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On the Integral Giving the Degree of a Map 
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Abstract. An analytic approach to the degree of a map f : ÔD -i IR" \ {0} is given (where 
D C IR" is a bounded domain with smooth boundary) and a Rouché type theorem is proved. 
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1. Introduction 
In this paper we give a simple analytic proof that the integral 

I'(n/2)
J	

1 
2irf/2 U in 

is an integer for a continuously differentiable map 

1: ÔD - IR" \ {0}, 

where D is a bounded domain in R" with smooth boundary; this integral gives the 
degree of f. 

The basic idea of this proof is the following: if we call , (f) the integrand in the 
above integral then, although '7(f) is not, in general, d-exact on the (n - 1)-dimensional 
manifold OD, its derivative

c9(f( . , t)) 
at 

is d-exact, when we let I depend on a parameter t; and this is proved by constructing 
explicitly a d-primitive (see Lemma 2). As for the parametrization of f, it is done with a 
perturbation argument, based on Sard's theorem. For another analytic proof see Heinz 
[2]. For the history of the above integral as well as its connections with polynomial 
equations and the Gauss-Bonnet theorem see Siegberg [3]. We also prove a version of 
Rouché's principle which gives a proof of Brouwer's fixed point theorem. A special case 
of it is contained in [5]. 

T. Hatziafratis: University - of Athens, Dept. Math., Panepistimiopolis, 15784 Athens, Greece 
A. Tsarpalias: University of Athens, Dept. Math., Panepistimiopolis, 15784 Athens, Greece 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



240	T. Hatziafratis and A. Tsarpalias 

2. Preliminaries 

Let us recall some basic facts about differential forms in R'. A p-form in an open set 
C in R n is a function w, symbolically represented by the sum 

=	i	f ..... 1(x)dx11A..Adx1, 
ip<n 

which assigns to each smooth p-surface X in G a number w(X) =	according to the

rule

f	 f  

J w=>JJ f,	
ô(x11,. . . , x ,) 

.....,(X(t))	 dt1dt, 
x	 a(t1,... 

where Q is the parameter domain of X, and	are real C'-functions on C. The 
number w is called also the integral of w on X. The algebra of differential forms 
obeys the laws of exterior algebra. We recall that a basic rule of exterior algebra is the 
general anticommutative law: 

dx 1 A	A dx = sign 
(

iii P

)
 dxi, A	A dx1,, 

where (j 1 . j,,) is a permutation of (1 1	z,,) and sign('', ) is the sign of the permu-

tation. Also the differentiation of differential forms is done according to the rule 

dw=>dfi1 ..... ,(x)Adx 1 A ... Adx1, 

where df= >-dx,. 

With the above terminology and notation Stokes' theorem takes the following form. 

Stokes' Theorem. If D C R' is an open bounded set with smooth boundary ÔD, 
and w is an (ri - 1)-form in a neighborhood of D, then. 

	

I d= I --D	 D 

We will use determinants with entries differential forms: if a 13 are differential forms, 
then

all	'an1j 
det	 :	= det [a 13 ,—, ani l =:	sign(a)a l , (1) A	A ana(n), 

where the summation is extended over all permutations a of {1,. . . , n). (The elements 
of each column are assumed to be differential forms of the same degree; this degree 
may change from column to column.) Thus when we write det [a 13 ,. .. , a,,,], we mean 
that j runs from 1 to n forming the n rows of the determinant. The value of such a 
determinant does not change if we add to a row a multiple of another row (we mean 
multiplied by a function). In some determinants a column may be repeated, and we
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put an index to indicate how many times this column is repeated. For example, in the 
determinant

	

all	a 12	b i	. 
detn2[  

afll a2 bn 
the column [b 1 ,. . . , b,)" is repeated n - 2 times. A determinant of the form 

a 1	b 1	...	b1 
det_i

an	b	•.. 

is denoted by det i _ i [a,b]. Now if the aj are functions and the b, are 1-forms then, 
expanding the above determinant, we obtain 

	

det 1, _ 1 [as, b] = (n — 1)!	(-1) 1 a1 . b 1 A	(j) .. . A b. 

If furthermore db3 = 0, then 

d(det i, _ i [a,b]) = deti,_1[da3,b). 

All these properties follow from the corresponding properties of the usual determinants 
if we take into consideration the anticommutative law for differential forms: 

A i = (_1) 1' 1 A w, 

where
p = degw	and	q= deg j. 

For more properties of such determinants see [1: p. 8) and for the calculus of differential 
forms, that we are using, see [4: Chapter 41. 

Definition. Let D C R' be a bounded domain with smooth boundary. For a 
C'-map f: 3D —* R" \ {0} we define 

77(f)
 

where 111 2 = En  f and c =	The degree 5(f) of f is defined by the integral j=1 j

6(f) = JaD i(f).
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3. The main results 

We start be proving some lemmas from which the main results, Theorems 1 and 2, will 
follow; Lemma 2 is the main step. 

Lemma 1. Let D c R'2 be a domain and f : 0D - R" \ {0} a C2 -map. Then 
dçi(f) = 0 in D, and for a C 2 -function q: D -p (0,co) we have i(q . f) = 71(f). 

Proof. Let us notice that

(f) = — deti 
IfI	

,_i[f,,dfj] 

where c, __ 
- (n Ci)' Therefore,

Cl
det1,n1[qfj,qdfj+f3dq5] on If In




C, 
= On-1 11det1,_1ff,ct.df+fjdcb] 

C, 

= On-1 11deti,,z_i[fj,dfj] 

C, 
=	111deti,n_i1fj,dfj] 

= (f) 

which proves the second assertion of the lemma; for the first assertion apply what we 
have just proved with i/ = If I	in order to obtain 

i(f) =	= c' det1,1 [gj , dg] 

where g = Ill_if. Then 

dri(f) = d(g) = c'det i _ i [dg,dg] = c'n!dg i A ... Adg. 

2 But	= 1 and therefore fl g3 dg3 = 0 which implies dg, A	A dg = 0, I.C. 

d7(f) = 0 U 

Lemma 2. If  = f(x,t) (SD) x [0,1] -i R' \ {0} is a C'-map, then the 
differential form A r(f( ., t)) is d-exact; more precisely,

(1) 

where

(n	c	Ii	fi,t dfi	•.. df

-1). 

 =	
det,_2 IfIn

	

In mt df	din
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with fj t = 

Proof. Exactly as in the case of ij (see Lemma 1), 8 remains the same if I is 
multiplied by a C2-function

(x, t): (OD) x [0, 1]	(0,	). 

Hence we may assume, without loss of generality, that 

f(x,t) = 1.	 (2) 

	

We may also assume that, near the point at which we want to prove (1), f	0. Then 

f	f1 df1	fidfi 
12	(112	(If 2 

f iI(f( ,	= (2  (let "_1	
: 

f,.	df,,	df,. 

(Throughout this proof (1 = di .) Now multiplying each j-th row of this determinant by 
f (2 <j <n) and adding them to the first row we obtain, in view of (2), 

1	0	...	0 
12 (/12	df2 

fi i(f( . , t)) = c' det,.. 1	 = cdf2 A	A df,,. 

fn (If,.	df,. 

Hence
q(f(.,t))= 	(if 2AAdf,.


fi 
and therefore 
an 

(f	t)) 	_c Lit df2A ... Adf,.+	df2A.•AdftA ... Adf,..	(3) (9t	 f2 

On the other hand, as a similar computation shows, 

f	fi fl, j f1df1	f, df, 

12	f2,t	df2	df2 
f 1	(n - 1) c' det,._2 

f,,	fn,t	df,.	df,. 
1	0	0	0	0 
12 12,t df2	df2 

= (n - 1) c' det_2  

I,. f,., t dfn	dfn 

f2,i df2	df2 
= (n - 1)c'det,._2

f,,,t df,.	df,.
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Hence

(n	c	
12,1 df2 ... df2 

LI	
—1) 
,	uetfl_ 
Ji	

fn,j df,,	df,


and therefore

12,1 df2	df2 
dO= 

(n-1)c 
dfi Adet_2 

I
	

fn, t df.	df,. 

(n	1)c	
df2,1 df2 •.. df2


— 
+	det,_2 'I	

df,1 df,.	dl,.


Now (2) gives

Ii df i	
-	 I 

df,	and	fi fi, = - 	fj,t. 
j=2	 j=2  

Hence

f2,i	df2	... df2 

Ii df1 A det,._2
fn, dl,.	df,. 

/	,	 12,1 df2	df2 

= (_>fdf) Adet,.2 
\	2	/	 f,.	df,. •.. df,. 

f n	\
	(In:(—l)jfi,,

(5) 

_(n_2)!(>fjdfj)A df2A...(j)...Adf
\j=2	/	 j=2 

=—(n-2)! (Efft)df2A...Adf 

=(n-2)!fi fj,t df2 A ... Adf,.. 

Also,

df2,1 df2	df2 
det,._ 2	 = (n - 2)1df2 A	A df, ,1 A	A df,..	(6) 

df,. 1 df,. ... df,.	 j=2 

Substituting (5) and (6) into (4) and comparing with (3), we obtain (1). The proof is 
complete I
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Lemma 3. If  f(x,t) (3D) x [0,11 -+ R"\{O} is a C 2 -map, then the integral 

6(f It)) = faD(,t)) 

is independent oft. 

Proof. In view of Lemma 2 and Stokes' theorem, we obtain 

= f	ij(f(.,t)) =J d9= Ja
	

9=0 
OD	 ÔD	 (D) 

and the assertion of the lemma follows I 
Lemma 4. Let f: D -* R" be a C' -map with f(x) 54 0 for all x E 3D. Then for 

E > 0 there is an y e R" with jyj <e so that the equation f(x) = y has at most a finite 
number of solutions, say x1,... ,xP E D, at which Jj (x') 54 0 for i = 1,... ,p (here Jj 
denotes the Jacobian of f) and such that f(x) 54 y for all x E 3D. 

Proof. Let C = {x E D: Jj (x) = 0}. Then, by Sard's theorem, the set f(C), the 
image of C under f, has measure zero. Hence there is an y E R n with II < c so that 
y f(C). Since 1(x) 54 0 for all x E 3D, we may also choose y sufficiently close to 0 so 
that 1(x) 54 y for all x E 3D. 

We claim that the equation f(x) = y has at most a finite number of solutions; for 
otherwise there would exist a sequence {x L } &,> i C D of distinct points with 

as v —*oo	and	f(x1')=y for all v>1.	(7) 
But then 1(x) y whence x E D and J1 (x) 54 0. Therefore, by the inverse function 
theorem, f is one-to-one on a neighborhood of x, which contradicts (7) and the proof 
is complete I 

Lemma 5. Suppose that f U -* R" is a C'-map on an open set U C R  such 
that f is a d:ffeomorphzsm on a neighborhood of a point a E U to a neighborhood of 
b=f(a). Then

Jma,e) 
7(f—b)=i	or	JaB(a,e)   

for sufficiently small e > 0, where B(x,e) = {y E	- xl <e}. 
Proof. We have 

JaB(a,e) 
(f - b) = 

cff(B(a,e))	
(-1)'(y - b)dy1 A . A

  Il/ - bl , 

But, by Lemma 1 and Stokes' theorem, the above integral becomes 

8(f) =cJ	(-1)''ydy, A ... (j) ... Ady 
8B(O,I) 3=1 

(here 3B(0, 1) could have either orientation depending upon f). Therefore, by Stokes' 
theorem again,

8(f) = ±cf	n dy i A •. A dy = ±cVol(B(0, 1)) ±1 
B(o,i) 

and the proof is complete I



246	T. Hatziafratis and A. Tsarpalias 

Theorem 1. Let D C R' be a bounded domain with smooth boundary and f 
3D -+ R" \ {O} a C'-map. Then 5(f) is an integer. 

Proof. Let us assume first that I is a C2 -map and let f -p R" be a C2_ 
extensionof 1 . By Lemma 4 there is an y E R', sufficiently close to zero so that the 
equation 1(x) = y has finitely many solutions x 1 ,. ,x' E D with J1(x') 0 0 and 
f(x) 54 u for x E 3D and Jul	iyI. 

But, by Lemma 3, 8(f) = 6(f - y). Also, for small E > 0, 

6(f_)=J (f-)=J	(f—y) 
8D	 ,= 38(z) 

where B(x',c) = {x E R" : ix—x'I < e}; the last equation follows from Stokes' theorem 
applied to ij(f - y) and the domain

= D\U B(x',), 

since dij(f - y) = 0 by Lemma 1. 
But f - y is a C2 -diffeomorphisrri on a neighbothood of x' and therefore, if E is 

sufficiently small,

fmxi , e)  

by Lemma 5. Hence 8(1 - y) is an integer and so is 6(f). This completes the proof 
in the case f is of class C 2 . If f is only of class C', then we can approximate f by 
C 2 -functions, uniformly on 3D and prove that, in this case too, 6(f) is an integer. This 
completes the proof 

Theorem 2. Let D C R'1 be a bounded domain with smooth boundary. Suppose 
that  : D -i R" is a continuous map and g D -i R  is a C'-map with g(x) 0 0 
for all x E 3D and 6(g) 0 0. If if(x )I < l g(X)l for every x E 3D, then the equation 
f(x) + g(x) = 0 has at least one solution x in D. 

Proof. Let us prove the statement first in the case f is of class C' and If(x )i < 
ig(x)l for every x E 3D. Then for t e [0, 1] and x E 3D we have 

g(x) + t f( x )i ^! g(x) - t if( x )i > 0. 

Therefore ö(g + tf) is independent of t, since it is continuous in t and integer-valued (by 
Theorem 1). Hence 6(0) = 6(1), i.e. 6(g) = 6(f + g) and therefore 6(1 + g) j4 0. But if 
1(x) + g(x) 54 0 for all x E D, then 

6(f + g) 
= I r(f + g) = 0, 

by Lemma 1 and Stokes' theorem, since d[ij (f + g)] = 0 in D. This is a contradiction 
which completes the proof in this case.
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Now we consider the general case in which f is only continuous and if(x)i 
for x E OD. Then, by the Stone- Weierstrasstheorem, for each A E (0, 1) there is a 
sequence of polynomials p,, so that 

pp -i .Xf	uniformly on D and I p i < I g l on D. 

Thus, by the first case considered, there is x" E Dso that pv(xL) + g(x") = 0. Passing 
to a subsequence, we may assume that x' -* XA E D. Therefore 

Af(x.) + g(x j )	0. 

Finally, choosing A3 -* 1 so that x A, -* x e D, we obtain that 1(x) + g(x) = 0 and the 
proof is complete I 

The following immediate consequence of Theorem 2 is Brouwer's fixed point theo-
rem. It follows from Theorem 2 by applying it with D the closed unit ball of R" and 
g(x) = -x. 

Corollary. Let B" = {x E R n : lxi < 11. Every continuous map f : B" - B" 
has a fixed point. 
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