{n-1} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ f_2 & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_n & df_n & \cdots & df_n \end{bmatrix} = c df_2 \wedge \cdots \wedge df_n.$
\n
$$
\eta(f(\cdot, t)) = \frac{c}{f_1} df_2 \wedge \cdots \wedge df_n
$$

\n
$$
\eta(f(\cdot, t)) = \frac{c}{f_1} df_2 \wedge \cdots \wedge df_n + \frac{c}{f_1} \sum_{j=2}^n df_2 \wedge \cdots \wedge df_j, t \wedge \cdots \wedge df_n.
$$
 (3)
\n
$$
\frac{\partial}{\partial t} \eta(f(\cdot, t)) = -c \frac{f_{1,t}}{f_1^2} df_2 \wedge \cdots \wedge df_n + \frac{c}{f_1} \sum_{j=2}^n df_2 \wedge \cdots \wedge df_j, t \wedge \cdots \wedge df_n.
$$
 (3)

Hence

$$
\eta(f(\,\cdot\,,t))=\frac{c}{f_1}\,df_2\wedge\cdots\wedge df_n
$$

and therefore

$$
\eta(f(\cdot,t)) = \frac{c}{f_1} df_2 \wedge \dots \wedge df_n
$$

Therefore

$$
\frac{\partial}{\partial t} \eta(f(\cdot,t)) = -c \frac{f_{1,t}}{f_1^2} df_2 \wedge \dots \wedge df_n + \frac{c}{f_1} \sum_{j=2}^n df_2 \wedge \dots \wedge df_{j,t} \wedge \dots \wedge df_n.
$$
 (3)

On the other hand, *as a similar computation shows,*

$$
f_n \quad df_n \quad \cdots \quad df_n \quad J
$$
\n
$$
\eta(f(\cdot, t)) = \frac{c}{f_1} df_2 \land \cdots \land df_n
$$
\n
$$
\vdots, t)
$$
\n
$$
= -c \frac{f_{1,t}}{f_1^2} df_2 \land \cdots \land df_n + \frac{c}{f_1} \sum_{j=2}^n df_2 \land \cdots \land df_{j,t} \land \cdots
$$
\nhand, as a similar computation shows,\n
$$
f_1 \cdot \theta = (n-1) c' \det_{n-2} \begin{bmatrix} f_1^2 & f_1 f_{1,t} & f_1 df_1 & \cdots & f_1 df_1 \\ f_2 & f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_n & f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
= (n-1) c' \det_{n-2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ f_2 & f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_n & f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
= (n-1) c' \det_{n-2} \begin{bmatrix} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots \\ f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$

244 **T. Hatziafratis and A. Tsarpalias**

Hence

$$
\theta = \frac{(n-1)c'}{f_1} \det_{n-2} \begin{bmatrix} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$

$$
= -\frac{(n-1)c'}{f_1^2} df_1 \wedge \det_{n-2} \begin{bmatrix} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_1 & \cdots & f_n & f_n \end{bmatrix}
$$

and therefore

fratis and A. Tsarpalias

\n
$$
\theta = \frac{(n-1)c'}{f_1} \det_{n-2} \begin{bmatrix} f_2, & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_n, & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
d\theta = -\frac{(n-1)c'}{f_1^2} df_1 \wedge \det_{n-2} \begin{bmatrix} f_2, & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ f_n, & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
+ \frac{(n-1)c'}{f_1} \det_{n-2} \begin{bmatrix} df_2, & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ df_n, & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
f_1 df_1 = -\sum_{j=2}^n f_j df_j \quad \text{and} \quad f_1 f_{1,t} = -\sum_{j=2}^n f_j f_{j,t}.
$$
\n(4)

Now (2) gives

$$
f_1 \quad \xrightarrow{\text{dcon-2}} \left[\begin{array}{ccc} \vdots & \vdots & \vdots \\ \text{d}f_{n,t} & \text{d}f_n & \cdots & \text{d}f_n \end{array} \right]
$$
\n
$$
f_1 \, df_1 = - \sum_{j=2}^n f_j \, df_j \quad \text{and} \quad f_1 \, f_{1,t} = - \sum_{j=2}^n f_j \, f_{j,t}.
$$

Hence

$$
+\frac{(n-1)c'}{f_1} \det_{n-2} \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \frac{d}{f_n}, d_{f_n} & \cdots & d_{f_n} \end{bmatrix}
$$
\n
\ngives\n
$$
f_1 df_1 = -\sum_{j=2}^n f_j df_j \quad \text{and} \quad f_1 f_{1,t} = -\sum_{j=2}^n f_j f_{j,t}.
$$
\n
$$
f_1 df_1 \wedge \det_{n-2} \begin{bmatrix} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots \\ f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
= \left(-\sum_{j=2}^n f_j df_j \right) \wedge \det_{n-2} \begin{bmatrix} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots & \vdots \\ f_{n,t} & df_n & \cdots & df_n \end{bmatrix}
$$
\n
$$
= -(n-2)! \left(\sum_{j=2}^n f_j df_j \right) \wedge \left(\sum_{j=2}^n (-1)^j f_{j,t} df_2 \wedge \cdots \wedge df_n \right)
$$
\n
$$
= -(n-2)! \left(\sum_{j=2}^n f_j f_{j,t} \right) df_2 \wedge \cdots \wedge df_n
$$
\n
$$
= (n-2)! f_1 f_{1,t} df_2 \wedge \cdots \wedge df_n.
$$
\n
$$
\det_{n-2} \begin{bmatrix} df_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots \\ df_{n,t} & df_n & \cdots & df_n \end{bmatrix} = (n-2) \sum_{j=2}^n df_2 \wedge \cdots \wedge df_{j,t} \wedge \cdots \wedge df_n. \quad (6)
$$
\n
$$
\det_{n=1} \begin{bmatrix} \mathbf{a} f_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & \vdots \\ df_{n,t} & df_n & \cdots & df_n \end{bmatrix} = (n-2) \sum_{j=2}^n df_2 \wedge \cdots \wedge df_{j,t} \wedge \cdots \wedge df_n. \quad (6)
$$

Also,

 $\ddot{}$

$$
= (n-2)! f_1 f_{1,t} df_2 \wedge \cdots \wedge df_n.
$$

$$
\det_{n-2} \begin{bmatrix} df_{2,t} & df_2 & \cdots & df_2 \\ \vdots & \vdots & & \vdots \\ df_{n,t} & df_n & \cdots & df_n \end{bmatrix} = (n-2) \sum_{j=2}^n df_2 \wedge \cdots \wedge df_{j,t} \wedge \cdots \wedge df_n.
$$
 (6)

 \overline{a}

 $\ddot{}$

Substituting (5) and (6) into (4) and comparing with (3), we obtain (1). The proof is complete I

Lemma 3. *If* $f = f(x,t) : (\partial D) \times [0,1] \longrightarrow \mathbb{R}^n \setminus \{0\}$ *is a C*² *map, then the integral*

$$
\delta(f(\,\cdot\,,t))=\int_{\partial D}\eta(f(\,\cdot\,,t))
$$

is independent oft.

Proof. In view of Lemma 2 and Stokes' theorem, we obtain

On the Integral Giving the Degree of:
\n
$$
If f = f(x, t) : (\partial D) \times [0, 1] \longrightarrow \mathbb{R}^n \setminus \{0\} \text{ is a } C^2\text{-map, } t
$$
\n
$$
\delta(f(\cdot, t)) = \int_{\partial D} \eta(f(\cdot, t))
$$
\nof t.
\nview of Lemma 2 and Stokes' theorem, we obtain
\n
$$
\frac{\partial}{\partial t} \delta(f(\cdot, t)) = \int_{\partial D} \frac{\partial}{\partial t} \eta(f(\cdot, t)) = \int_{\partial D} d_x \theta = \int_{\partial (\partial D)} \theta = 0
$$
\nion of the lemma follows
\n
$$
\text{Let } f: \overline{D} \longrightarrow \mathbb{R}^n \text{ be a } C^1\text{-map with } f(x) \neq 0 \text{ for all } x \in
$$

and the assertion of the lemma follows \blacksquare

Lemma 4. Let $f: \overline{D} \longrightarrow \mathbb{R}^n$ be a C^1 -map with $f(x) \neq 0$ for all $x \in \partial D$. Then for $\varepsilon > 0$ there is an $y \in \mathbb{R}^n$ with $|y| < \varepsilon$ so that the equation $f(x) = y$ has at most a finite *number of solutions, say* $x^1, \ldots, x^p \in D$, at which $J_f(x^i) \neq 0$ for $i = 1, \ldots, p$ (here J_f *denotes the Jacobian of f) and such that* $f(x) \neq y$ *for all* $x \in \partial D$ *.*

Proof. Let $C = \{x \in D : J_f(x) = 0\}$. Then, by Sard's theorem, the set $f(C)$, the image of C under f, has measure zero. Hence there is an $y \in \mathbb{R}^n$ with $|y| < \varepsilon$ so that $y \notin f(C)$. Since $f(x) \neq 0$ for all $x \in \partial D$, we may also choose y sufficiently close to 0 so that $f(x) \neq y$ for all $x \in \partial D$. with $|y| < \varepsilon$ so that the equation $f(x) = y$ has at most a fin $x^1, \ldots, x^p \in D$, at which $J_f(x^i) \neq 0$ for $i = 1, \ldots, p$ (here $f(x)$) and such that $f(x) \neq y$ for all $x \in \partial D$.
 $E(D : J_f(x) = 0)$. Then, by Sard's theorem, the

We claim that the equation $f(x) = y$ has at most a finite number of solutions; for otherwise there would exist a sequence $\{x^{\nu}\}_{\nu\geq 1} \subset D$ of distinct points with

$$
x^{\nu} \to x \in \overline{D} \text{ as } \nu \to \infty \quad \text{and} \quad f(x^{\nu}) = y \text{ for all } \nu \ge 1. \tag{7}
$$

But then $f(x) = y$ whence $x \in D$ and $J_f(x) \neq 0$. Therefore, by the inverse function theorem, f is one-to-one on a neighborhood of x , which contradicts (7) and the proof is complete \blacksquare

Lemma 5. *Suppose that* $f: U \longrightarrow \mathbb{R}^n$ is a C^2 -map on an open set $U \subset \mathbb{R}^n$ such that f is a diffeomorphism on a neighborhood of a point $a \in U$ to a neighborhood of *b=f(a). Then* $\begin{aligned} \text{For a neighborhood of } x \\\\text{if } \text{if } f: U \longrightarrow \mathbb{R}^n \text{ is a} \\\\ \text{if } \text{if } f \text{ is a neighborhood of } x \\\\ \text{if } f - b > 1 \quad \text{if } f \text{ is a } \end{aligned}$ exist a sequence $\{x^{\nu}\}_{\nu \geq 1} \subset D$ of di
 \overline{J} as $\nu \to \infty$ and $f(x^{\nu}) =$

ence $x \in D$ and $J_f(x) \neq 0$. There

ne on a neighborhood of x, which c

se that $f: U \longrightarrow \mathbb{R}^n$ is a C^2 -map

hism on a neighborhood of But then $f(x) = y$ whence $x \in D$ and $J_f(x) \neq 0$. Therefore, by theorem, f is one-to-one on a neighborhood of x , which contradict
is complete **E**
Lemma 5. Suppose that $f : U \longrightarrow \mathbb{R}^n$ is a C^2 -map on an oper
that f

$$
\int_{\partial B(a,\epsilon)} \eta(f-b) = 1 \qquad or \qquad \int_{\partial B(a,\epsilon)} \eta(f-b) = -1
$$

Proof. We have

JaB(a,e) (f - b) = cff(B(a,e)) (-1)'(y - b)dy 1 A . *A* Il/ - *bl , 8(f) =cJ (-1)''ydy, A ... (j) ... Ady*

But, by Lemma 1 and Stokes' theorem, the above integral becomes

$$
\delta(f)=c\int_{\partial B(0,1)}\sum_{j=1}^n(-1)^{j-1}y_j\,dy_1\wedge\cdots(j)\cdots\wedge dy_n
$$

(here $\partial B(0,1)$ could have either orientation depending upon *f*). Therefore, by Stokes' theorem again,

$$
\delta(f) = c \int_{\partial B(0,1)} \sum_{j=1}^{\infty} (-1)^{j-1} y_j \, dy_1 \wedge \cdots (j) \cdots \wedge dy_n
$$

could have either orientation depending upon f). Therefore,

$$
\delta(f) = \pm c \int_{B(0,1)} n \, dy_1 \wedge \cdots \wedge dy_n = \pm c \text{Vol}(B(0,1)) = \pm 1
$$

and the proof is complete \blacksquare

Theorem 1. Let $D \subset \mathbb{R}^n$ be a bounded domain with smooth boundary and f : $\partial D \longrightarrow \mathbb{R}^n \setminus \{0\}$ *a* C^1 -map. Then $\delta(f)$ is an integer.

Proof. Let us assume first that *f* is a C^2 -map and let \tilde{f} : \overline{D} \longrightarrow \mathbb{R}^n be a C^2 extension of *f.* By Lemma 4 there is an $y \in \mathbb{R}^n$, sufficiently close to zero so that the equation $\tilde{f}(x) = y$ has finitely many solutions $x^1, \ldots, x^p \in D$ with $J_{\tilde{f}}(x^i) \neq 0$ and *f***(x)** f(x) 54 us assume first treatment of f. By Lemma 4 then
equation $\tilde{f}(x) = y$ has finitely m
 $f(x) \neq u$ for $x \in \partial D$ and $|u| \leq |y|$.
But by Lemma 3 $\delta(f) - \delta(f)$. *C*¹-map. Then $\delta(f)$ is an integer.

assume first that f is a C²-map and let \tilde{f} : \overline{D}

Lemma 4 there is an $y \in \mathbb{R}^n$, sufficiently close thas finitely many solutions $x^1, \ldots, x^p \in D$ wit
 b and $|u| \$ *en* $\delta(f)$ is
that f is
that f is
ere is an y
many solu
yl.
 $f - y$). Al:
 $\int_{\partial D} \eta(f - y) dx$
 $x^i | \leq \varepsilon$; th

But, by Lemma 3, $\delta(f) = \delta(f - y)$. Also, for small $\varepsilon > 0$,

$$
\delta(f - y) = \int_{\partial D} \eta(f - y) = \sum_{i=1}^{p} \int_{\partial B(x^i, \epsilon)} \eta(\tilde{f} - y)
$$

where $B(x^i, \varepsilon) = \{x \in \mathbb{R}^n : |x - x^i| \leq \varepsilon\}$; the last equation follows from Stokes' theorem applied to $\eta(\tilde{f} - y)$ and the domain

$$
\Omega=D\setminus\bigcup_{i=1}^p B(x^i,\varepsilon),
$$

since $d\eta(\tilde{f} - y) = 0$ by Lemma 1.

But $\tilde{f} - y$ is a C^2 -diffeomorphism on a neighbothood of x^i and therefore, if ε is sufficiently small,

$$
\int_{\partial B(x^i,\epsilon)} \eta(\tilde{f}-y)=\pm 1,
$$

by Lemma 5. Hence $\delta(f - y)$ is an integer and so is $\delta(f)$. This completes the proof in the case *f* is of class C^2 . If *f* is only of class C^1 , then we can approximate *f* by C^2 -functions, uniformly on ∂D and prove that, in this case too, $\delta(f)$ is an integer. This completes the proof

Theorem 2. Let $D \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Suppose *that* $f: \overline{D} \longrightarrow \mathbb{R}^n$ *is a continuous map and g :* $\overline{D} \longrightarrow \mathbb{R}^n$ *is a* C^1 *-map with* $g(x) \neq 0$ *for all* $x \in \partial D$ and $\delta(g) \neq 0$. If $|f(x)| \leq |g(x)|$ for every $x \in \partial D$, then the equation $f(x) + q(x) = 0$ *has at least one solution* x *in* \overline{D} *.*

Proof. Let us prove the statement first in the case f is of class C^1 and $|f(x)|$ < $|g(x)|$ for every $x \in \partial D$. Then for $t \in [0,1]$ and $x \in \partial D$ we have

$$
|g(x) + tf(x)| \ge |g(x)| - t|f(x)| > 0.
$$

Therefore $\delta(g + tf)$ is independent of *t*, since it is continuous in *t* and integer-valued (by Theorem 1). Hence $\delta(0) = \delta(1)$, i.e. $\delta(g) = \delta(f + g)$ and therefore $\delta(f + g) \neq 0$. But if $f(x) + g(x) \neq 0$ for all $x \in \overline{D}$, then

$$
\delta(f+g)=\int_{\partial D}\eta(f+g)=0,
$$

by Lemma 1 and Stokes' theorem, since $d[\eta(f + g)] = 0$ in \overline{D} . This is a contradiction which completes the proof in this case.

Now we consider the general case in which *f* is only continuous and $|f(x)| \leq |g(x)|$ for $x \in \partial D$. Then, by the Stone-Weierstrass theorem, for each $\lambda \in (0,1)$ there is a sequence of polynomials p_{ν} so that ider the general case in which f is only continuous area, by the Stone-Weierstrass theorem, for each $\lambda \in$
nomials p_{ν} so that
 $p_{\nu} \rightarrow \lambda f$ uniformly on \overline{D} and $|p_{\nu}| < |g|$ on \overline{D} .

$$
p_{\nu} \rightarrow \lambda f
$$
 uniformly on \overline{D} and $|p_{\nu}| < |g|$ on \overline{D} .

Thus, by the first case considered, there is $x^{\nu} \in \overline{D}$ so that $p_{\nu}(x^{\nu}) + g(x^{\nu}) = 0$. Passing to a subsequence, we may assume that $x^{\nu} \rightarrow x_{\lambda} \in \overline{D}$. Therefore *A*, there is $x^{\nu} \in \overline{D}$ so
 Af(xx) + $g(x_{\lambda}) = 0$.

$$
\lambda f(x_\lambda) + g(x_\lambda) = 0.
$$

Finally, choosing $\lambda_j \to 1$ so that $x_{\lambda_j} \to x \in \overline{D}$, we obtain that $f(x) + g(x) = 0$ and the proof is complete \blacksquare

The following immediate consequence of Theorem 2 is Brouwer's fixed point theorem. It follows from Theorem 2 by applying it with \overline{D} the closed unit ball of \mathbb{R}^n and $g(x) = -x$.

Corollary. Let $\mathbf{B}^n = \{x \in \mathbb{R}^n : |x| \leq 1\}$. Every continuous map $f : \mathbf{B}^n \longrightarrow \mathbf{B}^n$ *has a fixed point.*

References

- [1] Aizenherg, I. and A. Yuzhakov: *Integral* Representations *and Residues in Multidimen*sional Complex Analysis (Transl. Math. Monographs: Vol. 58). Providence (R. I.): Amer. Math. Soc. 1983.
- [2] Heinz, E.: *An elementary analytic theory of the degree of mapping* in *n-dimensional space.* J. Math. Mech. 8 (1995), 231 - 247.
- [3] Siegberg, H.W.: *Some historical remarks concerning degree theory.* Amer. Math. Monthly 88 (1981), 125 - 139.
- [4] Spivak, M.: *Calculus* on *Manifolds.* New York: Benjamin 1965.
- [5] Tsarpalias, A.: *A* version *of Rouché's theorem for continuous* functions. Amer. Math. Monthly 96 (1989), 911 - 913.

16.01.1996; in revised form 11.10.1996