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Existence Results
for the Quasistationary Motion
of a Free Capillary Liquid Drop

M. Gunther and G. Prokert

Abstract. We consider instationary creeping flow of a viscous liquid drop with free boundary
driven by surface tension. This yields a nonlocal surface motion law involving the solution of the
Stokes equations with Neumann boundary conditions given by the curvature of the boundary.
The surface motion law is locally reformulated as a fully nonlinear parabolic (pseudodifferential)
equation on a smooth manifold. Using analytic expansions, invariance properties, and a priori
estimates we give, under suitable presumptions, a short-time existence and uniqueness proof
for the solution of this equation in Sobolev spaces of sufficiently high order. Moreover, it is
shown that if the initial shape of the drop is near the ball, then the evolution problem has a
solution for all positive times which exponentially decays to the ball.

Keywords: Stokes flows, quasisteady motions, surface tensions, nonlinear parabolic equations,
surface motion laws
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1. Introduction

In fluid dynamics problems with very small Reynolds number the concept of ”creeping
flow” is used. This means that the inertial forces are neglected and, in the case of
Newtonian flow, the Navier-Stokes equations simplify to the Stokes equations. When
one uses such a simplification to describe liquid motions that are actually instationary, it
could be called a quasistationary approximation. This idea is the basis for the following
model of the motion of a viscous liquid drop under the influence of capillary forces which
is successfully used in the description of the so-called viscous sintering process in glass
production [21].

The liquid is assumed to be incompressible and to have constant viscosity, density,
and (positive) surface tension coefficient. The only driving mechanism we consider is
the force from surface tension. In dimensionless form this leads to the linear boundary
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—Au+Vp=0
in Q(t)

value problem

divu=0
T(u,p)ne = keny on T(t) = 00(t),

(1.1)

where Q(t) C RY is the (bounded) domain occupied by the drop at time ¢ > 0, © and
p are the velocity and pressure fields in (t) at this time,

T(v,p) = ((Vu) + (Vo)) —pI

denotes the stress tensor, x; and n; denote the double mean curvature and the outer
normal vector of I'(t). The sign of «, is taken such that it is negative if Q(t) is convex.

As will be shown below, the equations (1.1) essentially determine u and p at time
t. For the description of the motion of the drop the kinematic boundary condition

Va(t) = ulpy - na on I'(t) (1.2)

has to be added where V,(t) denotes the normal velocity of ['(t). This condition is
an equivalent expression for the demand that the set of particles that constitute the
boundary of the drop does not change in time.

The problem (1.1), (1.2) is a moving boundary problem that can be considered as
a problem of evolution of I' = I'() by a nonlocal surface motion law, comparable, e.g.,
to Hele-Shaw flow driven by surface tension [7 - 9]. The problem (1.1), (1.2) and its
counterpart concerning outer domains, which is a model for bubbles in a viscous liquid,
have recently been investigated in the two-dimensional case. This has been done by
methods from complex function theory, using, in particular, time-dependent conformal
mappings and the solution of Hilbert problems (3, 4, 14, 15, 18]. For the numerical
treatment of the problem we refer to [21] and the bibliography therein.

The aim of this paper is to provide an analysis of this problem in N dimensions (for
the sake of simplicity sometimes restricted to N = 3) as far as this can be done by local
methods. Accordingly, we prove, under suitable presumptions, a short-time existence
and uniqueness result for general initial domains and global existence and exponential
decay of the solution near. the stable equilibrium solutions that are given by the balls.

Notation. All differentiations with exception of those with respect to the time variable
t are to be understood in generalized sense. We will use the symbols C' and ¢ for
"large” and ”small” positive real constants, respectively. Sometimes an index is used
to indicate their dependence on parameters. A function that is given on a (sufficiently
regular) domain 2 and its restriction or trace at the boundary I of this domain are often
denoted by the same symbol. The norms in the Sobolev spaces H*(Q2) and H*(I') are
denoted by || - ||? and || - ||}, respectively, and the same notation is used for the norms
of the corresponding Sobolev spaces of vector-valued functions (H*(2))* and (H*(I"))*.
(These norms are specified later, at the moment it is sufficient to demand that they
generate the usual topologies.) '
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For convenience we generalize some notions of vector algebra and analysis to RV.
Let K be a.n a.rbltrary but fixed bijection from the set {(1,7)|1 < i < j < N} to the
set {l )} We define the bilinear mappings

X RNXRN———»R(‘Z)

®: R(g)leN—»lRN

by
(a X b)K(i,j) = a,‘b} - ajb,‘ (1 <i1<3< N)
and
i—1 N .
(c®a)i= ZCK(j,i)aj - Z <cki,pe; - (i=1,...,N).
j=1 j=it+1
It is easy to check that
c-(axd)=b-(c®a) Va,be RV c e R(3). (1.3)

We define, moreover for any sufficiently smooth N-vector function v given on an open
subset of IRN the ( )-vector-valued differential operator rot by

dv;  Ov; .
(rot v) k(i j) = ==~ — (1<i<j<N)
(.5) a:l:,' 6Ij

for which we have the integral theorem

/rotvdm:/n x vdl. (1.4)
Q r

Note that if N = 3, then the usual definitions of the outer product and the curl (rotation)
of a vector field can be obtained, up to the sign of the second component, by choosmg
the suitable bijection K.

2. The boundary value problem on a fixed domain

We consider the boundary value problem

-Au+Vp=0

in
divu =0

T(u,p)n=kn on [ =90

(2.1)

on a bounded smooth domain © C R¥ that is taken fixed in this sectlon The quantltles
k and n are defined analogously to «; and n, in (1.1).
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At first we establish the unique solvability of a generalized weak formulation of (2.1)
with auxiliary conditions. We introduce the Hilbert spaces

X = (H' Q)N x LA(Q) x (RN x R(D))
Y = (H'(Q0)")" x (L*(Q0) x RN x R())

and the (bi-)linear operators

L: X —Y
A: (HY@Q)Y — ((H'@)N)
B: (HY(Q)Y — L) x (RN x R(3))
a: (H'(Q)Y x (H' Q)Y — R
er: (H'(Q)Y — RV
o2t (HN@)Y — RE)

}z'mg,[gu

s

defined by

~
—
>R

(Au)v = a(u,v)

[ —divu
Bu = | ¢i1(u)

L wp2(u)
_ l Ou; = Ou, Ov;  Ov;
a(u’v) - 2 _/Q <6:I:J + 61,) (611 + 61,) dl’

1(u) = /{;udZ_

<p2(u):/rotudz
Q

where B’ : LQ(Qj x (RN x R(Az’)) — ((H‘(Qo))ﬁ)l is the dual of B.
Lemma 1 (Weak formulation).
(1) The operator L is a homeomorphism between X and Y.
(ii) Suppose LiupA]T = [f0]7 with

f(v):/l:nn-vdl" Vv e (H'(Q)V.

Then A =0 and (u,p) is a weak solution of (2.1).
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Proof. Statement (i): The equation
LupNT=F (2.2)
is a variational problem with linear restrictions to which the usual existence results

apply (see, e.g., [6]). In order to establish (i) it is therefore sufficient to show that a is
elliptic on (ker B, || - || and B is surjective.

The first statement follows from Poincarés inequality [10]

. 2
/ |Vl dz + (/ wda:) >clwl®  vwe H'(Q)
Q Q

and Korns second inequality [11]

a(v, v)>cz / (g;);)zdz Vv € {v e (H' ()| p2(v) = 0}.

1,j=1

Taking into account that ¢, and ¢, are surjective from {v € (H!(R2))V|divv = 0} to

R" and R( 2) respectively, it remains to show that the equation —divv = ¢ in Q is
solvable in (HI(Q))N for all ¢ € L?(). This can be done by considering a solution
$ € H2(Q) of —A® = ¢ in Q and setting v = V.

Statement (ii): Consider the space

N
Vo = {v e (H' ()Y |vi(z) = Y _sijzj +ci (sij,ci €R, sij = —s5:) }
i=1

(: = 1,...,N) and note that a(-,v), a(u,-), and div vanish on V;. The same holds for
f because the Green formula for closed surfaces yields

/nnwdl":/Arz-vdF Z/Vr:z:, Vv dl'
r r

=1

where z; and v; are the coordinates of z and v in a fixed Cartesian basis of RV, and
Vr and Ar are the generalized gradient and the Laplace-Beltrami operator on T, re-
spectively. Hence A = 0 because ¢, and ¢, are surjective from Vy to RY and [R(z),
respectively. The fact that in this case (2.2) is a weak formulation of (2.1) follows from

the integral identity

Ou; Ou Ov; = Ov; .
Z/(@z, )(6%-{-62‘) d:r—/pdwvd:r:

lJ /( —Au + Vp) - vda:—/V(dlvu) vdx+/T(u p)n-vdl

(2.3)

holding for sufficiently smooth vector-valued functions u, v and scalar functions p
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Furthermore, we will need some H*-regularity results on our boundary value prob-
lem. For fixed s > 2, we introduce the spaces

X = (H @)Y x ()N x RN x R(3))
Y = (H2Q)N x Ho=Y(Q) x (H*~3(I)V xRY x R(?)

and the operator
L: X —Y
defined by
—Au+ Vp+ 2
—divu
= | T(u,p)n+r22@n
®1(u)
wa(u)

Lemma 2 (Regularity).
(1) The operator Lisa homeomorphism between the spaces X andY.
(ii) Suppose Liup AT =[00F00]T. Then
Al o) < Call 5L (2.4)

for alloc € R and
lull§ < CILE5I" 5. (2.5)

Proof. Note that, according to (1.3) and (1.4),
/v (A2 ®@n)dll = / A2 (nxv)dl = Ap - / rot v dz = AL pa(v).
r r Q
Using this and (2.3) we find from LiupA)T = [F1 g Fp hy hy]T the variational formula-
tion

)
auv) - [ piivods +ATer(0) + A ea(v)
14

=/(F1+Vg)~vd:r+/F3~vd1"
(1] r

for all v e (H'(Q)N (2.6)
—divu =g
p1(u) = h
wa(u) = ha. )

Lemma 1 yields that this problem has a unique solution [upA]7 € X, and from the fact
that a(u, ) and div vanish on V; we find

/\,~j=/(F1+Vg)-v.~,~dx+/FB~v,~de“
Q r '
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where 7z = 1,2, Aij is the j-th component of A;, and the vj; form the dual basis of V}
with respect to the ¢;, i.e. we have @ij(vkr) = bixbji. All v;; are smooth, hence

Mg e < € (IFTIS, + gy + 1 Falf_g )

and (2.4) follow.

Let s be integer for the moment, the general result will finally follow by interpolation.
We will determine u and p by setting

u =ug+uy+ u

P=p1+p2
where
—Au1+Vp1=F1—/\1} .
) in Q
—div uy =g (27)
7).
uy=—-7 [ gdz-n on T,
" on
ug € Vo such that y;(ug) = —pi(u1) + A (:=1,2) and
—Aus +Vp, =0
) in Q v
—divuy =0 (2.8)
T(uz,p2)n=-T(ui,p1)n+Fg—Aa xn=2% on I
pi{ua) =0 (:=1,2).
Note that
/tI’~v=0 Yv € V. (2.9)
r

The regularity results for the Dirichlet problem of the Stokes equations yield that (2.7)
has precisely one solution (u,p1) € (H*(2))N x H*=}(Q) with f,p1dz = 0 and an
estimate

leallS + llpallfy < € (IFLIS-, + P llgw + llgllSy)

holds [12: Theorem IV.6.1]. Thus we have ® € (H*~3(I'))" and

12115_5 < € (Ihuall? + s ISy + Wzl + IFBIT_s )

-3
Q [1]
< C (IFEy + oIy + MMy ) -

It remains to show that, for all ¢ that satisfy (2.8), (2.9) has a unique solution
(u2,p2) € (H*(Q))N x H*~'(Q) satisfying an estimate '

lluzlld + llp2ll3-1 < ClIBIS_s. (2.10)
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From the discussion of the weak formulation we recall that (2.9) is a necessary condition
for the solvability of (2.8) and that the solution (u2,p2) is unique. From a density
argument it follows that we can assume ® € (C(T))V

We will apply integral representations from the theory of hydrodynamic potentials.
For the sake of brevity the description of the details will be restricted to the case N = 3.
For z € Q? we use the ansatz

uz(z) = V(z,9)

A (L @y
Ve =g [ (o SR v,

_ L[ =y
m(e) = 3= [ =t

where 1 is a R3-valued (measurable) function on I'. It is shown in [17: Chapter III]
that (uz, p2) satisfies the first three equations in (2.8) if 1 is continuous and satisfies

(%I+K)z,b=<l> (2.11)

with
(ko)) =~ [T o ey ar, (e

The operator K is a weakly singular integral operator, hence it is compact on (HO(T)N
and continuity of ® implies continuity for all ¥» € (H°(I"))V that satisfy (2.11) (see,
e.g., [20: Theorems 12.1, 12.7 and 12.8]). Moreover, K is a pseudodifferential operator
[19], hence it is compact on (H*=%(T))" and therefore (3 I+ K) is a Fredholm opcrator
of index 0 on this space. Taking into account that N(% I + K) consists of continuous
functions one can conclude, using the results about the weak formulation, that V(-,9) €
V, for all € N(3 I+K). The mapping ¥ — V/(-,9) is injective [17], hence dim NI+
K) < 6. The necessary solvability conditions (2.9) imply codim R(3 I + K) > 6, hence

dimN(3 I+ K)=codimR(; I + K) =6,

ie. the solvability conditions (2.9) are also sufficient and the mapping ¥ — V(-,¢)
maps N(; I+ K) onto V5. Thus we can conclude that (2.11) has precxsely one solution
such that wi(V(,9¥)) =0 (¢ =1,2) satisfying an estimate

-3 < Clielly_s-

Finally we use the fact that the singular integral operator that maps 3 to V(-,9)|r is a

pseudodifferential operator of order —1 [19], hence we find that the trace of u on I' is
in (H*~%(T))N and

luzllS_y < ClIEIT_g

5__.

< Clelly_s

The proof of (2.10) is completed now by another application of the regularity result on
the Dirichlet problem.
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To show (2.5), consider the “adjoint” problem

—Av+Vg=u
in Q
dive =0

T(v,g)n=—-p@®n on =90

Hj =/u~v2,,~d:1:
Q

which implies “#“R(’;) < Cljuli}. By examining the variational formulation of this

with p € R() given by

problem in the same way as in Lemma 1 we find the existence of a weak solution of it
that satisfies p;(v) = 0, w2(v) = 0. By the above régularity results we get

Iolg < € (Iullf +llu@nllf) < Clullf.

With this, we find by the second Green formula for the Stokes equations
el = (u,~Av + Vg)o + / (T(u,p)n-v—T(v,q)n-u)dl
r

=/(F3~v+;t®n)df=/F3~vdF—p-(p2(u)
r r

r r r Q r
< ClIFs|llvll§ < CIFsI 4loll$ < C I Fsl” g ull?

which proves (2.5) 1

3. Perturbations of the domain and analytic expansions

In order to describe the evolution of the domain we consider a fixed domain §¢ which
is supposed to be bounded, smooth, and locally on one side of its boundary Iy. Its
outer normal vector will be denoted by n, and we choose a fixed vector-valued function
¢ € (C*(Ty))N such that

(§) =¢(£) - n(§) >0  VEeT, (3.1)

and a fixed constant so > 3 + ﬁ,‘,;’-

Lemma 3.1 (Description of perturbed domains). There is a 6 > 0 such that for
all r € By(69, H*°(To)) the following holds:

(i) The set
o Tr = {€+C(E)r(€)|€ € To}

13 the boundary of a stmply connected domain Q..
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(iiz There is o global diffeomorphism z = z(r) mapping Qo onto Q, such that z €
(H**3(Q))N and
Iz ~idiie, , < Clirls

Jo+%
with C independent of r.

Proof. Statement (1): The collar manifold theorem implies the existence of a dif-
feomorphism between I x 'y and an open neighbourhood of Ty in RY where 7 is a

certain open neighbourhood of 0 in R. The assertion follows thus from the embedding
H’°(Fo) — C°(I‘o)

Statement (ii): We construct 2 by setting 2 = Tr~!(r¢) +id where Tr™! is a fixed
right inverse of the trace operator Tr from H**3(£) to H**([;). The embedding

theorems yield then that ||z — id|[(c2(q,))~ is small which implies the global injectivity
of 2. (For details see [13).) il

L and Q = Q,

Consider now, with the notation of the previous section, s = s — 3,

the equations
L PAIT =[O

LU PA)T =[00&,n,00]7

with f € ((H'(2,))V)' defined by

f('u)=/rr7c,n,-vdr‘r

where %, and n, are the double mean curvature and the outer normal vector of T',,
respectively. Using r and z(r) it is possible by means of Lemma 3 to transform both
equations to £, and in the sequel we will consider the operators L, L etc. as acting on
function spaces defined on £y and depending on r € Bo(6o, H*°(I'g)). Thus we get

T _ T
E(r)[u(r)P(r)/\(r)]T =F(r) (3.2)
L(r){u(r) p(r)A(r)]" = F(r)
with

[u(r) (AT = [U 0 2(r) P o 2(r) A)T

L@)Z]=[M”“+w“w[ﬂ}
A

B(r)u

F(r) = [f(r)0}"
F(r) =[00k,v(r)00)7

N
. Qu; . Ouj . Qv; :0v;
mj ' mi J 2% L dd ]
(A(r)u)v = /‘; E (a . +a . ) (a 92, +a _33:,) det Adz

° §,j,m,l=1
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—div, detA
B(rju=| [q,udetAdz
fﬂo rot, det. A dz

f(r = /I:Xr"r'/(") -vdly

-Aru+Vep+ A
~div,u
T (u, p)v(r) + A2 ® v(r)
fﬂo udetAdz
fﬂo rot,u detAdz

L(r)[upA]

To(u,p) = (Vru) + (Vru)" —pl

where v € (H'(Q))V, A is the Jacobian %, a' are the elements of A71, &, =
&0 z(r), v(r) = n, 0 z(r), and X, is a scalar function on I'¢ describing the ”change of

the surface element” when I’y is mapped to ', by z.

Let E and F be Banach spaces. An operator T that maps a neighbourhood of
zg € E to F is called analytic near z¢ if it has a series representation

T(z)=To+ Y Te(z — To,-- -, — To)
k=1

with symmetric k-linear operators Tk and positive convergence radius. We will use
the well-known facts that the sum, the composition and, if F is a Banach algebra, the
(pointwise) product of (locally) analytic operators is (locally) analytic.

Let T denote the embedding operator of X into X.
Lemma 4 (Analyticity of the perturbation).

(i) The t;pera~to_t:s L L F, and F are analytic near 0 as functions of r € H** (L)
into L(X,Y), L(X,Y), Y, and Y, respectively.
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(ii) The estimates

1FeCra, - rlly < Cullrallsg - ire=allsg imelly®

IZk(r1y. )Tl oy < Crllralls? - lire-a 152 lIrelle
(X,Y) 2

hold.
Proof. We have, writing 7 = e~ (r(),

or
- < C|lr||Fo
Oz < Clrl

lA = Ill(cooynxmy = o
(CoQ)NXN)

hence the inverse of A exists for all £ € £ and can be represented by a Neumann series
if ||r|]£‘: is sufficiently small. Thus we get a series representation

a'’l = §;; +Zaij(r,...,r) (3-3)
k=1

where the aij are linear combinations of first partial derivatives of components of 7. det.A
can also be written as a (finite) series of this type, and thus, for arbitrary u,v € H!(0),
(Ak(r1,...,mk)u)v is a linear combination of terms

6u,~ avj k a('f'a)t,
Q Bzma_zln Oz, dz

o=1

with 7, = Tr ™ (r4().

We will apply to these terms the estimate

l/ﬂ Yraypadz| < ’/{;%%dm

holding for all 4,12 € H°(f) and ¢3 € H*°~2(Qg). If we set

¥sllcome) < Clla 5 I2llo® sl e

A, A, b 3(Fo),

Py = 9z, Py = e Py = 61;[1 —_6Ir,

and take into account that H*°~2() is a Banach algebra we obtain after summation
that A is analytic near 0 as a function of r € H*9(T'y) into L((HI(QO))N, ((Hl(Qo))N)').

If we assume u € H*~3 () and set

_ 6(;")%

3 Au; 5 8(Fe)e,
61:[, d)z - ax‘rk E] ‘(/)3 - a]}m

Oz,

o=1
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we get by the same arguments

11 r r r
”Ak(rl P 3rk)u”((H1(Qo))N)r < Ck ”u”,:_% ”Tl ”s: e "7’5_1”,:“7'[‘"%0.

Together with analogous considerations on B, B, and the integrals describing the aux-
iliary conditions this yields the assertions on L.

We introduce regular smooth local pa.ra.metriéations of [y = U;"=1 ng) by
rY: ¢=¢Dw) (wew;cRV Y

which yield local parametrizations of I', = | J7_ re by
1=1

M9 2= aPw) = €9(w) + (€D (@) (€D (w))

whose regularity follows for small ||r||£: from the regularity of the £€0). On the j-th
coordinate patch, v(r) can be characterized by the equations

_w(r) _ u(r)

RO OLT0)
20

(66; )TD(’) =0

n-y(r)=1.

v(r)

The latter two of these equations form a system of N scalar linear equations for i(r)
which at = 0 has the unique solution #(0) = v(0) = n. Inverting this system for small
Irl|5e using the same arguments as above and taking into account that |&(r)| is near 1
for small r we get a convergent series representation

o0
v(r) o€ =nogl) 4 Z V,EJ)(T,...,T)
k=1

where the u,(:j)(rl ,+..,Tk) are sums of products of smooth functions with the (r, 0 £(5))

or their first partial derivatives. Hence v is an analytic mapping near 0 from H?®°(I'g)
to (H*°~2(Ih))V.

Moreover, we have in local coordinates on Fg’ )

/ggj)
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with

() G gk — g o _ (39" (82
g7 =det G, gy =[G, GF = { ) | e

and we find by analogous arguments that the mappings r — x, and r — &, are analytic
near 0 from H*°(['p) to H*°~%(Ty). Thus we get the assertions on F and F.

The analytic dependence of Lonre H *(Tp) follows from the above consider-
ations and the Banach algebra properties of the spaces H’°"'52'(Qo), H"’_%(Qo), and
H*~2(Ty) 1

Lemma 5 (Analytic dependence of the solution). Let u(r) be defined by (3.2). The
mapping r — u(r) is well-defined on Bo(e, H**(To)) for some € > 0 into (H*~2(Q))N.
It is analytic near 0 and estimates

Q r r
lextras s rll}° < Crllmallsg - Ilrk-xllfg’llrkllg (3.4)

hold.

Proof. Writing v(r) = [u(r)p(r) A\(r)]T € X we have, due to Lemmas 2/(i) and
Lemma 4/(i) by the real-analytic version of the Implicit Function Theorem that the
mapping r — v(r) exists and is analytic near 0 from H?*(T'g) to X, with estimates

lor(ris- o)l g < Crllmllse - llrxllse- (3-5)

The assertions on the mapping r — u(r) follow immediately from this.

To prove (3.4) it is sufficient to establish
r .
s (ras ol S Cillrallsg - Hrima g llrslye - (3.6)
This will be done by induction. For j = 1, we have

o (Mllx = | L)  Fa(r) = L(0) ™ Lu(r)us ||
SCURMOIy 1Tl .z vy)
<Clrlly
2
where Lemma 4/(ii) has been used. Suppose now (3.6) holds for all j < k — 1. Taking

the k-th Fréchet derivative at r = 0 on both sides of the equation L(r)u(r) = F(r) and
applying L(0)™! yields

vi(r,...,re) = L(0)™! (Fk(rl,... ,Tk)
k

1
- Z (k=) Z Li(rw(l)’“"rw(j)) Qk—j(rrr(j-f»l)r“:"n(k)))

=1
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where 7 runs over all permutations of {1,...,k}. We will estimate the terms on the
right separately, using Lemma 4/(ii). Thus we get

”L(o)-le(rl P ark)”x S o ”Fk(?‘l,. .. ’rk)“y S Ck "rl“I;: o ”rk—-l ”E:"rk”go’

for the terms in the sum over 7 with 7=1(k) < j we find. using (3.5),

”L(O)—ILJ'(T,,(I), - ,T,,(j)) Qlc—j(rﬁ(j+l))' .. ,r,,(k)) ”X
SCILi(raqrys - mat) T ez oy 2o (Frg4nys - el

< Crllnllse - IITk—lllf:Ilrklll;“,

and for the other terms, using the induction assumption,

|2 Li(rarys 2 7w5)) i (P mmiw) ||
SC|ILi(rays - et L eexvy ler—s (raGianys el x

r r r
< Crlirallsg - llre—llsg lirslls’

Hence (3.6) holds also for j = k il
We describe now the moving boundary I'(t) near 'y by
I'(t) = Pr(t)-
The kinematic boundary condition takes then the form

Or _ Tory(u(r)) - o) _

5= e = elr), (3.

i.e. our moving boundary problem is reformulated as a nonlinear nonlocal evolution
equation for r. Using the inequality

r r r r
#1920, < Cligalicira 1921ly° < Cll¥allsg—y %21y

and the Banach algebra property of H*°~!(T'y) we find by arguments similar to the ones
given above that p is analytic near 0 from H*(Ty) to H*~1(Ty) and we have additional
estimates

r
lox(rs--oroly* < Ci ||r1||5§"'Ilfk—lllfﬁllrk||2°~ - (3.8)

Note that in all estimates for k-linear forms the constants Ciy can be chosen such that

Ci ~ O(M"). . (3.9) .
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4. A chain rule

In the following we suppose additionally that Qg is strictly star-shaped, i.e. there is
a smooth positive real-valued function Ry defined on the unit sphere S¥-1 such that
(after a suitable translation)

To = {8Ro(6)16 € SN™'}.

Note that the mapping ®&; : S¥-! — Ty defined by ®0(0) = (Ro(0) is a C*°-
diffeomorphism between S™¥-! and Ty, hence the direct image map P; defined by
(25¢)(8) = ©(®o(0)) is an isomorphism from C®(Iy) to C*°(SN~') and from H*(Ty)
to Hoo(SN-1).

We choose ((§) = I_E_I and consider a fixed system {Q; |7 = 1,..., (’;’)} of linear inde-

pendent skew-symmetric (N x N)-matrices. We introduce on SV ~! and I'y, respectively,
the first order linear differential operators D; and D;j by

B0 = 2 (oexp™@)(Q)| _

Dy(6) = (0 @0 0 cxp™® 025)(0)|

T=

oN, o~
and for multiindices a = (e .. .Q(l:)) we set D* = D' . ~~D(,$)’ ) D is defined analo-
2
gously.
In the following, T(®)(z)[-,..., -] will denote the k-th Fréchet derivative of T at z.

Lemma 6 (Chain rule). Assume r to be smooth and ||r||T0 sufficiently small. Then

la]

D(p(r) = Y Ca s pP@)[DP(r +Re) . D (r +Ro)]  (41)
k=1 1+ +fi=a
where Ry = ®3™' Ry, all occurring B; are non-zero, and for k = 1 we have Cy, = 1.
Proof. Define the operators 5, @, and ¥ acting on the smooth functions in a small

ball around Ry in H**(SV~1) by

H(R) = p(®;(R—Ro)) (42)
and

i(R) = u(®;7 (R - Ro))

7(R) = v(®;"'(R - Ry)).

We will show the equality )

lel

D°NRy=>" > Cp, s R)D"R,... DR (4.3)
k=1p14..4B8r=a
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with the same additional assertions as above. This is equivalent to the lemma because
of
r=&;"'(R - Ro)

@a—l(ﬁow) - Da(q,a—lw)
POR) Ay, ... he) = oM (857 (R = Ro)) (@5 by, ..., @5 by

where the last statement holds for all hy € H*°(Tg) and is obtained by calculating the
k-th Fréchet derivative of both sides of (4.2).

The proof of (4.3) will be given by induction over [a| and rests essentially on the
invariance of the problem under rigid body motions, in particular, under rotations
around the origin.

1. |a] = 1: Choose a fixed j € {1,... ,(1,;')} and consider the one-parameter family
of rotations around the origin described by z — exp’™@ z with 7 varying in a small
open interval containing 0. Let Qg be the bounded domain with boundary {§R(8)|8 €
SN=1}. Then clearly exp™@ Q] = Qg+ with

R7(¢) = R(e™79 ().

Taking into account now the fact that the boundary value problem (2.1) as well as the
auxiliary conditions ¢;(u) = 0, @2(u) = 0 are invariant with respect to rotations, i.e.
that the coordinate change z + exp”@ z does not alter the form of the equations for

fixed Q;, we find

a(R7) (2o 0 exp™® 0@y )(€)) = exp™ a(R)(¢)
and further, using (3.7) and the fact that exp™@ is an orthogonal matrix,

5(R7) ((®o 0 exp™® 0@5')(€)) = exp™® H(R)(¢)

¢ ((Bo 0 exp™@ 0@51)(€)) = exp™ ((€)

A(RT)((®0 0 exp™ 0@5)(£)) = A(R)(£)

for all £ € T'y. Differentiating the last equation with respect to 7 at 7 = 0 yields
D;4(R) = §(R)|D;R| (4.4)

which is (4.3) for |a| = 1.
Moreover, starting from (4.4), by induction one proves

k
D;pO(R)[hy, ... he] =Y B (R) [k, hiey, Dihu, higsy - - i 5
=1 .

+ 5T (R) DR, b, .., ]
for all k € N and hy,...,hg € H*°*!Y(Ty) where the induction step only consists in
calculating the Fréchet derivative.

2. Suppose now (4.3) holds for |a’| = m, consider a with |a| = m + 1. Writing
D?j(R) = DjD"'ﬁ(R), applying the induction assumption and (4.5), and rearranging
the terms according to the order of the Fréchet derivative completes the proof il
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Expansions of p(r) and p¥)(r) in (4.1) and ”comparison of coefficients” yields
D (P, ™y = L.
m rrc m!

la

™ (k + 1))
DNVEDD 2. Cons (m — )l (k i m 1)

7 =0 k=max{l,m—1} i+.. +fr=a (46)
y pr(r(w(m,”.,T(w(m,Dﬂ,(l)r(n(m)),
(-4
ey Dﬁa(m-:)r(’f(m))7 Dﬂa(m—l-{-l)Ro, o ’Dﬂa(k)R())
where m and ¢ run over all permutations of {1,...,m} and {1,...,k}, respectively.
Considering the special case m = 1 and using that |3;| < |a|—1forj =1,...,kif k > 2
we can prove the commutator estimates
r r
I(D%p1 = o1 D)r* < I, (47)
To r
”(Do'p1 - plDu)r”sO_1 < C”T”|:|+ao—1 (4.8)

In the sequel, let s; be the smallest integer such that s; > 3 + % Note that the
vector fields on I’y that correspond to the differential operators D; span the tangent
space in any £ € [y, therefore the bilinear forms

(e )a= . (D", D°¥);  (s<s1) (4.9)
lal<s—1
(¥)s= Y. (D%, D°%),, (s> s1) (4.10)
|af<s—s
with
(e, ¥h =/r (e + Vrop - V) dly (4.11)

can and will be used as scalar products on H*([p) with integer s > 0. From elliptic
regularity theory it follows the inequality

o 2 ro2
lulls, < Cae Y. IIDule (4.12)
la|<t

for arbitrary s,t € Nand u € H**4(Ty).

X
We will use the notations zni»m for norm convergence and z,—z for weak
convergence in the (Banach) space X.
Lemma 7 (Continuity of p near 0). There is an €9 > 0 such that for all integers
s > 5) the mapping

p:  Bo(eo, H* (L)) N H*(To) — H*"1(To)
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13
(i) continuous and bounded
(ii) weakly sequentially continuous.
Proof. Statement (i): Set so = s;. If s = 5,, then the assertion follows directly
from Lemma 5. If s > sy, then because of (4.12) it is sufficient to show that the mappings

D?p are continuous and bounded from Bq(gg, H*'(To)) N H*(Ty) to H* ~1(Ty) for all
a with |a} < s — s;. Using (4.6) we find

1D (o) = p()) |5,

o -
<>
m=1

To

Dpp(r,...,r}) — D%pm(v,...,v)

31—1

m la|
(k+1)!
< Z Z Cs,,...5 Nm—D'(k—m+1)

1=0 k=max{1,m—1} B1+...+Br=0

{
X E <E Hpk+l(r,...,r,r—v,v,...,v,Dﬂ’("v,
o =1

To

.y DPetn=iy, DRt Ry, DPAOI R )

s —1

m—1
+ Z ”pk_H(r, coT Dﬂ,mr’ Dﬁv(;’—l)r’ Dﬁ,(,-)(r _ v),Dﬂ"(i“)v,
j=1

To >
s —1
with 7,v € Bo(eo, H*'(['0))N H*(I'g) and the understanding that in the first sum over j

the difference occurs in the j-th argument. We will estimate the summands of the sums
in braces separately for m > 1, using (3.9), the interpolation inequality

.o, Doy, DPe(m-t4n Ry, DRy )

r r rol =&, rof
IDPullf < C [ull®2, 1 < C llull o’ 1ot ug et

holding for all multiindices # with || < [a| and the notations

[y = max {”UHEO) “v”.l;o}
m~!
s - Er 8]
- - (4.13)

_ 1Boty|
la
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We find for the summands in the first sum
Hpk+1(r,...,r,r ~v,v,...,v, Dy,

r
Dﬂv(m—l)v’Dﬂa(m—l-f-l)Ro,... ’Dﬂa(")Ro) o

s —1

k41 rmlb
< Co MM olle

To? r
lolly® llr = vlly?
< CM™ U b e — o] 5o
and in the second sum

”pk_H(r, N Dﬂ"(‘)r, Dﬂ"(i-‘)r, Dﬂ"(i)(r - v),Dﬂ"(f“)v, ceey

r
Dﬂa(m_:)v’ Dﬂa(m—l-}-l)Ro’ o Dﬂ"(")Ro) o

-1

k+1 —1— b— b
< CoM*H|p| Doyt 1= (=) b=y e
< CM™ U T e — w50,

Carrying out the summations over o, [, k, and the §; we have to take into account that
because of ] < m and k < |a|

(k+ 1)

i S (k4D < (lal + m)lel < 2lel(jaflel 4 mlel)

and this yields for small ¢q
D pem(r,...,7) = D*pm(v,. .. v)” o1
< CM™(L4+m ™ )ugn 3 (1 + pwo)lir - vll5°
Demanding now ¢g < ﬁ, using

ID%p1(r = )58y < Cllr = oI5

and carrying out the summation over m > 2 yields

ID°(p(r) = p(0)llse=y < Co(1+ mo)lir = olI3°, (4.14)
and this estimate implies the boundedness and continuity of D®p.

(ii) From (i) and Lemma 5 with so < s, it follows that for any integer s > s; there
is a § < s such that the mapping

p: Boleo, H* (T)) N H'(To) — H*™\(T0)
is bounded and the mapping

p: Bo(eo, H(To)) N H¥(Iy) — H*"'(Ty)
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is continuous. For an arbitrary sequence {r,}, v € Bo(eg, H*1(To)) N H*(Ty) with
H*(To) H*(To)
™ we have r, ——— r* and hence

Tn

Hi—l(ro)
prn) ——— p(r*). (4.15)

On the other hand, {p(r»)} is a bounded sequence in H*~!(I'q) and therefore it has

a weakly convergent subsequence. Consider now an arbitrary weakly convergent sub-

Hl—l(r ) Hi—l(r\ )

sequence {p(rn/)} with p(rpr) ° p*. This implies p(r,) - p* and

thus, because of (4.15), p* = p(r*). Hence we can conclude (see [22: Satz 10.2]) that
H*~Y(To)

p(ra) ————p(r*) 8

5. Linearization

For the further investigation of (3.7) one has to identify the operator p; more precisely.
We find, using the notation of Section 3
Ug-n

pr(r) = (— v <+}1uo) -Vl(r)+$n~u1(r)

uy = ILL(0) ™! (R (r) = Li(r)L(0) ' Fy).

Calculating F) explicitly and recalling from Lemma 4/(ii) that 1Ly (r)llex,yy £ C ]|r||g°
we find that
' pi(r) = pi(r) + Ai(r) + Ao(r), (5.1)
with ]
pi(r) = 5 (Trrai) - n

and [upA)7T € X the solution of the variational problem

a(u,v) — /n pdivudz 4+ AT, (v) + ATpa(v) = /r Yéro,rn-vdly
0 0
for all v e (H'(Q)V
diva b (5.2)
wvu=20
e1(d) =0
’ (pz(u) =0, /

with
Ug

-n 1
A](f‘) = (— 72 <+ ;uo) ‘V](T)
a first order differential operator and
Ao € L(H#(To), H3(Ty)).
By interpolation we have p, € C(H’(Fo),H"l(Fo)) for all (real) s > 3.
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Lemma 8 (Coercivity of —p1). For all positive integer s there are positive constants
cs and C, such that

2 2
—(p17y7)s 2 &I ||’+, - C,||r||:i% Vr € H*t\(Ty).
Proof. Step 1: s = 1. We have

- (Plﬂ")Hl(ro)

—~ ( Vropl'r‘ . Vpor dly +/
ro I*0

Pl’”"dTo)

\Y

= ([ Iralotr + ar o+ Aor) - rar ) = C eI,
To

Vv

—( / Vropir - VrrdTo + / vroAIr-vr.,rdro)—cnr||§°||r||£°.
To To 2 2

The two remaining integrals will be treated separately.
Substep 1.1. Problem (5.2) is the weak formulation of the problem
LO)up AT = [00yAr,rn00]7
and from Lemma 2/(ii) we get

IAallme + A2l e, < CIIVArornll?g < Cl|r||2°- (5.3)

In order to give an estimate for p, consider the following Neumann problem for the
Laplacian:
Ad=p in Qq

9% _ fn pdz
on =7 fl" -1 dro

/gdPo=/ pdz
I‘o n0

and because of p € L?(g) and g € H%(I‘o) the regularity theory for this problem yields
the existence of a solution ® € H?(p) satisfying the estimate

Q My r - 12
2ll2° < C(lalle° +llghy°) < CliBllo*-

=g¢ on [.

It is solvable because

If we set now v = v, = V& in the first equation of (5.2) and take into account that
divv, = p, ||v,,||n° <@ <C ||p||0 , TN - vp is constant on I'y and thus the boundary
integral in (5.2) vanishes, we find

1B15°% < laa, vp)| + 13701 (o)l + AT 02 (vp)]

Q

< C T+ Urie)llvpli
: r 1ty

< C (Il + lirlio®)lipl®
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and hence
Il < C e + lirllg®). (5.4)

The positive smooth function v has a positive smooth extension to Qg which will be
denoted by the same symbol. So we get for the first integral by the Green formula from
(5.2) and the ellipticity of a, using the generalized Schwarz inequality and the estimate

lilg° < CllvArernl™y < Cirllie

from Lemma 2/(ii)

~ Vrepir - Vrrdly
To

R 'L.l. _
= / - ynAr,r dly
To

N . . \2
_ l _2 ou; auj)
T2 Z </(;o 7 (61,— + oz; dz (5.5)

dis | 9\ (, 0r7?) L %0 )
+~/$;o (axj—*-ax.')(u‘ 6::,» +u] Oz; dz

C €02 YL PSTIONTL L)
2 cfluffy® —C”u|]1°||u||0°

> clfallfe” - C flaf§e’
> cllillfe” - C Irle*.
On the other hand,
Il < Cllarerife, +Clirl5e

(5.6)
< Csup {/ Ar,rpdly
o

o € HI(TO), Il =1} +CIre
For any ¢ € H%(I‘o) with ||<p|]£° = 1 define now the constant
. 2

_ fpo'y-l‘P dl’y
fro 7_1 dFO

for which ||¢']|E° <ClplLC ||¢||§° < C holds. Consider again a Neumann problem
2

0%

A® =0 in Qo
5, =7 (¢-9) at To
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Because of fl‘o 7 Y —®)dly = 0 it has a solution ® € H2(Qy) with
1218 < Gl (o ~ B < Clellfe + 7 < C.
If we define again-v = V& we find v € (H(Q))V, |lv||¥° < C, and with (5.2)

Argredly = / Ar,r(p — @) dlg
ro I‘()

=/ YAr,rn-vdly
To

= a(n,v) — / pdivvdz + ;\;I‘wl(v) + /.\g‘tpz(v) (5.7) A
o

< Cli(E@ 5, Mlix

< C(llalfe + ||T||I;°)
where (5.3) and (5.4) have been used. Hence, together with (5.6),
o2 - 119202 To
I3 < © (el + Ir15)

and with (5.5)

| 2 2
_/ Vrapir - Vrordlo > el — Clrlfe”,
Fo

Substep 1.2: Next, we have to deal with the integral

/ VI‘OAIT'VFordFO
To
= —/ A]TAFOTdFO
To
= —/ r A} Ar,rdTy
To

=/ rAlArordl‘o—/ r(As + AD)Ar,r dTo
. I‘o I‘0

:/ rAroAlrdI"o+/ r(AlAro—AroAl)rdFO—/ (A1 + A})Ar,r dlo
ro I‘0

To

= A]"OT A]T‘ dFo + / TAQ‘I‘ dro
Fo l“0

where A} denotes the adjoint of A; in H°(Ty) and

A, = A]Aro - AI‘OAI - (A] + A;.)Aro.
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A2 is a second order differential operator due to the well-known facts that the commu-
tator A1Ar, — Ar, A, is a differential operator of second order only and A; + A} is given
purely by multiplication with a smooth function. Hence

VreAir - Vr,rdl
To

2/
A dFo
0

The assertion for s = 1 follows now by summing up and applying the generalized
Schwarz inequality again.

2

r r r r
< CIFI IAxrI™y < ClrIeIre.

Step 2: 1 < s < s57. We have, using Step 1 of the proof, (4.7) and the generalized
Schwarz inequality

_(plr:r)s == Z (DaplT:Dar)l
lo]<s—1
= — Z (((D°p1 -, D), D"r)1 + (p1D°r,D°’r)1)
|o|<s—1
>c Y Ipere’
ol <a—1 !
2
-¢ Y (ID®py = D)5 IDorI Y + D075
ja|<s—1 .

ro 2 ro 2
2 ¢ ”’"”,i% -G, ""'”,i% .

Step 3: s > 51. The proof can be given as in Step 2, using (4.8) instead of (4.7)

6. Existence and uniqueness for the nonlinear problem

Due to its analyticity, the behavior of the operator p is locally governed by its lineariza-
tion p;. This and the chain rule enable us to show the following estimate.

Lemma 9 (Local a priori estimate). There is an €, > 0 such that for all integer
s > sy an inequality

2 2
(p(r),r)s < —cs Ilrllfi§ +C(lIrllf2,” +1)

$—

holds for all v € Bo(er, H**t([p)) N H*+1(Ty).
Proof. We demand €, < €o and conclude from Lemma 7/(i) that p(r) € H*(To).
We decompose
p(r) = p(0) + p17 + Z pm(ry...,7)
m=2

and use (4.10). For the sake of brevity we will restrict our attention to the case la| > 0,
the estimates for & = 0 are obvious.
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1. Because p(0) is smooth we have
(D®p(0), D°r)s, < Cillrly2, < Ca(llrlS2, " +1).
2. From the proof of Lemma 8 we recall

2
(Daplr7Dar)5l s —C "Darllro 1 +C',||r||[;i%

n—3

3. We use (4.6) and estimate

(D°p,,,(r, ceyT), D°’r)

N

< CIDpm(r,- o DGe_ s IDFI2,
lo
(k+1)!
< CZ 2 2. Com (m =01k —m+ 1)}

1=0 k=max{l,m~1} 81 +. 4+ fi=a

X ZTk-H m,g, o’”Dur“, +l

with the shorthand notations

g:(ﬂla"',ﬂk)

r
Tettim po = Hpk+1(r,...,r, DPetvir, .., DPetmoir, Dhatm-t+0 Ro, DI R, )

1
n-—3

which will be continuously used in the sequel. We will estimate the terms Txyim, g,0
separately and then perform the summations.

Note at first that the sum over o has k! elements and that due to k < |a| and | < m
we have
(k+ DK _(k+D)!
Nm-Dk-m+D' I

k
< lalglal-1 « . la
(m—l) <(m+ |al)!*'2 < Coml®.  (6.1)

Take now m > 2,1, k, B, and o fixed. We will distinguish several cases and continuously
use the estimates for the px together with (3.9).

Case3.1: k+l=m

Subcase 3.1.1: k = 1. To this choice of the indices there corresponds only the term

M Ton,m,(a),(1) < CM™||r[5° Y| Dor|fFe

s+l s+

If we perform the summation over m > 2 and choose €; small enough we get

oo
Z M Ty m (o), (1)||D°T||, +1 <
m=2

C a
Siperle,,”



Existence Results for the Motion of a Drop 337

Subcase 3.1.2: k > 1. In this case we have |B;| < |a| for all j and using the
interpolation inequalities

< G, Irley, o gre,  to

| D? x5 e

< Calirllfe

sty = s +181+3

[l I <8l l+Ca6IIrII,1+‘1
+i-¢ +

holding for sufficiently small ¢ depending only on s, all positive § and all 8 with |8| < |a|
we find

m-—

r
Tm,m,é,a S Cst o “r”s‘-f-l (6 ” “,+l + C$,5 ”r“slo-i-l)'

The convergence radius of the series Y oo_, M™mlelem-1 js 27 and thus independent
of s. Hence, performing the summations over k, B, 0, and m, using (6.1), applying the
generalized Schwarz inequality and choosing § sufﬁciently sfna.ll we find

Y CpTm m,ﬁo”Darll, 41 S
k>1 Eum

s+l

where N, is the number of elements of the set {a : |a| < s} and ¢, is a small positive

constant such that )
r
Z ||D°r||, +1 2 cs”"'”,i% :

la|<s—s,
Case 3.2: k + 1> m. In this case

m—!

1
= 'lzl Z Iﬂa(j)l <1
i=1
and by interpolation and Youngs inequality

b
Testmpo < CoM™Irll5e,, ™ Irl52y, Ilrll,+x

< CM™ e, ™ (8IS, + CoslirlToys )

for any § > 0. In the same way as in the previous case we find from this

(-]
S Y Dm0, < S5 s,
m=2k IE o

and the lemma is proved by carrying out the remaining summations i

Now we can prove a short-time existence result for the solution of our evolution
problem As in [15] we will use the notations IT for the closed interval [0,T] (T > 0),
Cw(IT,X) and CX(IT,X) for the spaces of weakly continuous and k times weakly
differentiable functions valued in some Banach space X, respectively, i.e. the functions
u : IT — X such that, for all p € X', (p,u(t)) € C(IT) and (p,u(t)) € C*IT),

respectively.
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Proposition 1 (Short-time existence). Let g be smooth and strictly star-shaped.
There are positive constants e; and T such that for all integer s > s, and all

ro € Bo(ez, H***(Ty)) N H*T}(Ty)
the initial value problem
o = ol0)
at — PV (6.2)
r(0) =g
has a solution r in Cy,(IT, H*Y1(Ty)) N CLUIT, H*(Ty)).

Proof. The proof will be given in essentially the same way as the proof of Theorem
A in [15] where H**%(Ty), H*+}(Ty), and H*(Ty) will play the roles of V, H, and X,
respectively. The necessary modifications are due to the fact that both the estimate

(o) )enn <Cs (14171152, %) (6.3)

and the weak continuity of p are ensured by the Lemmas 9 and 7/(ii) only if ||1"||I;‘°_H <
2e5 with sufficiently small €;. Thus we have to use Galerkin approximations which
remain small in H*'*!(Iy) and uniformly bounded in H**1(T).

If s > 51, then there is a self-adjoint operator S on H**1(T) such that
(u,0)ot1 = (Su,v)s1  Yu € D(S), v € H}(T).

By Rellich’s theorem, S has a purely discrete spectrum, i.e. S has a complete orthonor-
mal system of eigenfunctions {e;} in H**+1(T'p). Elliptic regularity theory yields that
all e; are smooth. If s = s;, then we choose an arbitrary orthonormal basis {e;} in
H*+Y(Ty) = H**!(Ty) consisting of functions in H**2(Ty). We define now

M = span{ej,..., €k}
k

Pyu = Z(u7ej)5l+l €5
=1

and it is easily seen that P is the orthogonal projection on My both in H**+1(Ty) and
H3+(T).

Consider the unique solution m of the initial value problem
m = 2C,,(1 +m)
m(0) = €2

where C,, is the constant C, from (6.3) with s = s; and choose T to be the (uniquely
defined) positive number satisfying m(T) = 4¢2. Note that m is strictly increasing on
IT. We will show now that the Galerkin approximations r; defined by

or; _ , .
%; : P)P(’"J) } (6.4)
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exist at least at IT and satisfy
N5, <22  VieN, tell. (6.5)

Suppose the opposite: this implies by the theory of ordma.ry differential equa.tlons that
for a certain j there is a T* < T such that ||r,(T‘)||,l+, = 2¢3 and ||r,(t)||,l_H < 2e;
for all t € [0,T*). Note that T* > 0 because of

"”1(0)“31+1 = ||P; ro“.n-f—l > €2 (6.6)

For all t € IT* we can estimate, by (6.3) and the same arguments as in [15],

2 (Irsle4,”) < 260 (14 01524, )

and from this and (6.6) an elementary comparison result for the solutions of initial value
problems of ordinary differential equations in R yields

m(T) = 452 = ”rJ(T‘)”al-}-l <m(T*)

in contradiction to the strict increasing of m. Hence (6.5) holds, and therefore, by
repeating the above arguments for the H**!(Ty)-norm,

2 2
2 (1%, ) <2C, (1+ 1 I%3,)
r
5 (OI5S,” < liroll53,”
which implies that |]r,(t)||,JH exists and is bounded independently of j on IT. The
existence proof can be given now in strict analogy to the proof in [15]) mentioned above il

Taking into account that CL(IT, H*([y)) C C'(IT,H*~ 1(I‘o)) and the embeddlng
theorems we immediately find:

Corollary 1. Under the assumptions of Proposition 1, suppose additionally ry €
C>®(Ty). Then (6.2) has a solution in CY(IT,C>(Ty)).

Lemma 10 (Weakened local monotonicity). For all s > s, there are positive
constants cs, C,, and £, such that

(p(T) - p(v) r—= v)_,+1

2
< —c||r - v||

f1y +Cullr = vl (6.7)
+Cs maLX{IITII +a,llvll,i%}llr—vll «llr—v||,+1

for all r,v € Bo(es, H**1(To)) N H*+2(Ty).
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Proof. We proceed similar to the proof of Lemma 9 and use the notation (4.13)
again. We find
(P(T) = p(v),7 = V)11
< ~c'flr - v||,+a +Cllr - vll,+x +CY (1+m’)

. .
g ( I‘pk-{'-l(r" T VY, av)Dpa(l)v)' : "Dﬂo(m_l)vv
=1

r
Dﬂd(m—b{-l)Ro, - Dﬂ"(")Ro)
1

-3

m
+ Z “pk_H(r, ...,r,DPerr . DBy, Dﬂ"(")(r — v),Dﬂ"(i“)v,...
i=1

Dﬂa(m-l)v’ Dﬂu(m—l-}-l)RO, Dﬂa(k)Ro) ” > Ir - v“3+3

where the sum has to be taken over «, k, £1,...,8k, |, m, and o as in Lemma 7. The
summands in brackets can be estimated by

CM™(1+m ) usgllr = vll5g i = vy s
or

CM™(1+m* )l Hr - ‘u||s+3

depending on whether the derivatives of highest order occur in the argument containing
r—v. Choosing ¢, small enough and carrying out the summations completes the proof

Proposition 2 (Uniqueness). Let Qy be as in Proposition 1. There are positive

constants €3 and T such that for all 1o € By(ea, H*1*1(Ty)) the problem (6.2) khas at
most one solution in

CY(IT,H**'(To)) N L®(IT, H**3(Iy)).

Proof. Let £;3 be small enough that, due to Lemmas 9 and 10, (6.3) and (6.7) hold
for s = sy if |r||$°,, < 2e3. Suppose r,v € C'(IT, Hn+1(r0)) N L°°(IT H*+3(Ty))
are solutions of (6.2). From (6.3) one concludes ||r (t)”sl“, ||U(t)“s,+1 < 2e3 for all
t € IT for a certain T > 0 in the same manner as the corresponding estimates on the r;
in the proof of Proposition 1. Moreover, using the boundedness of Hr(t)||,+;, , ||v(t)||3+ a
and the genera.hzed Schwarz inequality we find from (6.7)

(nr(t) —o(®lIfe,") = 2(p(r(1)) - p(v(t)),r(t) ~o(t)), 4y
< —clir(®) = v(®I, 5" + Cllr®) = v(®%e,
+ CraulIr(t) = oI5 lIn(t) = v(OI}?, o

S Crolin(t) - v(t)||s|+l

for almost all t € IT and from the Gronwall inequality it follows r(t) = v(t) for all
telT :
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In a similar way, under slightly stronger smoothness assumptions on the initial
condition, one can prove continuous dependence of r(t) for fixed ¢ on r(0).

7. Global existence and stability of solutions near the ball

From physical reasons and corresponding results in the two-dimensional case (partly in
the case of the corresponding problem for an outer domain [3, 4, 18]) one expects that
the only stationary solutions of our free boundary problem are given by the balls. This
will be proved in the following. We remind that ug is the first component of the solution
of (2.6) with Q = Q.

Lemma 11 (Stationary solutions). If ug-n =0 on I'g, then Iy has constant mean
curvature, t.e. Qg 1s a circle if N =2 and a ball if N = 3.

Proof. From
/ Kon~u0dF0=/ T(UO,po)n'uOdr():O
Fo I‘0

it follows by setting u = v = ug, p = po in (2.3) that, using the notation of Section 2,
a(uo,u0) = 0 and thus ug = 0. The Stokes equations and the boundary condition on
the stress tensor reduce to

Vp=0 in Q }

—pn=+xon on [y

hence both p and k¢ are constant. This completes the proof because the only (bounded)
simply connected domains in R® whose boundaries have constant mean curvature are

the balls (see, e.g., [5]) B

In order to investigate the moving boundary problem near the ball we set
Q= Bo(LRY)  and (&) =n(e). (7.1)

This clearly satisfies all assumptions made above and leads to vy = 1, kg = —(N — 1)
and 'y = $V~!. The diffeomorphism ®, can and will be chosen to be the identity and
thus we have Ry = R =1 on I'g. In this case we get from (4.6)

D%py(r) = pr(D1). , (7.2)

For the sake of technical simplicity, the following considerations are restricted to
the case N = 3. They can be generalized, however, to the general case without essential
changes.

Using spherical coordinates it is not difficult to obtain the expressions
1 3
V(r)= = [ (1+r)dL
. 3 Fo

M(r) = %/r (1 +7)*ndly
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for the volume and the centre of gravity of the domain Q., respectively. We define the
function F': H*(Ty) — R x R® by

w0 = | "))

Note that F is an analytic function on H**(T'y), F(0) = 0, and

rom= %]

For all s > sy we define
M, = {r € H'(To)| F(r) = 0}
and demand ro € M,y in (6.2). (It is obvious that this, as well as the choice of radius
1, is no essential restriction of generality but just a matter of appropriate shifting and

scaling.) Because of the incompressibility condition and the demand fﬁ udz =0 in the
fixed time problem we find simply by integration

‘I‘(i) € M,+1 Vte IT (73)

for any solution of (6.2).

For the linearization we find after a certain amount of calculation p,(r) = (Trr,4*)-n
where (u*, p*, A*) is the solution of the variational problem

a(@*,v) + b(v,p*) + A} Ty (v) + A Tog(v) = / (Ar,r +2r)n-vdly ]
To

for all v e (H'(Q)N
b(u*,q) =0 Vge L}Q)

p1(i”) =0
p2(1") = 0.
Note that
Al=A=0 (7.4)

‘and thus we get, instead of (5.4), the sharper estimate
I8 llg® < Clla|I. (7.5)

In the following we usc series expansions in eigenfunctions of the Laplace-Beltrami
operator on 5? to define Hilbert norms that are adjusted to our needs. Let (Y|l =
0,1,2,...;k = —1I,...,1} be an orthonormal basis of L?($?) satisfying Ar, Y = —I( +
1) Ya1. Such a basis is given by choosing an arbitrary L?-orthonormal basis of the {-th
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order spherical harmonics for all I. We will write ry; = (r,Ykt)o and introduce (on all
H*(T¢)) the projection P by

u[\”/]3

!
Z Ty

and on the spaces H*(Ty) for positive integer s, s = —%, and s = % the scalar products

1 (e {
(r,v)s = 700 Vo0 + Z Tk1 Vg1 + Z Z (1 +1) =2’ rvie (s <2)

k=—1 =2 k=-1

1
(r,v)s = T00 Vo0 + Z Tk1 VK1 + Z (D*Pr,DPv), (s>2).
k=-1 la]<s—1

It is easily seen that P commutes with all D* and that P is orthogonal with respect
to all these scalar products. Furthermore, we introduce a semi-scalar product and a
seminorm on H*(Ty) by

[r,v]s = (Pr,Pv),
Irls = [y 7]

Lemma 12. Assume s > s,. There are constants € > 0 and C > 0 (depending on
s) such that

Irllse < C(Irls + 1F(r) IR xrs ) (7.6)
for allr € Bo(e, H*(T'y)) and, moreover,

”T“I;o S+ Clrl)lrls (7.7)

for allT € M, N By(e, H*(Ty)).

Proof. The first inequality is a consequence of the local diffeomorphism theorem
applied to the mapping @ : H*(T'o) — P[H*(To)] x (R x R?) defined by &(r) = [ 7]
in the neighbourhood of 0.

Due to the orthogonality of P we have ||r||f°2 = |r|? + ||F||E°2 with ¥ = (I — P)r.
We consider now ¥ € span{l,z,,z2,z3} as solution of the equation

F(Pr,7) = F(P(r) +7) =0

which is satisfied for all » € M,. Applying the implicit function theorem to it and using
that the Fréchet derivative of F' with respect to the first argument at (0,0) is the zero
operator we find ||F||l° < C|r|? if |r|, is sufficiently small. The estimate (7.7) follows

easily from this ll

The following estimates are parallel to those given in the Lemmas 8 and 9. The key
idea here is that, due to the new context and the use of the seminorms |- |, instead of
complete norms, one is able to avoid the occurrence of "lower order terms”.
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Lemma 13. Under the additional assumptions (7.1), there is a constant ¢ > 0 such
that

—[prr, ]y > C|7‘|2%
holds for allT € H*(Tg).

Proof. Taking into account that

(p17)oo = (4m)~} / @* - ndly = (4m)~} / divitdz =0
r Qo

0

we find .
—[pir, T = —Z Z (l(l +1) - 2)(Plr)klrkl
=2 k=-1
oo !
= - Z Z (l(l + l) - 2)(p1T)k1 Tkl
=0 k=-1{
oo {
== Y (rr)u(=Aryr = 2r)u
=0 k=-1
= / plT’(AI‘OT + 27‘) dly
To
=/ ﬁ'(Aror + 27‘) dly
To
= a(it, %)

> c ]|,

On the other hand,
2 sk ok O\ Kk
I3 = 1Arer + 202y < [lAr,r +2070,7 < Cli(a%, 5%, A%
2

where the last inequality can be shown analogously to the general case (cf. (5.7), Ar,r
has to be replaced by Ar,r + 2r). Taking into account now (7.4) and (7.5) completes
the proof i

Lemma 14. Under the additional assumptions (7.1), for all integer s > s, the
inequality
[p(r),rls4r < —clrligy + CIIF()IRame (7.8)

kolds for all v € By(e, H**1(Ty)) N H*+?(I'y) where the positive constants ¢, c, and C
depend only on s.

Proof. In analogy to the proof of Lemma 9, we have

(o(r); o1 = Y [D°p(r), Dory

lal<s
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and estimate the summands on the right as in Lemma 10 where we take additionally
into account (7.2) and po = p(0) = 0. Thus we get

o0
{D®pyr, D)) + Z[D"pk(r, ...,7), D%y
k=2

k—
—c|D°rl% +ZCkIIT||,+1 IIr I|,+s :

[D°p(r), D7)y

IA

Summing up and using Lemma 12 we find

oo
r, k- 2
[p(r)yrless < —¢ 3 1D°r + €Y Callrlf, IS

la|<s k=2
a 12 k-1 2
<-c Y Iporl} +chk 7153, (Irlae g + 1) llmces)
lal<s
a k-1
<—c Y ID°Pr|p’ +chk 158" (12 g + IF () lEces)
lal<s

and the proof is completed by using zl°|<s ||D°”Pr[|£° > c||’Pr|| 32 and making a
suitable choice for ¢ i

Proposition 3 (Global existence and exponential stability near equilibrium). Un-
der the assumptions of Proposition 1 and (7.1), s > s, 79 € Myyy N By(e, H**1(Tg))
with € sufficiently small (depending on s), the initial value problem (6.2) has a solution

r € Cu(Ry, H(T0)) N CL(Ry, H*(To))
that satisfies the estimate

()53, < Ce™lIrolls3,  Vt>0 (7.9)
with a positive constant ¢ depending only on s.

Proof. Note that (7.8) implies (6.3) for all r € H**2(Ty) with ||r||I;_‘(’hl sufficiently
small. We choose € small enough that both (6.3) and (7.7) with s replaced by s+1 holds
if ||rl|s+l < 2¢. We assume ”’"0”511 < € and proceed as in the proof of Proposition 1,
working only with estimates in H*+!(I'g). We choose the finite-dimensional subspaces
M; C H**?(Ty) such that M, = span{l,z,,z2,2z3} and spant>] M; = P[H***(Ty)}.

Thus, there is a T > 0 such that (6.2) has a solution r in Cy(IT, H**(Ty)) N

CLUIT,H*(T0)). We set ¢ = min(E, °£§._1) where ¢ and C* are the constants from
(7.8) and (7.7), respectively.

The solution r is given by

r(t) = w — limr;(¢) vte IT
j—oo
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where w-lim denotes the the weak limit in H*+1(T,), the r; € C'(IT, H**?(I'y)) are the

solutions of the Galerkin equations (6.4), and the convergence is uniform in ¢. Hence
H*0(To)
rj(t) —— r(t) uniformly in ¢ and thus

|E(r;(t))|lrxrz — 0 uniformly in t € IT (7.10)

because, as remarked above, (t) € M,q,.

Our choice of the M; yields that P and P; commute for all j, and thus we have for
allt € IT

L2 (s (O1) = [Prolrs(), 5t

= (PPjp(r;(1)), Pri(t)) 4,

= ('Pp(rj(t)),'PPJ'rj(t))s+l
[p(ri(®),75(V)], 4,
eIy (O + CIE G () cr

because of Pjrj =rj, ||7'j(t)||s+1 < 2¢, and (7.8), hence

IN

’ t
|mmﬂh.*wmﬂ+0/ﬂ“%wmumhww
0

and thus, using (7.10),

|r(t)|s+1 - ”'Pr(t)”s_H - pr T hmr](t)“,.}.l - ”w - hm pr](t)”,.H

< Siminf [Pr, (0155, = Hminf Ir,(D)ls1 < e frolasa.

Finally, r(t) € M4 N Bg(2e, H*+ (o)) implies

(14 C* (D) a41) In(T)ls41
(14 C™ lIrallsgs)e ™ liroll s,
[

__T“’”O”sﬂ

I (DI,

<
<
<
<e

<L
e 2 —1

because of € < . Therefore we can continue the solution to [T, 2T] and by induc-
tion to [nT, (n + 1)T] for all n € N with the estimate

()41 < e F|rols41 VE>0

from which (7.9) follows by (7.6)
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8. Conclusions

The most remarkable feature of the analysis given above is that it does not depend too
strongly on special properties of the Stokes operator: The only facts we have used about
it are its rotational invariance and ellipticity in the sense of Agmon-Douglis-Nirenberg,
together with the regularity and self-adjointness of the corresponding Neumann problem.
Therefore it seems to be possible to apply the same methods without essential changes
to similar non-local evolution problems, in particular, to the problem of Hele-Shaw flow
driven by surface tension.

Based on discussion of perturbations of the liquid domain and linearization of the
resultmg operator with respect to these perturbations, one can also obtain existence,
uniqueness and smoothness results for stationary free boundary problems for the full
Navier-Stokes equations {1, 2}. - :

It has to be pointed out that the assumptions of the general existence theorem
from [15] that has been applied here does not resemble the parabolic character of the
evolution equation, actually, it is more suited to nonlinear hyperbolic equations (and has
originally been used for a problem of that kind). This is the reason that our approach
provides no proof of the smoothing effect we expect to find in a parabolic problem.

Finally, we remark that due to the local character the analysis given here obviously
cannot provide answers to the questions on the occurrence of irregular behaviour like
cusp formation or change of connectivity.

Acknowledgements. The second author is indebted to Prof. J. de Graaf for a lot
of stimulating discussions.
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