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Existence Results 
for the Quasistationary Motion 
of a Free Capillary Liquid Drop 

M. Gunther and G. Prokert 

Abstract. We consider instationary creeping flow of a viscous liquid drop with -free boundary 
driven by surface tension. This yields a nonlocal surface motion law involving the solution of the 
Stokes equations with Neumann boundary conditions given by the curvature of the boundary. 
The surface motion law is locally reformulated as a fully nonlinear parabolic (pseudodifferential) 
equation on a smooth manifold. Using analytic expansions, invariance properties, and a priori 
estimates we give, under suitable presumptions, a short-time existence and uniqueness proof 
for the solution of this equation in Sobolev spaces of sufficiently high order. Moreover, it is 
shown that if the initial shape of the drop is near the ball, then the evolution problem has a 
solution for all positive times which exponentially decays to the ball. 

Keywords: Stokes flows, quasisteady motions, surface tensions, nonlinear parabolic equations, 
surface motion laws 

AMS subject classification: Primary 35 R 35, secondary 35 Q 35, 76 D 07 

1. Introduction 

In fluid dynamics problems with very small Reynolds number the concept of "creeping 
flow" is used. This means that the inertial forces are neglected and, in the case of 
Newtonian flow, the Navier-Stokes equations simplify to the Stokes equations. When 
one uses such a simplification to describe liquid motions that are actually instationary, it 
could be called a quasistationary approximation. This idea is the basis for the following 
model of the motion of a viscous liquid drop under the influence of capillary forces which 
is successfully used in the description of the so-called viscous sintering process in glass 
production [21). 

The liquid is assumed to be incompressible and to have constant viscosity, density, 
and (positive) surface tension coefficient. The only driving mechanism we consider is 
the force from surface tension. In dimensionless form this leads to the linear boundary 
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value problem

	

	
—u + VP = 0 } •

	(t)	
(1.1) divu = 0 

T(u,p)n = 'tt on r(t) = acl(t), 

where 1(t) C RN is the (bounded) domain occupied by the drop at time t > 0, u and 
p are the velocity and pressure fields in c(t) at this time, 

T(u,p) = ((Vu) + (Vu)T) - 

denotes the stress tensor, K i and nt denote the double mean curvature and the outer 
normal vector of r(t). The sign of 't is taken such that it is negative if 1(t) is convex. 

As will be shown below, the equations (1.1) essentially determine u and p at time 
t. For the description of the motion of the drop the kinematic boundary condition 

	

V(t) = U Ir(t) flj	on r(i)	 (1.2) 

has to be added where V(t) denotes the normal velocity of r(). This condition is 
an equivalent expression for the demand that the set of particles that constitute the 
boundary of the drop does not change in time. 

The problem (1.1), (1.2) is a moving boundary problem that can be considered as 
a problem of evolution of I' = 1'(t) by a nonlocal surface motion law, comparable, e.g., 
to Hele-Shaw flow driven by surface tension [7 - 91. The problem (1.1), (1.2) and its 
counterpart concerning outer domains, which is a model for bubbles in a viscous liquid, 
have recently been investigated in the two-dimensional case. This has been done by 
methods from complex function theory, using, in particular, time-dependent conformal 
mappings and the solution of Hilbert problems [3, 4, 14, 15, 18]. For the numerical 
treatment of the problem we refer to [21] and the bibliography therein. 

The aim of this paper is to provide an analysis of this problem in N dimensions (for 
the sake of simplicity sometimes restricted to N = 3) as far as this can be done by local 
methods. Accordingly, we prove, under suitable presumptions, a short-time existence 
and uniqueness result for general initial domains and global existence and exponential 
decay of the solution near, the stable equilibrium solutions that are given by the balls. 

Notation. All differentiations with exception of those with respect to the time variable 
are to be understood in generalized sense. We will use the symbols C and c for 

"large" and "small" positive real constants, respectively. Sometimes an index is used 
to indicate their dependence on parameters. A function that is given on a (sufficiently 
regular) domain ci and its restriction or trace at the boundary r of this domain are often 
denoted by the same symbol. The norms in the Sobolev spaces H 3 (Q) and H 3 (r) are 
denoted by I] II and 11 . ]', respectively, and the same notation is used for the norms 
of the corresponding Sobolev spaces of vector-valued functions (Hs(ci))k and (H3(r))c. 
(These norms are specified later, at the moment it is sufficient to demand that they 
generate the usual topologies.)
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For convenience we generalize some notions of vector algebra and analysis to RN. 
Let K be an arbitrary but fixed bijection from the set {(i,j) Ii i < j N} to the 
set { 1,. . , ( N) }. We define the bilinear mappings 

x: 

®: RxR'_RN 

by
(a x b)K(.) = ab 3 - a,b 1	(1 < i < j < N) 

and

(c (& a) =	cK(,)a -	CK(J)a	(j	1,. . . , N). 
j=I  

It is easy to check that 

c.(axb)=b.(c®a) Va,bE R N , cE1R ' . (1.3) 

We define, moreover, for any sufficiently smooth N-vector function v given on an open 
subset of RN, the ( )-vector-valued differential operator rot by 

(rot v)K(1,3)= avi _-- ovi --	(1<i<j<N)(9X i

for which we have the integral theorem 

I', rot v dx = Ir n x vdr.	 (1.4) 

Note that if N = 3, then the usual definitions of the outer product and the curl (rotation) 
of a vector field can be obtained, up to the sign of the second component, by choosing 
the suitable bijection K. 

2. The boundary value problem on a fixed domain 

We consider the boundary value problem 

—AU + VP 0)
>	in  

divu=0J	 (2.1) 
T(u,p)n=kn on r=oci 

on a bounded smooth domain Q C R N that is taken fixed in this section. The quantities 
c and n are defined analogously to ?c j and n j in (1.1).
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At first we establish the unique solvability of a generalized weak formulation of (2.1) 
with auxiliary conditions. We introduce the Hilbert spaces 

X = (HI(Q ,)) IV x L2 ( 0 ) x (RN x R() 

Y = ((H l	 (L x (L2 (c 0 ) x RN x 

and the (bi-)linear operators 

L: X - 

A: (H'(Q 

B: (H'(Q 

a: (H'(cl 

p: (H 1 (Q 

(p2: (H (Q

Y
N ((H' (ç))N)l 

-^ L(1) x(R'N 	x 
x (H l ())N	.. R 

N 
) 

defined by
FiLl 

Llp = [AU+B1[]] 

Hi 
(Au)v = a(u, v) 

div u
Bu= p1(u)

[(P2(U) 

1 1 ( 
au '	 au, 

\ (5v 1	av3\ 
a(u,v)=- I (—+----H--+--)dx 

2j-	OXIJ \0X3	3xj 

(pi(u) 
= f udx 

(P 2 (u)=j rot udx 

where B': L2 (1) x (RN x R() ) - ((H'(cl0))')' is the dual of B. 

Lemma 1 (Weak formulation). 

(i) The operator L is a horneornorphzsm between X and Y. 

(ii) Suppose L[up.\]T = [f OJT with 

f(,)) 
= IF , . dr	Vv E (HI())N 

Then .\ = 0 and (u, p) is a weak solution of (2.1).
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Proof. Statement (i): The equation 

L[upA] T = F	 (2.2) 

is a variational problem with linear restrictions to which the usual existence results 
apply (see, e.g., [6]). In order to establish (i) it is therefore sufficient to show that a is 

	

elliptic on (ker B, 11 .	and B is surjective. 

The first statement follows from Poincarés inequality [10] 

JIVwI 2 dx+ (jwdx) 2 > c II w 2	VwE H'() 

and Korns second inequality [11] 

N	 2 

a(v,v)^c> J
il

fôv\
I	I dx	Vt; E {v E ( H1 (cl ))"Ico 2(v ) = o}.

 axi 

Taking into account that W, and W 2 are surjective from {v E ( H1 (f ))"I divv = 0) to 
R" and R(') , respectively, it remains to show that the equation —divv = q in Q is 
solvable in (H'(cl))" for all q E L2 (c1 0 ). This can be done by considering a solution 

E H2 (Q) of —z = q in Q and setting v = V. 

Statement (ii): Consider the space

N 
vo = { v E (H l ())N v(x) =	s jj x + c	E R, s = —s)

 I j= 1 

(i = 1,... ,N) and note that a( . , v), a(u,.), and div vanish on V0 . The same holds for 
f because the Green formula for closed surfaces yields 

fr Jr Jr 

where x i and v i are the coordinates of x and v in a fixed Cartesian basis of RAY, and 
Vr and Lp are the generalized gradient and the Laplace-Beltrami operator on r, re-
spectively. Hence A = 0 because pi and cp2 are surjective from Vo to RN and R( "2 ), 
respectively. The fact that in this case (2.2) is a weak formulation of (2.1) follows from 
the integral identity 

	

I f ôu	ôu3 \ I ôv1 av, \	
dx + — J dx — pdivv _2. - ri - axj +	 Oxj	

(2.3) 

 _—j(—u+vP).vdx—jv(divu).vdx+jr(u,p)n.vdr 

holding for sufficiently smooth vector-valued functions u, v and scalar functions p 
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Furthermore, we will need some H 3 -regularity results on our boundary value prob-
lem. For fixed s > 2, we introduce the spaces 

= (H'())" x (H - '(cl)) ' x RN x 

= (H 2 (cl)) ' x H s- '(Q) x (H - (r))' x RN x 

and the operator
L:X—Y 

defined by
-Lu+ Vp+ A1 

	

u	 -divu 
L p = T(u,p)n+A2®ri 

	

A	 W1 (u) 

W2(u) 
Lemma 2 (Regularity). 

(1) The operator L is a homeomorphism between the spaces X and Y. 

(ii) Suppose L[upA] T = [OOFBOO] T . Then 

	

h	N	C,Il FBII	 (2.4) Ail 
"jN xlj 2 

for all a E R and
juII<CIIF8II"3.	 (2.5) 

Proof. Note that, according to (1.3) and (1.4), 

IF V .(A20n)dr =f A 2 (n x v)d[' = 1\ 2 .
j 

rot vdx = AT 

Using this and (2.3) we find from Zu p A] T = [Fj g FB h 1 h2 
]T the variational formula-

tion
a(u,v) - f pdivvdx + ATy 1( v ) + 

=j(Fi + Vg) vdx+JFB .vdr 

	

for all v E (H1(cl))''	 (2.6) 

-divu = g 
= 

W2(u) = h2. 

Lemma 1 yields that this problem has a unique solution [upA] T e X, and from the fact 
that a(u,.) and div vanish on Vo we find 

Ai j =j(FJ + Vg) . v ii dx+jFB vij
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where i	1, 2, A ij is the j-th component of A 1 , and the vij form the dual basis of V0
with respect to the W i, i.e. we have Y tj(Vkj) Sik Sjl . All vij are smooth, hence 

Allx ( 2 
N ) - < c jN	 (1IF111_2 + iI g li-, + 11FB ll_) 

and (2.4) follow. 
Let .s be integer for the moment, the general result will finally follow by interpolation. 

We will determine u and p by setting 

U = U0 + U 1 + U2 

P P1 + P2 

where
—Lui+Vp,=Fj—A1

in Q 
—divu 1 =g	J	 (2.7) 

11 jgdx . n on F, 
u'= — Fr-1 

 

U0 E V0 such that pj(U0) = — 1 (u,) + h (i = 1,2) and 

Lu2 + Vp2 = 0

	

,	in  

	

—divU2=0J	
(28) 

	

T(u 2 ,p2 )n= -T(u l ,p l )n+FB -A2 Xfl=	on r 

	

(u 2 )=0	(i=1,2). 

Note that

Jr. 
I v=0 VvEV0. (2.9) 

The regularity results for the Dirichlet problem of the Stokes equations yield that (2.7) 
has precisely one solution (u,, p,) E ( H 3 (cl)) N x H-' — ' (Q) with fn pi dx = 0 and an 
estimate

	

llui II? + li p ' 11 ?_	C (11 F1 11_2 + 11 ' liR' + llgIl_1) 

holds [12: Theorem IV.6.1]. Thus we have E (H(F))N and 

llll '_	C (li u ili' + lip ' lI?	+ ll A21I N + 11FaI13_) 

	

C (11'1112 + 1913-1 + II A ll N	N 
2 )) 

It remains to show that, for all 4 that satisfy (2.8), (2.9) has a unique solution 
(u2 ,p2 ) € (H())'' x H- - ' (Q) satisfying an estimate 

Ifr'2I1 + 11P21	<- C ll 4 II '_ .	 (2.10) I s-I 
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From the discussion of the weak formulation we recall that (2.9) is a necessary condition 
for the solvability of (2.8) and that the solution (u 2 ,p2 ) is unique. From a density 
argument it follows that we can assume 1 e (C(r))N. 

We will apply integral representations from the theory of hydrodynamic potentials. 
For the sake of brevity the description of the details will be restricted to the case N = 3. 
For x E Q we use the ansatz 

U2 (X) = V(x,,b) 

1 t / I + - Ox - 
V(x,b)	

8lr Jr (\I x — y l	Ix—y13	) 
1 

J
x —y 

P2 ( X ) =	
rIX- y13 

where t is a R3 -valued (measurable) function on F. It is shown in [17: Chapter III] 
that (112, P2) satisfies the first three equations in (2.8) if is continuous and satisfies 

(I+K)=	 (2.11) 

with
3 t(x_y)(x_y)T 

(K)(x) =	
Jr	Ix -	

(x - y)n(x)i,b(y)dF	(x e F). 

The operator K is a weakly singular integral operator, hence it is compact on (H o (F))N 
and continuity of cI implies continuity for all b E (H o (F)) N that satisfy (2.11) (see, 
e.g., (20: Theorems 12.1, 12.7 and 12.81). Moreover, K is a pseudodifferential operator 
191, hence it is compact on (H8_(F))N and therefore ( I+K) is a Fredholm operator 

of index 0 on this space. Taking into account that N( I + K) consists of continuous 
functions one can conclude, using the results about the weak formulation, that V( . , ) E 
V0 for all 0 E N( I+K). The mapping t V( . ,) is injective [17], hence dim N( !- 1+ 
K) < 6. The necessary solvability conditions (2.9) imply codim R( I I + K) ^! 6, hence 

dim N( !- 1+ K) = codimR( I + K) = 6, 

i.e. the solvability conditions (2.9) are also sufficient and the mapping b -+ V(., ,) 

maps N( 1 1 + K) onto V0 . Thus we can conclude that (2.11) has precisely one solution 
such that (V( . ,)) = 0 (i = 1,2) satisfying an estimate 

II_	CIIll 

Finally we use the fact that the singular integral operator that maps b to V( . , )Ir is a 
pseudodifferential operator of order —1 [19], hence we find that the trace of u 2 on F is 
in (H3_(F))N and

IjtL2II1 < C II'I'II_a < C IItII_. 

The proof of (2.10) is completed now by another application of the regularity result on 
the Dirichlet problem.
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To show (2.5), consider the "adjoint" problem 

—Lxv + Vq = u)	
in^ 

divv = 0 J 
T(v,q)n=—®n 'on r=aci 

with p E R' ') given by

= f U V2,j dx 

which implies Il pil < C By examining the variational formulation of this 
problem in the same way as in Lemma 1 we find the existence of a weak solution of it 
that satisfies i (v) = 0, p2 (v) = 0. By the above regularity results we get 

II v II	c (II u II	+ 11/1 ® nhI)	C IIuII. 

With this, we find by the second Green formula for the Stokes equations 

II u II 2 = (u, —v + Vq)o + j (T(u,p)n . v - T(v, q)n . u) d 

= f(F2 v+pn)dr = jFB .v—p.2(u) 

CFB"3Iv	CIIFBII"3IIuII 

which proves (2.5)1 

3. Perturbations of the domain and analytic expansions 

In order to describe the evolution of the domain we consider a fixed domain Qo which 
is supposed to be bounded, smooth, and locally on one side of its boundary r0 . Its 
outer normal vector will be denoted by n, and we choose a fixed vector-valued function 
(e (C00(r0 ))' such that

)=(()n()>0	veEr0	 (3.1) 

and a fixed constant s 0 > 3 + 

Lemma 3.1 (Description of perturbed domains). There is a 80 > 0 such that for 
all r E Bo (60 , H30 (r0 )) the following holds: 

(i) The set 

is the boundary of a simply connected domain r•
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(ii) There is a global diffeomorphism z = z(r) mapping Qo onto Or such that z E 
(H 30 ++ ( 0 )) i ' and

liz - id1I°° 1 < C lirli 

with C independent of r. 

Proof. Statement (i): The collar manifold theorem implies the existence of a dif-
feomorphism between I x 1'o and an open neighbourhood of ro in RN where I is a 
certain open neighbourhood of 0 in R. The assertion follows thus from the embedding 
H'°(ro)	C°(r). 

Statement (ii): We construct z by setting z = Tr 1 (r() + id where Tr — 1 is a fixed 
right inverse of the trace operator Tr from H30+ 4(f0) to H 5°(Fo). The embedding 
theorems yield then that li z - idii(c2(n 0 ))N is small which implies the global injectivity 
of z. (For details see [13].) U 

Consider now, with the notation of the previous section, s = so 1 and Q = 
the equations

L[UPA]T = [f 0]T 

Z[UPA]T = [OOkflOO]T 

with f E ((H1(lr))N)' defined by 

1(v) 
=	

krflr V dF 

where kr and nr are the double mean curvature and the outer normal vector of I',., 
respectively. Using r and z(r) it is possible by means of Lemma 3 to transform both 
equations to Qo, and in the sequel we will consider the operators L, L etc. as acting on 
function spaces defined on Qo and depending on r E Bo (50 , H 8°(Fo)). Thus we get 

L(r)[u(r)p(r)A(r)]T = F(r)
(3.2) 

Z(r)u(r)p(r)A(r)]T = F(r) 

with 

[u(r)p(r)A(r)]T = [U o z(r) P o z(r) A]T 

ru1	I 
L(r) p I =	

+ (B(r))' [A] 
[Aj	 B(r)u	] 

F(r) = [f(r)0]T 
F(r) = [00pCrU(r)00]T 

N 
(A(r)u)v = L0	

+	(a'--!- +	detAdx 
\	OXin	OXmJ \ &,
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—div detA 
B(r)u = fn,, udetAdx 

f- rot r detA dx 

f(r)v = I Xr r rv(r) VO 

LrU + VrP + A1
djVrU 

Z(r)[upA] = T,.(u,p)v(r) + A 2 ® v(r) 
fnO udetAdx 

foo rot,-udetAdx 

(Vrp)i=a' 

djvru = 

(rot.u)K() =- 
\\	ox,	Ox,) 

(rU)i =	a---- \\ j,k,1	Ox	Oxk) 

(V,.u) 1 = L. Oxk 

7(u, p) = (V ru) + (VrU)T - PI

where v E (H1(cl0))', A is the Jacobian a'j are the elements of A 1 , 1 r = 
Rr 0 z(r), u(r) = n r o z(r), and Xr is a scalar function on r 0 describing the "change of 
the surface element" when r 0 is mapped to rr by z. 

Let E and F be Banach spaces. An operator T that maps a neighbourhood of 
x 0 E E to F is called analytic near x 0 if it has a series representation 

T(x)=To+Tk(x—xo,...,x—xo) 

with symmetric k-linear operators Tk and positive convergence radius. We will use 
the well-known facts that the sum, the composition and, if F is a Banach algebra, the 
(pointwise) product of (locally) analytic operators is (locally) analytic. 

Let I denote the embedding operator of X into X. 

Lemma 4 (Analyticity of the perturbation). 

(i) The operators L, L, F, and F are analytic near 0 as functions of r E H8°(ro) 
into £(X, Y), £(X, Y), Y, and Y, respectively. 
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(ii) The estimates

Fk(r l,. .. , r ) M	
Ck un II ' ° i rk_I u': lirk ii10 30

2 

r0 
Lk(rl,. . rk)I ii Y)	Cr, iis	iirk1 ui: Irk uiY 

hold.

Proof. We have, writing F = Tr1(r(, 

ii 
114 - Iii(CO(po)NXN) 

=
:5 Cjjr 11r. 

3 0 1 

(C O (c10) N x N) 

hence the inverse of .4 exists for all x E Q o and can be represented by a Neumann series 
if ii r iI is sufficiently small. Thus we get a series representation

(3.3) 

where the a 3 are linear combinations of first partial derivatives of components of i. detA 
can also be written as a (finite) series of this type, and thus, for arbitrary u, v e H1 A), 
(Ak(r,,. .. , r)u)v is a linear combination of terms 

j

au, Ov, k

a 5XM ^ixl  H axr,
dx 

with F, = Tr'(r). 

We will apply to these terms the estimate 

f	123 dx 
I	IJ	12 dx I 

ii3iiC0(oo) 
<C iii Ii0 ii2IiO

Io 
i3iiso

10
-2 

.111 	Ici 

holding for all 01, 02 E H°(1lo) and 03 E H° 2 (1 0 ). If we set 

aui av3	 k 
1 =— ,	'2Th	=axtaXM

o=1 

and take into account that H 02 (1lo) is a Banach algebra we obtain after summation 
that A is analytic near 0 as a function of r E H 0 (r0 ) into £((H1 (c0))', ((H' (co))1')'). 

If we assume u E H'°4(l0 ) and set 

- '9(k)tk  b1= — ,	lt'2—
OXTk	

'I'3 
=	:1j axt
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we get by the same arguments 

Ak(ri,	, rk)UM((HI (Ii ))N), < Ck lull °O	IIi II	irk_i IF0 IIrkilI'o 
1130 II 3o-	 2 

Together with analogous considerations on B, B', and the integrals describing the aux-
iliary conditions this yields the assertions on L.

J	(j) We introduce regular smooth local parametrizations of r0 = U=1 r0 by 

0 
•	= 3 (w)	(w E W3 C RN_i) 

which yield local parametrizations of rr = U
J	(
,=1 rrj) by 

r	x = x.(w) =	+ (r('(w)) ( (6 ( j ) (w)) 

whose regularity follows for small ll r li: from the regularity of the	). On the j-th 
coordinate patch, v(r) can be characterized by the equations 

v(r) 
= (r)l -  

(	
T 

---) 
i(r)=O 

n . (r) = 1. 

The latter two of these equations form a system of N scalar linear equations for i(r) 
which at r = 0 has the unique solution ii(0) = v(0) = n. Inverting this system for small 
li r ll: using the same arguments as above and taking into account that lü(r)i is near 1 
for small r we get a convergent series representation 

ij(r)"	°e —	+>ii: ( o	 .)	) r 11k (r,..., 

k=i 

where the v (r i ,.. . , r) are sums of products of smooth functions with the (r o Ej)) 
or their first partial derivatives. Hence u is an analytic mapping near 0 from H'°(I'0) 
to (H°2(r0))". 

Moreover, we have in local coordinates on 

^_00 ) 9 
N-i 1	a (g i ,aXTKrlJ(r)	r,Xr =
ii

(,)	

)
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with
(axY 

T 
(o 

	

1k	 xv)) g) = detG; ,	g = [G.'] 1 ,	G? 
= —b---	-_--_aw 

and we find by analogous arguments that the mappings r Xr and r '- Kr are analytic 
near 0 from H30(r0) to H° -2 (r0). Thus we get the assertions on F and F. 

The analytic dependence of L on r E H'°(r0 ) follows from the above consider-
ations and the Banach algebra properties of the spaces H'° - *( 0 ), H'0()o), and 
H°-2(r0)u 

Lemma 5 (Analytic dependence of the solution). Let u(r) be defined by (3.2). The 
mapping r	u(r) is well-defined on Bo(e, H 30 (r0)) for some C > 0 into (H°(Q0))".
It is analytic near 0 and estimates 

u k(r l , . . . , Tj) l	< Ck un ui ': . .	link_I iu: lI n k 11 F0 

	

3	 (3.4) 
S 

hold.

Proof. Writing v(n) = [u(r)p(n)A(n)]' E X we have, due to Lemmas 2/(i) and 
Lemma 4/(i) by the real-analytic version of the Implicit Function Theorem that the 
mapping r -* v(n) exists and is analytic near 0 from H'°(['0 ) to X, with estimates 

r0 r)	Cri 1130 ... 11rk1130. 

The assertions on the mapping r -* u(n) follow immediately from this. 

To prove (3.4) it is sufficient to establish

F0 lv j (ni, . . . , ri)	Cri II	... hnj_i I	11n11 

This will be done by induction. For j = 1, we have 

i(r )IIx = I L(0 ) 1Fi(r ) - L(0)' Li(r)voIx 
C(jFi (n)y + llLi(n)1II(.,)) 

F0 < Cn3 
S 

where Lemma 4/(ii) has been used. Suppose now (3.6) holds for all j < k - 1. Taking 
the k-th Fréchet derivative at r = 0 on both sides of the equation L(r)2(r) = F(n) and 
applying L(0)' yields 

, fk) = L(0) 1 (Fk (r l . .. ,nk) 

k 1
L(r(l),.. . , r)) k_j(T(j+I),	n(k))) 

(3.5) 

(3.6)
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where it runs over all permutations of {1,... , k}. We will estimate the terms on the 
right separately, using Lemma 41(u). Thus we get 

L(0)'Fk(rl,...,rk)MX	CIIFk(ri,...,rk)IIY	CkIIri'0..	F0 
113 0	Irk_i lisa IIrkI 

for the terms in the sum over j with ir'(k) < j we find, using (3.5), 

L (r (i) ,... , r)) k—j	 , r(k)) II 
II x 

C IlLi (r,( i ),.. .	 k—j (r,r(j+l),... , r,(k)) lix 
Ck 1 1 r , ii: , , , link_i i r 0 

link iiI0,30	
i 

and for the other terms, using the induction assumption, 

• . , f()) k_(r(+I),... ,r(k))ll 
II x 

^ CI I	 (r;( 1 ),... r)) L(X,Y) iik_(r(j+I),... , f(k)) lI 
C	I i	. .1kk—Ill ro11n11ro 

I	so	 30 

Hence (3.6) holds also for j = k  

We describe now the moving boundary r(t) near r 0 by 

r( t ) = rr(f). 

The kinematic boundary condition takes then the form 

Or	Trr 0 (u(r)) v(r) =

	

 
u(r)	

p(r),	 (3.7) 
(.  

i.e. our moving boundary problem is reformulated as a nonlinear nonlocal evolution 
equation for r. Using the inequality 

1101 02 iY	C lkl'i lic' (re) I102 iic	c	-i	
r 

	

I1,	lII'2 II 
2	 2	 2 

and the Banach algebra property of H°' (r) we find by arguments similar to the ones 
given above that p is analytic near 0 from H 3 ° (r0 ) to H° - '(r0 ) and we have additional 
estimates

,-	r0	I'o	F0 
pk r I,. . • , rk)	- -'k r1	• 11 r 	,o	• 

Note that in all estimates for k-linear forms the constants Ck can be chosen such that 

Ck '- O(Mk ) .	 (3.9)
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4. A chain rule 

In the following we suppose additionally that Q 0 is strictly star-shaped, i.e. there is 
a smooth positive real-valued function R0 defined on the unit sphere SN-i such that 
(after a suitable translation)

r0 = { 9R0 (e)Ie E 5N_I1 

	

Note that the mapping I	5N1 -i ro defined by 4 o(9) = (R0 (9) is a C°°-



diffeomorphism between 5N-1 and r0 , hence the direct image map L defined by 
( cI)(9) = ((9)) is an isomorphism from C°°(['o) to Coo (S") and from H 3 ° ( r0) 
to H30(S'). 

We choose ((c) = and consider a fixed system { Q,  (N)) of linear inde- 1fl
pendent skew-symmetric (N x N)-matrices. We introduce on SN_I and r0 , respectively, 
the first order linear differential operators D, and Dj by 

= 

D) = d:((' 0	OeXp	o)(e)) L= dr 

and for multiindices a = (a .. .a(N)) we set D = D' . . . D(J 2) , D is defined analo- 
gously. 

In the following, T( k)(x)[ ....... ] will denote the k-th Fréchet derivative of T at x. 

Lemma 6 (Chain rule). Assume r to be smooth and II rII sufficiently small. Then 

tcI 
Da ( p(r )) = L	L	C	P(k)() [D (r + 1?.),. .. , Dflk (r + R.o)]	(4.1)

k=1 +..+uj=a 

where l?.o = 4R0 , all occurring 31 are non-zero, and for k = 1 we have Ca = 1. 

Proof. Define the operators , ü, and fl acting on the smooth functions in a small 
ball around Ro in H 0 (S") by 

,5(R) = p( cI(R- Ro))	 (4.2) 

and
ü(R) = u((R - 

i(R) = v( 1 (R- R0)). 

We will show the equality 

IaI 

	

D(R) = L	 C1 ,9,(k)(R)[bthR,...' bflk R] 	(4.3)
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with the same additional assertions as above. This is equivalent to the lemma because 
of

r =	— 1?o) 
= D(',b) 

,3(k)(R)[h1	,hk] = p(k) ( -1 (R_ Ro))[h i ,. . . 
where the last statement holds for all h, E H 3°(r0 ) and is obtained by calculating the 
k-th Frchet derivative of both sides of (4.2). 

The proof of (4.3) will be given by induction over j al and rests essentially on the 
invariance of the problem under rigid body motions, in particular, under rotations 
around the origin. 

1. jal = 1: Choose a fixed j E {1,. . . ,()} and consider the one-parameter family 
of rotations around the origin described by x '— exprQ x with r varying in a small 
open interval containing 0. Let ci 1 be the bounded domain with boundary {9R(9)I 0 E 
SN_1 } . Then clearly exprQ,[clR] =	with 

RT (() = 

Taking into account now the fact that the boundary value problem (2.1) as well as the 
auxiliary conditions i (u) = 0, p 2 (n) = 0 are invariant with respect to rotations, i.e. 
that the coordinate change x '—p exp'i x does not alter the form of the equations for 
fixed Q3, we find

ü(RT ) (( ,Do o exp' oc' )(e)) = expTQJ fi(R)() 

and further, using (3.7) and the fact that expTQi is an orthogonal matrix, 
Z (Rr ) ((4)o o exp r Q) o cI')(e)) = 

exprQj i(R)(e) 
((	0 exp	° -') (e)) = exprQi 

,5(R')((4 0 oexprQi o4')(e)) = 

for all	['o. Differentiating the last equation with respect to r at r = 0 yields 

D 15(R) = ,5'(R)[ñR]	 (4.4) 

which is (4.3) for H = 1. 
Moreover, starting from (4.4), by induction one proves 

k 
D,)(R)[h1,.. . ,hk] =	(k)(R)[h1	.. ,h 1 _ 1 ,Dh1 ,h11 ,. . . , h]	

(4.5) 1=1 

+ (k+l)(R) [ñ, R, h 1 ,. . . , hk] 

for all k E tl and hi,.. . ,hk E Hs0(Fo) where the induction step only consists in 
calculating the Fréchet derivative. 

2. Suppose now (4.3) holds for c'I = m, consider a with jal = n ± 1. Writing 
D(R) = DD'(R), applying the induction assumption and (4.5), and rearranging 
the terms according to the order of the Fréchet derivative completes the proof U
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Expansions of p(r) and p ) (r) in (4.1) and "comparison of coefficients" yields 

Dap(rw ,...	- I 

al (k+l)!
1!(m-1)!(k-rri+1)! 1=0 k=max{Im-i} +...+=a	 (4.6) 

X	Pk+1 (
r ( -0)) , . . r ( -(') ) ,D(1)r(+I)), 

where ir and a run over all permutations of 11,... , m} and {1,. . . ,k}, respectively. 
Considering the special case in = 1 and using that 10j 1 al -1 for j = 1,..., k if  > 2 
we can prove the commutator estimates 

(Da p i - piDc0)r0 l'o 
2	

rll111	 (4.7) 

l(Dpi - piD°)rll r0 
iso—i -	r ll lal+sl	 (4.8) 

In the sequel, let .s 1 be the smallest integer such that s > 3 + N 1 . Note that the 
vector fields on r0 that correspond to the differential operators D3 span the tangent 
space in any 6 E 1'o, therefore the bilinear forms 

=	(D°ip,D°)i	(s	s)	 (4.9) 
lal^s-1 

(,b)3 =	(D,D)3,	(s > s i )	 (4.10) 
lals-si 

with

= f 0 (	
+ Vr 0 Vr0 ) dF0	 (4.11) 

can and will be used as scalar products on H 5 (r0 ) with integer s > 0. From elliptic 
regularity theory it follows the inequality 

2 

	

u, 4.j 5 Cs,i i IlDa ull 02	 (4.12) 

ll^ 

for arbitrary s,t E N and u E H3+t(r0).
x 

We will use the notations x— x x for norm convergence and x. -Lx for weak 
convergence in the (Banach) space X. 

Lemma 7 (Continuity of p near 0). There is an co > 0 such that for all integers 
.s 2 s i the mapping

p	B0 (E Q ,H 5 '(ro)) n .ff'(r) —i H(r0)
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13

(i) continuous and and bounded 

(ii) weakly sequentially continuous. 

Proof. Statement (i): Set s 0 = .s 1 . If .s = s 1 , then the assertion follows directly 
from Lemma 5. If .s > s 1 , then because of (4.12) it is sufficient to show that the mappings 
Da p are continuous and bounded from Bo(Eo,H"(r 0 )) n H 3 (F0 ) to H'- 1 (r0 ) for all 

with ja	s - s 1 . Using (4.6) we find 

D"(p(r) - 
00 -.	 r0 

M=1 I
,r) - Dprn(V,... ,v)II 

1131-1 

IclI
(k + 1)! 

C1:f3kl!(m__ 
1=0 k=max{I,m_I} P1+...+flk=cl	

1)! (k	m + l)
! 

'I 
X	(	Mpk+I(r,...,r,r_v,v,...) v,D$1v, 

U

D$ (m_ l )v , D(m	 , D(k)10 r0 ) 
L1_1 

rn—I 
+	Pk+I (r,... , r, D(') r, D'('')r, D'(') (r - v), D'(' +1) v, 

j=1

r'0 
D(m_ 1 ) v , D(m_l+1)o,... , D(k)o)

1131—
) 

with r,v E Bo(co,H 3 '(ro))flH 3 (ro) and the understanding that in the first sum over  
the difference occurs in the j-th argument. We will estimate the summands of the sums 
in braces separately for m > 1, using (3.9), the interpolation inequality 

	

IID$UI13ro <CIIUIIrO
1+101	

Cllullro1iUl!ot j -	3 	 31 

holding for all multiindices fi with 181 < j al and the notations 

= max { lI u ll°, ll v ll° } 

b-
-	Ial	 (4.13) 

=
al
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We find for the summands in the first sum

ro 
D'( "'-' ) v, D,(m_t+1)1o,... D'(1Z0) 

)1131-1 

< CSM'' i—i	rn—I—b	
- iiroS t Si 

Tn—I—b b hr - C .A4rn /.L 31	/L3 

and in the second sum 

Pk+I(r,... , r, D ( ' ) r, D ( ' ) r, D(') (r - v), D(i+t)v,... 

D,6"	v, D(_ t + 1 )1o 1 .	, D(k)7o) 11S, —1 

< C3IvIkftli r0 fI rn—I—I —(b—i,) b—v	
ii° s t	st	iis	ift - 

 CS M m PS,	pb,'lir - vii°. 

Carrying out the summations over a, 1, k, and the Pj we have to take into account that 
because of 1 <in and k < jal 

(k + 1)! 7	< ( k +	( 10,1 + in) I	2H(iai + ml-1) 

and this yields for small Eo 

IIDa pm (r,... ,r) - D& pm( v,.. ,v) I 31-1 
C3 Mm (1 + m')p 2 (1 + p s )r - vii0. 

Demanding now co < , using 

hID n p l (r - v) 51 _ 1 < C .,11, - V ii 5 

and carrying out the summation over m > 2 yields 

IID°(p(r) - p(v))91'o	<c3 (1 + p)iir	
r0 

5 1 - vu3 ,	 (4.14) - 

and this estimate implies the boundedness and continuity of Dp. 

(ii) From (i) and Lemma 5 with s 0 < .s i it follows that for any integer s > .s 1 there 
is a . < .s such that the mapping 

p: Bo(Eo, H 3 ' ( F 0 )) n H 3 (r0 ) - 

is bounded and the mapping 

p: Bo(Eo, H 3 ' ( F0 )) n H(ro) -+ H5-1 (Fo)
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is continuous. For an arbitrary sequence {r}, r, E Bo(eo, H 3 ' (r0 )) n H 3 (r0 ) with 
H(r 0 )	 H(r0) 

we have r,,	r and hence 

H'(r0) 
p(r)	0p(r).	 (4.15) 

On the other hand, {p(rn)} is a bounded sequence in H 3 -'(r0 ) and therefore it has 
a weakly convergent subsequence. Consider now an arbitrary weakly convergent sub-

H' '(r 0 )	 H	'(I'o) sequence {p(r)} with p(rn')	 pt. This implies p(rn )	p and
thus, because of (4.15), p = p(r). Hence we can conclude (see [22: Satz 10.2]) that 

H' 
p(rn)	

(r0). 
p(r) I 

5. Linearization 

For the further investigation of (3.7) one has to identify the operator p' more precisely. 
We find, using the notation of Section 3 

1u 0 •ri	1"	1 
Pi 	=	(+ -uo I v(r) + - n 

7)	7 
u 1 = fl 1 L(0)' (Fi (r) -Li(r)L(0)Fo). 

Calculating F1 explicitly and recalling from Lemma 41(u) that II L I(r )IIc(xY) < C 1jr° 
we find that

Pi(r) = p(r) + A i (r) + Ao(r),	 (5.1)
with

p(r)=	(Trr(,ü)•n 

and Eu j.5 AlT E X the solution of the variational problem 

a(ü,v) - f divvdx + ATi(v) + A2(v) 
=	

78r 0 rn• vd0 

for all vE(H1(1l))'' 

	

divu=0	 (5.2) 

= 0 
2 (u) = 0, 

with
\ 

A i (r)= (_ u n + 1 ) _i .z,j(r) 
7 

a first order differential operator and 

A 0 E £(H(r0),H(r0)). 

By interpolation we have p ' E £(H'(r0),H3'(r0)) for all (real) .s
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Lemma 8 (Coercivity of —P1). For all positive integer s there are positive constants 
c, and C3 such that 

	

_(p i r,r) 3 ^: csII r IIj - C.,jjrjj rO  
2
	Vr E 

Proof. Step 1: s = 1. We have 

- (plr,r)H1(r0) 

= - (L. Vp 0 p 1 r V r 0 rdro +j pirro) 

- (f Vr(pr + A i r + Aor) . V ro r) - C IIrII0IIrIIoi 

- (L Vr 0 p r Vr 0 r dFo + j VF A i r . Vr oro) - cIIr0IIrIIl0. 

The two remaining integrals will be treated separately. 

Substep 1.1. Problem (5.2) is the weak formulation of the problem 

L(0)[upA] T = [OOyirornOO]T 

and from Lemma 21(u) we get 

0116- + 11 A211 N	ClIyLr 0 rnII"°3	C II r IIi° .	 (5.3) 
2	 2 

In order to give an estimate for j3, consider the following Neumann problem for the 
Laplacian:

L=p	 in 
fpdx - 

r	-1	—g on FO. 
n	Jr07	0 

It is solvable because

f gd['o=J 
r0 

and because of j L2 (c1 0 ) and g E H 4(r0 ) the regularity theory for this problem yields 
the existence of a solution	H2(o) satisfying the estimate 

IIII°	C 0I,II0 + g0)	C IIiIl0. 

If we set now v = VP = V4' in the first equation of (5.2) and take into account that 
divvy = j5, jv,,° < C IIII 0 , 'yn . vp is constant on r 0 and thus the boundary 
integral in (5.2) vanishes, we find 

II p 1I
n2 

< l()I + I ATi(vp)I + 0
C(ü° + II r II°)II vpIl

no
 i 

C(ü	+ II r II° 0	)liii
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and hence
lliIl° <— C (ll u ll?° + 11 r 11 0 ) .	 (54) 

The positive smooth function -y has a positive smooth extension to ci0 which will be 
denoted by the same symbol. So we get for the first integral by the Green formula from 
(5.2) and the ellipticity of a, using the generalized Schwarz inequality and the estimate 

r 0 ci0 
<C ll7rO rnhl_3 -	ll r ll "U

	

5	 5 

from Lemma 21(u) 

—I Vr,, p *, r . Vr d0 ro 
= I-.yntr0rdFo 

Jr07 

/ 
= a ü, —) 

N	
-2 iau 1 a\2 dx = 

i1 (J	+ 

foo
/ôü	

) (. 
ô(-y 2 )	ô(-y2)

+	 u	+ü

axi 

ax 1	ôx	ax1 ) dx) 

^cllü02_ClL ( l u ll I	ll . ll0 
C 11

ü I1 ° 2 - c i	lb 

> c 
I I 
ü 
I,p,- 

C 

On the other hand, 

	

llrI1 0	C llro r lli°i + C llrllY 

	

S	 S	S 

Csup If	r 0 rdFo	E H4(f0)	r0 - i} + Cllrllco.	
(5.6) 

llh 1 - IJr0 

For any E H(r0 ) with lpl = 1 define now the constant 

for which lllI° C	C lllI '° C holds. Consider again a Neumann problem 

A4) = 0	 in ci0

= 7 (-) at ['a.
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Because of fr y1(çO - ) d 0 = 0 it has a solution ID E H 2 (lo) with 

C I y ( - )IIc0 + 	IIIIY)	C. 112
2	 2	 2 

If we define again - v =	we find v E (H l ( 0 )) N , IivII 0	C, and with (5.2) 

dr'o	J Lor'0r(a - ) dI'o 0  
= J 7r rfl v dFo 

= a(ü,v) - fo divvdx + Ai(v)+ AT 
^02(V)	

(5.7) 

C(tj3,A)x 

<C( -	l u ll i	+ 11r1l 0 ) 
2 

where (5.3) and (5.4) have been used. Hence, together with (5.6), 

lI r lIY 2 <C (lHI O2 + lrllY) 

and with (5.5)

-	
Vr pr . Vrr d 0	c 11r1l

r,02
 - C llrllY 

Substep 1.2: Next, we have to deal with the integral 

Jr0 Vr
0 A i r . Vr 0 r dT0 

— fAirrordFo 

=—J 
= f rAir0rdro -

Jro r(A
i + Aflr0rdFo 

=
r	r 0 A i r d 0 + J r (A 1	r0 -	r0 A i )r do - J0 r(A i + A)r 0 r d0 

fr o 
Ar o rA l rdro +jrA2rdro

where A*, denotes the adjoint of A 1 in H°(Fo) and 

A 2 = AiLr 0 - Ar0 A1 - (A 1 + A.)r0. 
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A 2 is a second order differential operator due to the well-known facts that the commu-
tator AiI.r 0 - ir 0 Ai is a differential operator of second order only and A 1 +A*, is given 
purely by multiplication with a smooth function. Hence 

	

Ir0 
V 0 A j r . Vr 0 r d 0 =	 r Ar	o ^ C II r IIY Il A 2 r II°	C li r li ro 11fl1i	I	3 hr 0	 2 

The assertion for s = 1 follows now by summing up and applying the generalized 
Schwarz inequality again. 

Step 2: 1 < s < s 1 . We have, using Step 1 of the proof, (4.7) and the generalized 
Schwarz inequality 

—(p i r, r) = -	(DaP1T, Da r) i	- 

aI<s-I 
= -	(((Dpi —p i D)r,Dr) 1 +(piD'r,D'r)i) 

IcoI^s-1 

> C	IIDarIh02 

	

IaIs—'	
2 

- C	(ii(r°1 - p i Da )rhh 0 hhD 0 rhI 0 + IIDrIhY2) 
IcoI^,—i 

> c, ii r ii	- C3 iirii. 

Step 3: s > .s i . The proof can be given as in Step 2, using (4.8) instead of (4.7)1 

6. Existence and uniqueness for the nonlinear problem 

Due to its analyticity, the behavior of the operator p is locally governed by its lineariza-
tion pi. This and the chain rule enable us to show the following estimate. 

Lemma 9 (Local a priori estimate). There is an e 1 > 0 such that for all integer 
S > s i an inequality

	

(p(r),r) s	—c II r II 2 + Cs (hhrfl 0 i 2 + 1) 

holds for all r E Bo(E i , H31+l(r0)) n H--' (r0). 

Proof. We demand E ^ EO and conclude from Lemma 7/(i) that p(r) e Hs(ro). 
We decompose

CO 

p(r)=p(0)+pir+pm(r,...,r) 

and use (4.10). For the sake of brevity we will restrict our attention to the case IcI > 0, 
the estimates for a = 0 are obvious.
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1. Because p(0) is smooth we have 

(Dp(0), Dr) 31	C,Mr'0<C3(11rr 2 + 1). -	II3_ 

2. From the proof of Lemma 8 we recall 

(Dpir,Dr)31	 2 + c IrIIo 
1	

i2. 
3 

3. We use (4.6) and estimate 

(Dpm(,.. . , r), D'r) 

C Il D ( 1 .. . , r)°	IIDarII31+ 

M	II 

1=0 k=max{1,m-1} $1+..+flka 

x	Tk+l,m,, oiIDrII '0 1 Sj + 
a

C$1 5k	
(k+1)! 

1! (m - 1)! (k - m + 1)! 

with the shorthand notations 

/3=(8I,...,19k)
r0 

Tk+1,m,$,a	pk+1(r,... , r, D(')r,. . . , D 5 (-)r, DP ( m_1 + 1 )7o , D(k)10) 

which will be continuously used in the sequel. We will estimate the terms Tk+1,m,p,a 
separately and then perform the summations. 

Note at first that the sum over a has k! elements and that due to k < Jal and 1 < m 
we have

(k + 1)! k!	(k + 1)!
(M-1) 1! (m - 1)! (k - m + 1)!	1! 	

<(m + a I) 2 ' <C0m.	(6.1) 

Take now m > 2, 1, k, 0, and a fixed. We will distinguish several cases and continuously 
use the estimates for the Pk together with (3.9). 

Case 3.1: k+l=m. 
Subcase 3.1.1: k = 1. To this choice of the indices there corresponds only the term 

rn-I	-' 
mTmm (, 1 ) ( l )	CrnM h IIrII F i	II D° U' ° 

31+ 

If we perform the summation over in> 2 and choose e small enough we get 

00	 c* 
Y mTm,rn,(),(l)IIDarI' 

	

11310	< —IID°II°	
2 

+1 - 4	 si+4 
rn2
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Subcase 3.1.2: k > 1. In this case we have I fli l < Jal for all j and using the 
interpolation inequalities 

llD fl rll I' o	< Cs 1 r 11"°	< ,	r0 '-	r0 l r ll,+i	ll r ll^_ 

	

si+4 -	st+II+4 - 

	

IIrII'° <	llrll r 
i + C.,,6 lHl'°+3+ Jj- 

holding for sufficiently small ( depending only on s, all positive 8 and all /3 with 1,81 < lal 
we find

	

Tm,m,fl,	C5 Mmrn' llrll+i m_1 (6 Il r ll + C, ,6 j jr jjrO). 

The convergence radius of the series -2 
Mm mI 0 c m_1 is and thus independent 

of s. Hence, performing the summations over k, 8, a, and m, using (6.1), applying the 
generalized Schwarz inequality and choosing (5 sufficiently small we find 

C$Tm,m,,lIDnrIII'O	 r0 2 
-Il r ll s+ L +C3 

k>I,$,orn 

where H3 is the number of elements of the set {a : jal < .s} and c3 is a small positive 
constant such that

llDarll,.12 2 cIIrII2. 
InI^53i 

Case 3.2: k + 1> m. In this case

Tn—i 

b =-_
a	l/3T ( j ) l < 1
I j= 1 

and by interpolation and Youngs inequality 

rn

	

 Tk+l,m,fl, :5C,IvI 11r11 
r
5 
0 --I1	 r0	1-b
1+i	ll rll,,+i	llrIl 

rn-I 
c5MIIll,°.,	

(81111ro	+ 3,6	
r 0 \ 

	

"	s+	 l3+i) 

for any 6> 0. In the same way as in the previous case we find from this 

	

CO	
C 

	

Ti+i,m,,c7 11 1 rI"°	< 
C5 	

Irlifo 
2 

+ C3 - 
M=2 k,i$, 

and the lemma is proved by carrying out the remaining summations U 

Now we can prove a short-time existence result for the solution of our evolution 
problem. As in [15] we will use the notations IT for the closed interval [0, T] (T > 0), 
C(IT, X) and C(IT, X) for the spaces of weakly continuous and k times weakly 
differentiable functions valued in some Banach space X, respectively, i.e. the functions 
u : IT —p X such that, for all W E X', (p,u(t)) E C(IT) and (',u(t)) E Ck(IT), 
respectively.
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Proposition 1 (Short-time existence). Let Q 0 be smooth and strictly star-shaped. 
There are positive constants 62 and T such that for all integer s > s 1 and all 

r0 E Bo(e2, H-" +1 (r0 )) n H' (r0) 

the initial value problem
Or

=p(r) I (6.2) 
r(0)=ro  

has a solution r in C(IT,H' 1 (Fo)) fl C(IT,H'(Fo)). 

Proof. The proof will be given in essentially the same way as the proof of Theorem 
A in [15] where H' 2 (ro), H' +1 (r0 ), and H-(r0 ) will play the roles of V, H, and X, 
respectively. The necessary modifications are due to the fact that both the estimate 

	

(p(r),r),+1	Cs (1+ II r II 2 )	 (6.3) 

and the weak continuity of p are ensured by the Lemmas 9 and 71(u) only if IIrlI+i 
26 2 with sufficiently small 62. Thus we have to use Galerkin approximations which 
remain small in H"'(ro) and uniformly bounded in H'1(ro). 

Ifs > .s i , then there is a self-adjoint operator S on HuI+l(Fo) such that

	

(u,v),+i = (Su,v),,+ i	Vu E D(S), v E H3+1(Fo). 

By Rellich's theorem, S has a purely discrete spectrum, i.e. S has a complete orthonor-
mal system of eigenfunctions {e,} in H" 1 (F0 ). Elliptic regularity theory yields that 
all e, are smooth. If .s = s , then we choose an arbitrary orthonormal basis {e} in 
H 8 1+ I (ro) = H s + l (r0 ) consisting of functions in H5+2(r0). We define now 

IVIk = span l ei, . . . , e } 

	

Pku =	(u,ej) , 1 +1 e 

and it is easily seen that Pk is the orthogonal projection on Mk both in H5t+(ro) and 
H''(Fo). 

Consider the unique solution in of the initial value problem 

th = 2C,,(1 +m) 

m(0)=e 

where C31 is the constant C, from (6.3) with s = s i and choose T to be the (uniquely 
defined) positive number satisfying m(T) = 4e. Note that m is strictly increasing on 
IT. We will show now that the Galerkin approximations ri defined by 

Ori - 
Pp(r)  

W (6.4) 
r(0) = P3r0	J
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exist at least at IT and satisfy 

II rj( t )II ',°+i < 262	Vi E N, t e IT.	 (6.5) 

Suppose the opposite: this implies by the theory of ordinary differential equations that 
for a certain j there is a T* < T such that II r (T )II ',°+1 = 262 and II rj( t )II+1 < 2e 
for all t E [0, T*). Note that T* > 0 because of 

Irj(0)II0	- IPjro1r0 
s i -fl -	1131+1 5 62 .	 (6.6) 

For all t E 1T we can estimate, by (6.3) and the same arguments as in [15], 

d
(iiri@)1i31^i ) <2C31 (1 + IIT(t)uro 2) 

IIsi+1 

and from this and (6.6) an elementary comparison result for the solutions of initial value 
problems of ordinary differential equations in R yields 

m(T) = 4e = IIr,(T.:lro 2 

	

IIs,+i	rn(T*) 

in contradiction to the strict increasing of m. Hence (6.5) holds, and therefore, by 
repeating the above arguments for the	(1' )-norm, 

di \ 
II rj( t)IIi 2 ) <2C3 (i + II r ( t )II r0

 3+1
2

) 
ll(0)11rO 2 

<	r0 2 
II	s+1	- 11r0113+i 

which implies that Ijrj(t)II 1 exists and is bounded independently of j on IT. The 
existence proof can be given now in strict analogy to the proof in [15] mentioned above I 

Taking into account that C(IT,H 3 (r0 )) C C'(IT,H'(Fo)) and the embedding 
theorems we immediately find: 

Corollary 1. Under the assumptions of Proposition 1, suppose additionally r 0 E 
C c0 (r0). Then (6.2) has a solution in C'(IT,C°°(r0)). 

	

Lemma 10 (Weakened local monotonicity). For all s	s 1 there are positive 
constants c3 , C3 , and	such that 

(p(r) - p(v),r - 13+1 

	

r02 + C311 r V	
2 

< — c 3II r - vU	 - 11 3-f l	 (6.7) 

+C	 r0	r0 

	

I	ft - V lI+i 3max{I	r0	II v II	IIr	vi I r lI 	}	-  3+ 

for all r,v E Bo(e 3 ,H(fo)) fl H2(I'o).
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Proof. We proceed similar to the proof of Lemma 9 and use the notation (4.13) 
again. We find 

(p(r) - p(v),r - v)3+i 

< _cr - vIt32 + Cur - vII1 2 + C(1 + m) 

x (
	

Pk+l(r,... r,r - v, v.. . , v, D(')v,. . . , 

D(k)1 0 )	° 

+ E pk+1 (r,. .. , r, D(')r,. .. , D(')r, D''( i )(r - v), D(1+1)v,.. 

D(m1 )v , Dm_1+1)o,... , D(k)o) 
M_ 4 ) IT - vII3 

where the sum has to be taken over ci, k,	,f3,, 1, m, and a as in Lemma 7. The
summands in brackets can be estimated by 

CMm (1 +rn)	2/is+IIr — ,, 11','o iII r . -vIIr:a 

or	
CMm(1 +m)'IIr - vI32 

depending on whether the derivatives of highest order occur in the argument containing 
- v. Choosing e, small enough and carrying out the summations completes the proof I 

Proposition 2 (Uniqueness). Let Q 0 be as in Proposition 1. There are positive 
constants 63 and T such that for all r 0 E Bo (e3, H 31 +(Fo)) the problem (6.2) has at 
most one solution in

C 1  (IT, H' ( I'o)) nL°°(IT,H'+'(r0)). 

Proof. Let 63 be small enough that, due to Lemmas 9 and 10, (6.3) and (6.7) hold 
for s = s 1 if IIrII°+i < 2E3- Suppose r,v E C'(IT,H'1(ro)) fl L(IT,H'+(r0)) 
are solutions of (6.2). From (6.3) one concludes II r ( t )II?,° 	II v ( t )II,°+i	2E3 for all

E IT for a certain T> 0 in the same manner as the corresponding estimates on the r3 
in the proof of Proposition 1. Moreover, using the boundednessof II r ( t )II3, IIv(t)II 
and the generalized Schwarz inequality we find from (6.7) 

dt
(II r ( t ) - v(t)II+ 

2) =2 (p(r(t))	p(v(t)), r(t) - v(t)) +' 

<—c IIr(t) - V(t)II ro+3 2 + C IIr(t) - V(t)IIro^, 

+ Cry II r ( t ) - v(t)II ,0+i II r ( t ) - v(t)II,° 

	

Cr,.< 	II r( t ) - v(t)II0+i2 
for almost all i E IT and from the Gronwall inequality it follows r(t) = v(t) for all 
tEITI
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In a similar way, under slightly stronger smoothness assumptions on the initial 
condition, one can prove continuous dependence of r(t) for fixed t on r(0). 

7. Global existence and stability of solutions near the ball 

From physical reasons and corresponding results in the two-dimensional case (partly in 
the case of the corresponding problem for an outer domain [3, 4, 181) one expects that 
the only stationary solutions of our free boundary problem are given by the balls. This 
will be proved in the following. We remind that u 0 is the first component of the solution 
of (2.6) with 11 = 

Lemma 11 (Stationary solutions). If u0	0 on r0 , then ro has constant mean
curvature, i.e. Qo is a circle if N = 2 and a ball if N = 3. 

Proof. From

I Kofl uo dro = J T(uo,po)n . uolro = o 

it follows by setting u = v = u0 , p = Po in (2.3) that, using the notation of Section 2, 
a(uo,uo) = 0 and thus u 0 = 0. The Stokes equations and the boundary condition on 
the stress tensor reduce to

Vp=0	in 1101 
—pn=non on r0 J' 

hence both p and no are constant. This completes the proof because the only (bounded) 
simply connected domains in R 3 whose boundaries have constant mean curvature are 
the balls (see, e.g., [51) I 

In order to investigate the moving boundary problem near the ball we set 

	

Qo = Bo(l,RN)	and	((c) = n().	 (7.1) 

This clearly satisfies all assumptions made above and leads to -y	1, K = —(N - 1) 
and [' = S N - 1 . The diffeomorphism	can and will be chosen to be the identity and 
thus we have R0 =	1 on r0 . In this case we get from (4.6) 

	

Dpi (r) = pi(Dar).	 (7.2) 

For the sake of technical simplicity, the following considerations are restricted to 
the case N = 3. They can be generalized, however, to the general case without essential 
changes. 

Using spherical coordinates it is not difficult to obtain the expressions 

	

V(r) = 	+ r)3d1'o 

M(r) = f(1 + r)4ndFo
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for the volume and the centre of gravity of the domain Q, respectively. We define the 
function F: H 3°(r0 ) -p R x R3 by 

F(r)- IV(r) - 

irI -L M(r)	 • 

Note that F is an analytic function on H 3 °(F0 ), F(0) = 0, and 

F'(0)[h]— F fr 0 h o 1 

Lfrohndro] 

For all .s > s0 we define

= Jr e H 3 (r0)l F(r) o} 

and demand r0 E M 3+1 in (6.2). (It is obvious that this, as well as the choice of radius 
1, is no essential restriction of generality but just a matter of appropriate shifting and 
scaling.) Because of the incompressibility condition and the demand ff, u dx 0 in the 
fixed time probleiri we find simply by integration 

r(L) E A4 31	Vt E IT
	

(7.3) 

for any solution of (6.2). 

For the linearization we find after a certain amount of calculation p, (r) = (Trroü*).ri 
where (u*,j*,.\*) is the solution of the variational problem 

a(ü*, v) + b(v,*) +	To + T2	= 1 (A r,, r + 2r) Ti v dF0 

for all v E (H1 (Q)) 

= 0 
(*) = 0 

P20L ) = 0. 

Note that
.\=A;=o 

and thus we get, instead of (5.4), the sharper estimate 

.* 
P 110

110
	 Iii

VqEL2()	 I
(7.4) 

(7.5) 

In the following we use series expansions in eigenfunctions of the Laplace-Beltrami 
operator on S2 to define Hilbert norms that are adjusted to our needs. Let {YkII 
0, 1,2,...; k = —i,.. , 1} be an orthonormal basis of L2 (S2 ) satisfying zr0 Yk( = —1(1 + 
1) Yki . Such a basis is given by choosing an arbitrary L 2 -orthonormal basis of the 1-th
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order spherical harmonics for all 1. We will write rkl = (r, Ykl)O and introduce (on all 
H 5 (r0 )) the projection P by

Pr 
= 1=2 k=—1 

and on the spaces H 5 (r0 ) for positive integer s, s = -, and .s	the scalar products 

(r, v) 5 = Too Voo +	 rkl VkI + E E (1(1 + 1) - 2) 5 rk, vkl (s < 2) 
k	I	 k=-1  

(r, v) 5 = r00 v00 +	rki Vkl +	(DPr, DPv) 1 (s 2 2). 
k=-1	IaI:53-I 

It is easily seen that P commutes with all Do and that P is orthogonal with respect 
to all these scalar products. Furthermore, we introduce a semi-scalar product and a 
serninorm on H-(r0 ) by

[r, v] 3 = (Pr,Pv)5 
I 

I r is = ir,r]2 3. 

Lemma 12. Assume s > s 1 . There are constants e > 0 and C > 0 (depending on 
s) such that

Ilrii0 < C(1 r 15 + 11 F(r )I1IRXR S )	 (7.6)

for all r E Bo(e, H 5 (r0 )) and, moreover, 

rii 0	(1+ C 1 r 13)1 r 13	 (7.7)

for all r e M 3 fl Bo(e, H3(I70)). 

Proof. The first inequality is a consequence of the local diffeomorphism theorem 
Pr applied to the mapping ci> : H 3 (Fo) - P[H3 (r0 )j x (R x R3 ) defined by i>(r) = [,i)] 

in the neighbourhood of 0. 

Due to the orthogonality of P we have iirii02 = iri + 
11F112 with F = (I - P)r. 

We consider now FE span {1,x t ,r 2 , x 3 } as solution of the equation 

F(Pr, F) = F(P(r) + F) = 0 

which is satisfied for all r E M 3 . Applying the implicit function theorem to it and using 
that the Fréchet derivative of F with respect to the first argument at (0, 0) is the zero 
operator we find IIFIl 0 Cr if Irl, is sufficiently small. The estimate (7.7) follows 
easily from this I 

The following estimates are parallel to those given in the Lemmas 8 and 9. The key 
idea here is that, due to the new context and the use of the senlinorms . instead of 
complete norms, one is able to avoid the occurrence of "lower order terms".



344	M. Gunther and G. Prokert 

Lemma 13. Under the additional assumptions (7.1), there is a constant c > 0 such 
that

—[pir,r]i ^!cIrI 

holds for all r E H2(r0). 

Proof. Taking into account that 

	

(p i r)oo = (4ir)4 I	. ndro = (47r)	I divü dx = 0 

	

Jr 0	 1110 

we find

— [piT, r]1 = -
00	1 

 

(1(1 + 1) - 2)(plr)kj rkl 
1=2 k=-1  
cc	I 

	

= -
	

(1(1 + 1) - 2)(plr)k1 rj 
1=0 k=-1  
00	1 

	

= -
	

- 2r)kl 
1=0 k=-1  

= J0 p 1 r( 0 r + 2r)dro 

= Jr0 
u*(0T + 2r) d0 

= a(t*,it*) 

> 

On the other hand, 

rI =	rr + 2r121	IIrr + 2r II0 l 2 < C II(u* I * ),*)lI 

where the last inequality can be shown analogously to the general case (cf. (5.7), 1r0r 
has to be replaced by L r 0 r + 2r). Taking into account now (7.4) and (7.5) completes 
the proof I 

Lemma 14. Under the additional assumptions (7.1), for all integers	si the
inequality

	

[p(r), r]i	— cr I+i + C II F(r )II?RXa	 (7.8) 

holds for all r E Bo(e,H'(I'o)) fl H 2 (t'o) where the positive constants e, c, and C 
depend only on s. 

Proof. In analogy to the proof of Lemma 9, we have 

	

(p(r),rj 31 =	(D"p(r), Day]1

IcoI^s
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and estimate the summands on the right as in Lemma 10 where we take additionally 
into account (7.2) and P0 = p(0) = 0. Thus we get 

[D°p(r), D°r] j = (D°p i r, D°r] i +	[D0pk(r,... , r), D0r]i 

00 

—c Dr2, +
k—I	r0 2rO k IIrIIj+1

	1j 11 
k=2 

Summing up and using Lemma 12 we find 
00

r0 k—I	2 
[p(r),r j 3 + i	—c	j IDrI + c	Ck II r II+	lIril 

S+22
 

-	loI^s	 k=2 

00	

(ii+ + II F(r )IIRx a ) —c	D'r 2a +CCkII r0 k—i 
r113+i 

I a I^ s	 k=2
00 

—c 	IID(PrII O2 + C I Ck IITIIS+l	(11 2	+ IIF(r)IIxia) 
k=2 

and the proof is completed by using >:H<., IID 0 PrII O2 > c II PrII, 2 and making a 
suitable choice for e I 

Proposition 3 (Global existence and exponential stability near equilibrium). Un-
der the assumptions of Proposition 1 and (7.1), s I, r0 e M 3+1 fl Bo(e,H''(ro)) 
with e sufficiently small (depending on s), the initial value problem (6.2) has a solution 

E 

that satisfies the estimate 

lIr(t)II Ct	I0 
i < Ce	II roiI-i	V t > 0	 (7.9)

with a positive constant c depending only on s. 

Proof. Note that (7.8) implies (6.3) for all i- E H 2 (r0 ) with II r II?i sufficiently 
small. We choose ë small enough that both (6.3) and (7.7) with s replaced by s+1 holds 
if Il r ll1 < 2E. We assume II roIIi < e and proceed as in the proof of Proposition 1, 
working only with estimates in H(r 0 ). We choose the finite-dimensional subspaces 
M3 c H 2 (r0 ) such that M1 = span{1,x i ,x 2 ,x3 } and span (J, >1 M, = P[H3+2(r0)]. 

Thus, there is a T > 0 such that (6.2) has a solution r in C(IT,H 1 (T0 )) fl 
C,,(IT, 11 3 (r0)). We set e = min(,	where c and C are the constants from C. 
(7.8) and (7.7), respectively. 

The solution r is given by 

r(t)=w—limr,(t)	VtEIT 
) 00
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where w-lim denotes the the weak limit in H'(r0 ), the rj E C 1 (IT,H-1+2( ro)) are the 
solutions of the Galerkin equations (6.4), and the convergence is uniform in t. Hence 

,jo(r 
r, (t)	

0)
 ' r(t) uniformly in i and thus 

I F ( rj( i ) ) IIxj 3 - 0	uniformly in t E IT	 (7.10) 

because, as remarked above, r(t) E M3+,. 
Our choice of the M, yields that P and P, commute for all j, and thus we have for 

all t E IT

(Irj(t)I+i) = [Pp(r(t)), r(t)]3±1 

= (PP,p(r(t)), Pr2(i)) 3+1

RxR 

= (Pp(rj(i)),PPjrj(t))31 

= [p(r,(i)),rj()], 

—c Iri (t)I + , + C IIF(r(t))IIa 

because of P) r) = r3 ,Irj(t)II i < 2E, and (7.8), hence

2 rj(t)I+i	ec Ira I+i + cJ c(r_t) II F ( rj( T ))II 3 dr 

0 

and thus, using (7.10),

1'o	 1-.o 
- llPw	rn rj(i)II +1 = I	rn Pr 

	

w - u j(t)M+1
3-00

= lI Pr ( t )11	- u 3+i - 

lim inf II Prj( t )U 3+, = lim inf Irj(t)I,+i < etIroIs+,. j-_oo 

Finally, r(t) E M,+ I fl Bo(2E,H 1 (ro)) implies 

IIr(T)113+r0
1 - < ( 1 + Ct I r ( T)13+, ) Ir(T)13+i 

-cT	1-0 

	

(1 + C	 11r o 	IIoII 
1-o ii 113+1 

because of E	C2—I Therefore we can continue the solution to [T, 2T] and by induc-
tion to [nT, (n + 1)T] for all n E N with the estimate 

	

< er, 1	Vt > 0 

from which (7.9) follows by (7.6) I
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8. Conclusions 

The most remarkable feature of the analysis given above is that it does not depend too 
strongly on special properties of the Stokes operator: The only facts we have used about 
it are its rotational invariance and ellipticity in the sense of Agmon-Douglis-Nirenberg, 
together with the regularity and self- adjointness of the corresponding Neumann problem. 
Therefore it seems to be possible to apply the same methods without essential changes 
to similar non-local evolution problems, in particular, to the problem of Hele-Shaw flow 
driven by surface tension. 

Based on discussion of perturbations of the liquid domain and linearization of the 
resulting operator with respect to these perturbations, one can also obtain existence, 
uniqueness and smoothness results for stationary free boundary problems for the full 
Navier-Stokes equations [1, 21. -	 - 

It has to be pointed out that the assumptions of the general existence theorem 
from [15] that has been applied here does not resemble the parabolic character of the 
evolution equation, actually, it is more suited to nonlinear hyperbolic equations (and has 
originally been used for a problem of that kind). This is the reason that our approach 
provides no proof of the smoothing effect we expect to find in a parabolic problem. 

Finally, we remark that due to the local character the analysis given here obviously 
cannot provide answers to the questions on the occurrence of irregular behaviour like 
cusp formation or change of connectivity. 

Acknowledgements. The second author is indebted to Prof. J. de Graaf for a lot 
of stimulating discussions. 
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