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Aéymptotic Behaviour of Relaxed Dirichlet Problems
Involving a Dirichlet-Poincaré Form

M. Biroli and N. A. Tchou

Abstract. We study the convergence of the solutions of a sequence of relaxed Dirichlet prob-
lems relative to Dirichlet forms to the solution of the [-limit problem. In particular we prove
the strong convergence in Df[a, Q] (1 < p < 2) and the existence of "correctors” for the strong
convergence in Do[a, Q). The above two results are generalizations to our framework of previous
results proved in (10] in the usual uniformly elliptic setting.
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1. Introduction

In this paper we are interested in the convergence of the solutions of relaxed Dirichlet
problems involving Dirichlet forms. The relaxed Dirichlet problem relative to symmetric
uniformly elliptic operators was studied by G. Dal Maso and U. Mosco in [11] and [12];
in particular in [12] the convergence of the solutions is studied in connection with the
['-convergence of the measures involved in the problems. We recall also that in the two
previous papers the connections between relaxed Dirichlet problems and problems of
homogenization with holes are emphasized (for the notions concerning homogenization
with holes we refer to [1] and [7]).

The aim of the paper [10] is to study the convergence of solutions of relaxed Dirich-
let problems in the non-symmetric uniformly elliptic case (in connection with the I-
convergence of the measures involved) There some results are also given that are new
also in the symmetric case; in particular the strong convergence of the solutions in
H'P (1 <p < 2)is proved using a compact embedding result of F. Murat [25], and the
existence of correctors is studied (for previous results on correctors in the symmetric
case see also [16]).

Our aim in this paper is to generalize those results to the case of relaxed Dirichlet
problems involving Dirichlet forms, with some assumptions on the form which hold in
the most of the applications.
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We make precise now the framework and the results. Let X be a locally compact,
connected Hausdorff space and m be a positive Radon measure on X with supp [m] =
X. We will assume that we are given a strongly local, regular, symmetric Dirichlet
form a(-,-) in the Hilbert space L?(X,m), in the sense of M. Fukushima [15], whose
domain will be denoted by Dl]a]. Such a form @ admits the integral representation
a(u,v) = [ da(u,v) for every u,v € D[a] where a(u,v) is a signed Radon measure on
X, uniquely associated with the functions u and v (the energy density of the form).
Moreover, for any open subset Q of X the restriction of a(u,v) to £ depends only on
the restrictions of v and v to Q. The strong locality allows us to define the domain of
the form restricted to © denoted by Dyla, Q] as the closure in D[a] (endowed with the
norm |[u| = (a(u,u) + ”“”%?(x,m)))%) of D[a] N Cp(f) and to extend unambigously the
definition of the measure o, v) in X to all m-measurable functions « and v in X, that
coincide m-a.e. on every compact subset of {2 with some function of D[a]. The space of
these functions will be denoted by Di,c[a,§2]. We refer to [4, 15] for the properties of
a(u,v) with respect to Leibnitz, chaine and troncature rules.

Given a as above we assume that the form has a separating core [4]. We define a
distance d associated with the form by

d(z,y) = sup{¢(x) — ¢(y) : ¢ € D[a] N Co(X) with a(¢,¢) < m}

and we denote B(z,7) = {y : d(z,y) < r}, B(r) will be balls B(z,r) with fixed center
z.

We assume the following;:

(D) The distance d define a topology on X equivalent to the initial one; moreover,
for every Ry > 0 a duplication property holds for the balls B(z,r) (r < Io), that is

m(B(z,2r) < com(B(z,r))

where ¢p is a constant independent of z and r, but depending on Ry, i.e. ¢ = co(Ro).

(P) For every ball B(z,r) (r < R).and every f € Disc{a] the Poincaré inequality

/ 1 = forlPdm < cir? ] da(f, )
B(z,r)

B(z,kr)

holds where ¢; and k > 1 are constants independent of z,7 < 2R and f; , is the average
of f on B(z,7).

From property (P) assuming that B(z,r) C B(z,2r) # X (r < g) we obtain by
standard methods the inequality

’ 24 r2 o
(Po) /B L WPm s /B Gl

for every f € Dgla, B(z,7)); by a covering argument it is easy to prove that the inequality
(Po) holds also if » > %, with a constant c,, that depends on R.
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We observe that from duplication property in (D) the space X acquires the structure
of an homogeneous space (8] and that, using (D), we can prove by iteration the inequality

Tr v
(D') m(B(z,r)) > % (E) m(B(z, R))
forallz € X and R < %Ro, where v = log, ¢o, so v is an estimate of the homogeneous
dimension of X. Moreover, for any ball Bg C Bzg with Bsg # X and R < R, we
have Sobolev inequalities relative to v (see (3, 5]); a simple covering argument allow
to generalize the Sobolev inequality for functions in Dg[a, Bg| to every R > 0 with
constants depending on R.

We recall that under two assumptions (D) and (P) a theory of local regularity of
harmonics in Bg C Byg with Bog # X and estimates on the Green function have been
given in (4] (see also [24]).

In this paper we have one more assumption:

(A) We assume the existence of the Radon-Nikodym derivative

d
ofw,uw)() = 288 ¢ 13 (0,m)

and the existence of n linear operators L; (i =1,...,n) from Dya] into L?(X,m) and
two positive constants A and A such that

A Z |Liu(z)]? < a(u,u)(z) < A Z |Liu(z)]*m  ae. in X.

Moreover, we also assume that the adjoint operators L! restricted to D{a] are bounded
from Dla] into L?*(X, m). The operators L; are closed from Dy[a, Q] into L2(X,m).

We observe that the above assumptions on the Dirichlet form we are considering
holds for the following forms:

(a) for forms connected with degenerate elliptic operators with a weight in the A,
Muckenhoupt’s class (here the distance is the usual Euclidean distance and we refer for
properties (D) and (P) to [13]);

(b) for forms connected with subelliptic operators both in the case of smooth or
non-smooth coefficients (here the distance is defined in relation with the operator and
we refer to [21] for the properties (D) and (P));

(c) for forms connected with vector fields satisfying a Hérmander condition both
in the case of smooth or non-smooth coefficients, given by a matrix, that is uniformly
elliptic with respect to a weight in the Ay intrinsic Muckenhoupt’s class (here the dis-
tance is the same as in non-weighted case, the property (D) derives from the definition
of the A, intrinsic Muckenhoupt’s class and we refer to (22] for property (P));

(d) for forms connected with elliptic operators on C* Riemannian manifolds with
Ricci curvature bounded from belowe (here the properties (D) and (P) are consequences
of analogous properties for elliptic operators on R").
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For every Borel subset E of an open set Q2 in X, let

cap®(E, Q) =inf {a(v,v)

v € Do[a, ], v>1m—ae.
on a neighbourhood of E .

We refer for all the properties holding for the capacity related to a Dirichlet form defined
on X to the book of Fukushima [15], only observing that they hold again due to the
validity of property (P). We recall that, if E C E C Q, we have cap®(E, ) = 0 if and
only if cap®(E, X) = 0 and, from the Poincaré inequality (Po), cap®(E, X) = 0 implies
m(E) = 0. Moreover, every function u € Do[a, 2] has a quasi-continuous representative
(for the above introduced capacity). Whenever we have the necessity to take into
consideration a quasi-everywhere representative of u € Dq|a, 2], we identify u with its
quasi-continuous representative.

Definition 1.1. For a rclatively compact open set Q C X, we introduce M§(2) =
M as the space of all non-negative Borel measures on § which are absolutely continuous
with respect to the capacity related to the form a(:,-), i.e. we say that u € My if
cap®(E, Q) = 0 implies u(E) = 0, where E C Ecq.

Definition 1.2. The function u is a solution of a homogeneous relaxed Dirichlet
problem in  with respect to the form a, the function f € D![a,2] and the measure
H € Mo if

u € V:’O(Q)

a(u,v) +/ uvdp = (f,v) forall v € V7 (Q) a-1)
Q

where V,2(Q) = L¥*(Q, ) N Do[a, 2] is a Hilbert space endowed with the scalar product
(u’v)V:,o(Q) = a(u,v) + [uvdm + Jouvdp.

Remark 1.1. By using the Poincaré inequality and (1.1) with v = u it is easy to
see that

| (/,, da(u,u))z <c (1.2)

where the constant C depends only on 2 and not on .

Now we want to recall the definition of I'-convergence of a sequence of measures in

the space My. For any measure p € My, let us consider the following functional F'*
defined on L?(Q2, m):

Fh(v) = { Jqda(v,v) + [ vidp if v € Dola, ] (13)

+o0 elsewhere.
Definition 1.3. Let € be a sequence of positive numbers converging to zero, u* a

sequence of measures in the space Mo, and p € My. Let F#° and F* the functionals
associated with 4 and g, as in (1.3). Then

r
pe = p
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if the sequence of functionals F* [-converges, in the sense of E. De Giorgi and T.
Franzoni [9], to the functional F*.

As in the classical case (i.e. a(u,v) = Jo Vu-Vudz), it is possible to prove that the
I-convergence of F#° to F* is equivalent to the L?(Q, m)-convergence of the solutions u®

of the homogeneous relaxed Dirichlet problems with respect to the form a, the function
f and the sequence of measures u*

{ u € V2 4(Q)

1.4
a(u‘,v)+/u‘vdp5=/fvdm for all v € V. () (14)
Q Q

to the solution u of the homogeneous relaxed Dirichlet problem with respect to the form
a, the function f and the measure p (see (1.1)).

It is easy to prove that

&

u® —u weakly in Dyla, Q].

Our aim is to give more precise results on the convergence of the sequence u¢. In general,
as in the classical case, the convergence will not be strong in Dy|[a, .

Let us recall the definitions of the Dirichlet-Sobolev spaces, introduced by M. Biroli
and U. Mosco in [5]. For p € [2,00), set

DPla,Q] = {u € Diyela, 9] :/a(u,u)(z)%dm +/ uPdm =: ||u||pD,[a q < oo} .
a 2 '

In the case p = 2 we denote D?[a,Q] = D[a,Q]. In the case p € [1,2) we denote by
DP?[a, ] the completion of D[a, ] in the norm

1

lull prla,) == (/a(u,u)(z)%dm+/ u”dm) "
f )

In Section 2 we will prove that the operators L; are closed from DP[a, ] into LP(X,m).
We observe that the above definition allow us to define Lyu and a(u,u) for u € DP (a, Q]
(see Lemmas 2.3 and 2.4).’

Let us define the spaces Df[a, Q] as the closure of the space Co(2) N DP[a, ] with
respect to the norm [|v|| pr(a,q)-

Remark 1.2. Let us remark that the space Dj[a,2] N L(Q) is an algebra and
also an ideal in DP[a, ] N L°°(R), p € [1,+400). Moreover, we recall that if g: R—->R
is such that ¢ € C'(R) and v € D?[q,Q] N L®(R), then g(v) € DPfa, 2] N L*°(2) and,
for p = 2,

a(g(v), w) = g'(v)e(v, w)
for every w € Dla,Q]. Moreover, if g(0) = 0 and v € Dj[a, Q) N L=(Q), then g{v) €
Df[a, Q)NL>=(2). A consequence of the above inequality is that for every v € Dyycfa, Q)N
L(2) we have, for every constant k, inf(v, k) € Diocla, Q] N L*°(Q) and

a(inf(v’ k)7 w) = 1w<ka(va w)
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for every w € D[a,2]; then
a(v,v)dm = 0.

v=k
In the following §2 will be a relatively compact open set in X such that Q C Bgr C B;r,
with Bop # X and R < %.

In Section 2 we prove the following strong convergence in D} for p € (1,2).

Theorem 1.4 (Strong Dj-convergence for p € (1,2)). Let u® be a sequence of
measures in the space Mg and u € My such that

£

T
B = g

Let ut be the solutions of the homogeneous relazed Dirichlet problems with respect to the
form a, the function f € D™}[a,Q)] and the sequence of measures pu¢ (see (1.4)), i.e.

ue S ‘/’:1( ,o(Q)

au,) + [uvdu® = (f0) for all v € Vi o(®),
Q

and let u be the solution of the homogeneous relazed Dirichlet problem with respect to
the form a, the function f and the measure p (see (1.1)), i.e.

u € V., (R)
a(u,v) + / wvdp = (f,v) for allv € V,}((R).
2
Then, for p € (1,2),
u® > u strongly in Di[a, ). (1.5)

We also introduce, in Section 4, a sequence of functions independent from f: ”cor-
rectors”, which describes more precisely the bchaviour of the sequence u (sec [10} and
(16]) in Dy[a, ). To this aim let us introduce the sequence of solutions w* of the homo-
geneous relaxed Dirichlet problems with respect to the form a, the function f =1 and
the sequence of measures u*, i.e.

w € Vi o(®)

1.6
a(w®,v) + / wvdp® = / vdm for all v € V. o(Q?), (1.6)
Q Q

and their L?(Q, m)-limit function w as solution of the homogeneous relaxed Dirichlet
problem with respect to the form a, the function f =1 and the measure . i.e.

w € V7](Q)

1.7
a(w,v)+/wvdu=/vdm for all v € V7 4(R2). -1
Q Q

We prove, in Section 3, the following result.
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Theorem 1.5 (Correctors result). Let u® be a sequence of measures in the space

Mo aend p € My such that
r
B =
Let u® be the solutions of the homogeneous relazed Dirichlet problems with respect to the
form a, the function f € L=(2,m) and the sequence of measures p¢ (see (1.4)), i.e.

uc € V:"O(Q)
a(ue’v) + / u‘vdp,e = / fvdm fOT allv € V;:,o(g);
1] Q

and let u be the solution of the homogeneous relazed Dirichlet problem with respect to
the form a, the function f and the measure p, (see (1.1)), i.e.

u € V7y(Q)

a(u,v) + /'uvdp = / fodm  for all v € V2(9).
Q Q
Let, be for any é > 0,

(18) .

€

e _ e UW
Ts = U *—Sup{w’é} . (1.9)
Then
lim lim sup ||75 || po(a,0) = O (1.9)
6—0 0

where w® and w are the solutions of the problems (1.6) and (1.7), respectively.

We end this section by observing that in Section 2, in view of the proof of Theorem
1.4, we prove some preliminary results interesting in itself, in particular we study the
Sobolev spaces associated to the form and their dual spaces proving also a generalization
of the compact embedding lemma in [25].

2. Proof of Theorem 1.4

At first we give the following result on the existence of a cut-off function of a compact
set K C Q with respect to .

Lemma 2.1 (Cut-off function). Let K be a compact set in Q and di := d(K, ).
Then there ezists a function ®x € Dyla, Q] N C%(Q) such that

P =1 onK .
supp [Pk] C {z €N: d(z,K) < ‘%“}

a(®k,Px)(z) < < a.e. in §)
dQK

where C is an absolute constant.

Proof. We can cover K by a finite number of balls with center z; € K (i=1,...,q)
and radius 5‘-{. Let now ¢; the cut-off functions of B(z,, g‘fi) and B(z;, 52“); we have
o(¢i, 8:)(z) < 5+ ae. in Q (for the existence of cut-off functions between balls and the

, )= ar (

estimate on their energy densities see [4]). Choose now ®x = sup; ¢;. It is easy to see
that @, satisfies the conditions of the lemma B
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The following result state the Holder inequality in the spaces DP[a, ] and prove
that the function ||v||ps[a,q) defined in Section 1 is a norm on DP[a,Q] if p € [2,+00)
and on D[q, Q] if p € 1,2).

Lemma 2.2 (Holder inequality). Let p € [1,00] and p' € [1,00] be conjugate
ezponents (i.e. %+ }% = 1), let u,v € DP[a,] and let finally a(u,u)(:) = % €
L}, (2,m). Assume that

a(v,v)(")% € LP(Q,m) and a(u,u)(-)? € L7 (Q,m).
Then a(u,v)(-) € LY(Q, m) and

[ tatwwenam < ( [ a(v,v)(-)%dm)’l’ ([ a(u,u)(o%'dm)’%. (2.1)

Moreover, if p € [2,+00), then the function ||v||prla,q) defined in Section 1 is a norm
on DP[a,].

Proof. The proof is analogous to the classical Holder inequality for the LP spaces.
For the sake of completeness we sketch it here: The density a(u,v)(-) is a bilinear form,
such that a(u,u)(-) > 0. Then

o, )OI < za(u,u)()+ 5a(v, )0 (22)

The function a(u,v) is continuous in Q\ E where m(E) = 0. Let us consider (2.2) where

we replace v by Av, with A = (a(v,v)(z))?/(alu,u)(z))?. Let z be fixed in 2\ E. Then

|a(, v)(@)] < (v, 0)(2)) * ((u,u)(z))?. (2.3)

From the Young inequality we have ‘
1 e 1 L

Ia(u, v)(z)| < ;(a(v,v)(z)) + ;(a(u,u)(z)) (2.4)

for a.e. z € Q. By integrating (2.4) in © with respect to the measure m we obtain

l I
/ |a(u,v)| dm < l/ (a(v,v))%dm-i- —,/ (a(u,u))%dm. (2.5)
Q . pJa P Ja
By replacing v by Av in (2.5) where

( fn(a(u, u))'i_ldm) g
( fa(a(v, v))%dm) »

we prove (2.1). The last part of the result is an easy consequence of (2.3) B

A= (2.6)
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We remark that from Lemmas 2.1 and 2.2 it follows that DP[a,Q], p € [2, +00),
is a Banach space; then the same property for p € (1,2) follows from the definition.
Morover, we observe that if w-lim,—o f¢ = f° in Dg[a, ), then w-lim,—.o f¢ = f° in
Dla, Q).

Lemma 2.3 (a(u,u) and L; in D?(a,9), p € (1,2]). Let pE (1,2]. Then DP[a,9)
is continuosly embedded into LP(Q,m) and the operator a(u,u)? has a unique eztension
(wich does not depend on Q) to a continuous operator, denoted again by a(u, u): from
DP{a,Q)] into LP(Q,m). Moreover, the operators L; (i = 1,2,..,n) have unique ezten-

stons to linear closed operators, denoted again by L;, from L”(Q m) into LP(Q2, m), with
domain DP|a, Q).

Proof. The condition (A) allows us to extend the operators L; to closed linear
operators from L%(Q2,m) into L%(Q,m) with domain D|a, ], denoted again by L;, such
that for every u € D[a, ] we have

A Z |Liu(z)]? < a(u,u)(z) < A 2 |Liu(z)*m  ae. in Q.

Let be u; — 0 in LP(R2,m), where u; € D{a, Q)] and supp (u;) C K, with K a compact
set in . Assume L;u; — x in LP(Q,m). Let uf = sup(—k,inf(u;, k)) (k¥ > 0). We
have

(L,-u:f, V)L2(Q,m) = (“;a Liv)L2(q,m)

for every v in Dg[a, Q] N LP' (R, m), with % + # = 1. Then Liuf weakly converges to 0
in LP(§2,m), for any fixed k > 0. The functions |Lgu§|” are equiintegrable; moreover,

k k k
|Li(u,' - “j)|2 < a(“j - Uj, Uy — u;).

Using the truncation rule, we obtain that Liuf converges to x a.e. in ; then L,‘u;F
converges to x in LP(2,m), so we have xy = 0.

Assume now that u; is a Cauchy sequence in DFPa, Q] and u; — 0 in LP(Q,m). We
assume that a(uj,u;)? — X' in LP(,m). Let K be a compact set in Q. From Lemma
2.1 there exists a function ¢ with a(4,¢) € L*°(Q,m), ¢ =1 on K and supp(¢) C Q.
The sequence ¢u; is again a Cauchy sequence in D¥[q, Q] and ¢u; — 0in LP(Q2,m).

Using the condition (A) and the Leibnitz rule we obtain that L;(¢u;) is a Cauchy
sequence in LP(Q, m). From the first part of the proof we have L;(¢u;) — 0in LP(2, m);
then a(du;, ¢uj)% — 0in LP(Q2,m). Using the properties of ¢ and the Leibnitz rule we
obtain x =0 a.e. in K, then x =0 a.e. on Q. The first part of the lemma is so proved.
The second part easily follows using assumption (A) il

We have also easily the following

Lemma 2.4 (a(u,u) and L; in D?{a,], p > 2). Let p € (2,4+00). Then D”[a Q]
.is continuosly embedded into. LP(Q,m).and a(u,u)? is a continuous operator from
DP[a,Q) into LP(Q,m). Moreover, the L; (i = 1,2,..,n) are linear closed operators
from LP(2,m) into LP(2,m) with domain DP[a,9?].
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Using Lemmas 2.3 and 2.4 we have to define a(u,u)* and Lu from LP(,m) to
DP[a, )] (also a(u,u) then can be defined a.e. in Q) and we have again

At Z |Liu(z)|? < a(u,u)(z)? < A* Z |Liu(z)|® m-—ae. inQ (2.7)

i=1

where the two positive constants A* and A* depend only on A, A and n in (A) and from

p. Moreover,
ullote = ( et u)@) tdm + [ wam)’
Q Q

for every u € DP[a, )], p € [1,+00).
Now we prove the following embedding result, wich has an interest in itself.

Lemma 2.5 (Compact embedding property). Let Bgr be a ball in X. Then the
property

(C) Do[a, Br] is compactly embedded into L*(Bgr,m)
is fulfilled.

Proof. We can suppose, without loss of generality, that 4R < inf(Ro, R) (in
the general case the result follows by a covering argument). Let f, be a sequence
weakly convergent in Dyla, Br]. Then the sequence f, is also weakly convergent in
L?*(Bgr,m), since the embedding of Dq[a, Bg] into L%(Bg,m) is continuous. We have
an da(fn, fn) < C. We denote again by f,, the prolongation of f, to X by 0, which
belongs to D[a). From [8: p. 69] there exists a covering B(z;,7) = B; (¢ = 1,...,9)
of Bg such that d(z;,z,) > r. We have that the number M of the balls B(z;,7), that
cover a point z in Bpg, is equal to the number of points z; in B(z,r). For such a point
we have

B (I,‘, %) C B(z,2r) C B(z;,4r),

moreover, the balls B(z;, §) are disjoint. Using property (D') we obtain
T
L > —(3v+1)
m (B (z,, 2)) >2 m(B(z, 2r)).

Then

M2~ D (B(z,2r)) < M z‘er%i(r: o™ (B (z;, %))
r

< M =) <
<m (U,=IB (:z:,, 2)) < m(B(z,2r))
so the point z belongs at most to M = 2% balls B(z;,r). Again by property (D’) we

can estimate ¢ from above by M (%)" . Moreover, we can prove, by the same techniques
used above, that every point of B belongs to at most k*M balls B(z;, kr).
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Let € > 0 be arbitrary and denote Wn,m = fn — fm. By the same methods as in [5:
Proposition 1/p. 315] we have

[ ,,,,,dm<zz / [, m — (wn,m):[dm
Br B(zi,r)

2
+2 sup / Wn,mdm
g m(B(znT)) ( B(zir) )

2
< 2k"Mclr2/ da(u,u) + 2 sup _— / Wy mdm
Br (B(.’E,,T)) B(z;,r)

2v 2
< 2k"Mc1r2C7+ g7Vl (5) ;sup (/ wnmdm>
r m(BR) t B; '

where (wn,m)i is the average on B(zi,7) of wn,m and we take into account that from
property (D’) we have m(B;) > 22*!m(Bg). We choose r = (m)%. Taking
into account that f, is weakly convergent in Lz(BR,m) we can choose n, such that for

n,m>n,
2 2v
er‘*m(BR)
-su Wopmdm | < ———=,
ip (/B.- - ) T 2WHIRW
Then for n,m > n. we have
/ wﬁ’mdm <eg,
Bgr

l.e. fn is a Cauchy seqﬁence in L?(Bg,m); then f, converges strongly in L2(Bg,m) il

The method used in the proof of Lemma 2.5 is a refinement of the one used in [17]
to prove the same result in the usual elliptic case (see also [14] and [5], where similar
techniques are used).

Lemma 2.6 (Reflexivity). Let p € (1,00). Then under the assumption (A),
DP[a, Q) and (D}a, ) are reflezive Banach spaces.

Proof. The proof is analogous to the classical case. To prove the reflexivity it is
enough to prove that D?[a,{] endowed with the norm (equivalent to ||v|| pr(a,g))

( /n updm+g /Q |Lgu(x)|”dm>% (2.8)

1s reflexive. We observe that the linear operator
Tu = [u, Lyu, ..., Lau] (2.9)

is an isometry from D?[q, ], endowed with the norm (2.8), into (LP(Q,m))"*!; then
T(D?(a,Q]) =Y is a closed subspace of (L?(2,m))"*!. We recall that (LP(Q,m))**! is
reflexive and then Y is reflexive, so DP[a, Q) is reflexive. The space D}[a, ] is a closed
subspace of DP[a,§2]; then it is reflexive B
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We denote by D™![a, ] the dual space of Dy[a, )], by D;,l (a, 2] the dual space of
D} |a, ) (where % + }% = 1), and by (-,-) the duality between D.'(a,9) and Djla, Q2.
Let us remark that we have D;,l[a,Q] C D 'a,Qfor1 <p<2

Lemma 2.7 (Dual Spaces). Let Q be an open subset of X, p € (1,00], and let us
assume property (A). Then F € D;,l[a,Q] if and only if there exzist (fo, f1,..., fa) €
(LP' (2, m))"+! such that

(Fyu) = /Qfou dm + g/ﬂf,-Liu(z)dm for any u € Df[a, Q).
Proof. We fix (fo, fi, .-, fn) € (L (2))**! and define
(Fu) = /nfou dm + g/{; fiLiu(z)dm for any u € D}[a,Q].

By the Holder inequality we deduce that F is a bounded linear functional on DP?[a, §2].

Let now F € D;,l [a,Q]. Consider the embedding T of D¥[a, 2] into LP(2, m) defined
in (2.9); T is an isometry and T(D}[a,Q]) = Y; is a closed subspace of (LP(Q2, m))"+1.
Let us consider the inverse operator 77! : Yy, — Dg[a, Q] and F-T7!: Yy — R which is
a bounded linear functional on Y;. Then from the Hahn Banach theorem, there exists
a unique extension G of F-T7! to (LP(Q,m))"*! as a bounded linear functional, with
the same norm as F'- T~!. Let now v = (v, v1,...,vn) € (LP(R,m))"*'. From the
Riesz representation theorem there exists (fo, fi,..., fn) € (L”'(Q,m))"+l such that

(G,v)prp = /Qfovo dm+2/nf.~v,~ dm (2.10)
i=1

where (-, ) p is the duality between (L? (2, m))"*! and (LP(Q2,m))"*!. Then, for any
u € D¥{a, ),

(F,u)=(G,Tu),,,,,,z/Qfoudm+z/nf,1;,~u(z)dm
i=1

and the assertion is proved il

Lemma 2.8 (Convergence of integral terms). Let us assume that the function ¢
and the sequence Y € Dy[a, ] verifies
\

wg
¢ € Dia,Q] and a(p,¢)(z) £ C a.e. with respect to m 1n 2.
Then a(y*,¢) € L%(Q,m) and

D[a,Q)

L*(Q,m

a(y*,¢) o(, ¢).
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Proof. Using (2.4) we have
|, 6))| < (a(w",¥4)()) * (a(4,)()) * < Clalw,u)()*.
Then
[ tatw 60 dm < ¢ [ (atw, ) Ndm < c.

Thus o(¢, ¢) € L*(,m) is uniformly bounded and, at least after extraction of subse-
quences, there exists a function x € L?(2,m) such that

L¥(Q,m)

a(y, ¢) X-
On the other hand, applying the Mazur lemma, it is easy to prove that there exists a
sequence of non-negative coefficients 7{ such that 3, ¥ = 1 and such that the sequence

=Y et
£

strongly converges to ¥ € D[a,]. This implies that

/ ((gi, 8) ~ (¥, 8)) dm = / alg: — 1, ) dm
Q Q

SC/Qa(gi—l/),gi—d))dm
-0

L*(2,m)
and then a(g;,¢) ———— a(¥, ¢). Then for any v € L%(Q, m) we have

/a(d),qﬁ)vdm:/ lim a(gi, ¢)vdm
Q Qi

= lim /Q a(gi, ¢)v dm
= lim | a <Z 75¢¢+",¢) vdm
= Jim 30 [ g
,§&§:7g/ (a(pt,¢) — ﬁdm{:Axv&m

We have to prove that
1 € e+i _ _
tl‘_“c}oze: Vi /n (a(¥**, ¢) x)v dm = 0.

From the definition of L%(2, m)-weakly convergence we have that for any 7 > 0 there
exists an €* such that for any € > ¢* we have

> /ﬂ (a(**,8) = x)vdm

so the assertion is proved i

<Y <,
e
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Let us denote by R(f2) the set of Radon measures on 2. We say that a sequence
pf € R() is w*-bounded if for every compact set K in  there exists a constant Ck

such that
‘ / ¢dp®
Q

for every ¢ € C°(Q) with supp{¢] C 2 where C%(£2) denotes the space of functions that
are continuous in 2. We say that a sequence u® € R(2) w*-converges to u if

< CK ”¢” Lo (Q;m)

lim | ¢du° =/¢dp
e—0 Jjo Q

for every ¢ € C°(§2) with supp[¢] C Q.

Lemma 2.9 (Convergence of Radon measures). Let K be a compact set in 2, and
pe € R(Q) with

w— lim pf = pu.
e—0

Let us assume that V is a compact set in C°(Q). Then

lim | ®gvdp’ =/ & xvdy,
o}

e—0 Jq

uniformly for v € V, where &y is the cut-off function defined in Lemma 2.1.
Proof. It is enough to observe that ® kv is a compact set in C°(£2) and

d d
supp [®xv] C Uzex B (z 7K> = {2: €N: d(z,K) < 7"}

where {z € Q: d(z,K) < %‘} is a closed set contained in Q and then a compact set in

97 ]
Definition 2.10. We say that f > 0, with f € D™ }(q, (), if

(fiv) >0 for any v € Dyla,Q) with v >0 a.e. in Q.

Lemma 2.11 (Convergence in D™'[a,§]). Let f¢ be a sequence in D~ ![a, )], such
that

w— lin})fC =f in D7 !{a, Q] and fe>0.
Then f¢ and f belong to R(Y) and
w'— lirr(l)fE =f in R(Q).

Proof. Let K be a compact set in 2 and ¢ € Dy[a, 2] N C%(NN) with supp [¢] C K.
Then

—NdllLo(a,mPr < ¢ < ||@llLe(a,m)Pr

where ®x is as in Lemma 2.1. Then, using the assumption f¢ > 0,

(£, &), I{f, #)] < sgpl(f‘,‘bx)l 1llLee(@,m) < CrllllLoo(,m)-
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Taking into account the density of Do[a, 2] N C°(Q) in C°(2) we have that f¢ and f
define some Radon measures. From the relation

lim [(f ~ f,)| =0

for any ¢ € Dgla, 2] N C°(R) and taking into account that, using Lemma 2.1, every
¢ € C°() with support in a compact set K in  can be approximated by a sequence
{¢°} € Dola, 2] N C°(Q) with supp [¢¢] C U.ex B(z, ), we have w*-lim,_o f* = f in
R(2) N
Let us consider now the problem
u € Doyla, N
a(u,v) = (F,v) for all v € Dg[a, ()

where FF € D7 '(a,Q]. We want to prove some properties of the solution of problem
(2.11).

Theorem 2.12 (L*-estimates). Let F € D;'[a,Q)], and ¢ > vV 2 where v is as
in Section 1. Then the solution of problem (2.11) verifies

suplu| < Cm(Bg)¥ ~+||F|

where @ C B with R<RandvVvV2< <q.
Proof. From Lemma 2.7 there exists (fo, fi,..., fa) € (L9(£2,m))"*! such that

(F,v) = / fovdm + Z/ fiLiv(z)dm for any v € D [a,9)
Q2 i=1 79

1, 1 _
where 2 + 7 = 1 and

||F||=</nf8dm+2/nf,9dm) . \
i=1

We use Stampacchia’s method {26]. Let

r—k ifr>k
B(r) = (sign)(max(|r| - k,0)) = {0 ifr <k
T+ k ifr < ~k.

As in [3] we use f(u) € Do[a, ] as test function. By the Sobolev-Poincaré inequality
(3, 5] we obtain

(/Q('“' - k)ﬁ%dm) 7 < IR Aty

where C denotes here and in the following possibly different structural constants and

A(k) = {z € : |u(z)| > k}. Then if A > k > 0, we obtain

m(A(R)) < (h = F m(A®R) | I
where [ = (1 - %)/(1 — Z) > 1. Then the result follows from Lemma 4.1 in [26]
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Theorem 2.13 (Holder-continuity). Let F' € D;'[a,], ¢ > vV 2, and u be the
solution of problem (2.11). Then u is locally Hélder continuous in Q. Moreover, let
B(z,k*R) CC Q, where k* > 2 is o suitable structural constant depending on k only.
Then for k*r < R < kﬁ. we have

T\Y 1_1
osca(enu S C () +m(Blz R 4] |F|

where v € (0,1) 13 @ structural constant and v V2 < v' < gq.

Proof. We represent u in B(z,k*R) as v + w where v and w are solutions of the

problems
v —u € Dg[a, B(z,k*R))

/ a(v,()dm =0 for all { € Dyla, B(z,k* R)) (2.12)
Q
and

w € Dgla, B(z, k" R)

{ /(;a(w,()dm = (F,v) for all ¢ € Dyla, B(z,k*R)), (2.13)

respectively. From [5: Proposition 7.1 and Theorem 7.3] we obtain for r < R

osenery < C (5) /B MmO (%) 1E

where v € (0, 1) is a structural constant. From Theorem 2.12 we have

sup |w| < Cm(B(z,k*R))¥ 3| F|.
B(z,k*R) .

Then, also using the duplication property,
T\ 11
oscn(eryu < C [(5) +m(Blz,R)¥¥] IF

and the assertion is proved i

Corollary 2.14 (Locally uniform convergence). Let u® be the sequence of solutions
of problem (2.11) associated with F = G* € Dq_l[a,Q], g > v V2, and assume that the
sequence G* is bounded in D;'[a,Q]. Then there ezists a subsequence u® of ut which
converges uniformly locally 1n Q.

Now we can prove the result that will be the fundamental tool for the proof of
convergence in Df[a, 1] where p € (1,2).

Theorem 2.15 (Strong convergence). Let u® be the sequence of solutions of prob-
lem (2.11) associated with F© = f + f where

fé,f € D™ '{a, 9}, fe >0, w— lim f* = f* in D7'a,9).
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Then
w—lim u® = u® in Dy[a, Q) and lin}) u® =u® in D[a,Q)
e

£—0
for every g € (1,2), where u® is the solution of problem (2.11) associated to F = f° + f.

Proof. It is easy to see that

w— lim u® = u° in Dg[a, Q).

By the compact embedding property of Do[a, ] into L2(2, m) (Lemma 2.5) we have

lim u® = u° in L*(Q,m).

&—

Take now ¢ € Dq',’[a,Q] with ||#]l—1,¢ <1 where'q' > vV 2, q € (1,2), %'+ 31,- =1 and
|l - -1,y denotes the norm in D'l [a,9]. Denote w® = u® — u® and by uy the solution
of problem (2.11) associated wnth F=1. Let K C Q be a compact set, and let &5 be
as in Lemma 2.1. We want to prove that

lirr(l) dpw® =0 in Dd[a, Q).
We have that

12 kw (I pgja,) = sup (®xws,P)
veED a2 1¢ll_y, o <1

e sup a(®rw, uy).
$ED a2, Ibl_,, g <1

So we have to prove that a(®xw®,uy) converges to 0 uniformly with respect to ¥ €
D;l[a, ], with [|#]—1,¢# < 1. We have

a(Prws, uy)
=/a(fI>Kw‘,u¢,)dm
)
=/a(@;(-,u,;,)w‘dm+/a(w‘,u¢)‘I>Kdm
Q N
=/a(@K,u‘i,)w‘dm-i—/a(w‘,u,,,@k)dm—/a(w‘,@x)uwdm
Q o Q

=/a(q)K,u¢)w‘dm+/u¢4>K(f‘—fo)dm—/a(w‘,é;()uwdm.
Q Q Q

The first term in the right-hand side converges to 0 uniformly with respect to ¥ €
_l[a €], with ||¥||-1,¢ < 1. Thanks to Corollary 2.14 and to the bound ||| -) ¢ < 1,
we have that uy®k belongs to a _compact set of C%(§). Then we use Lemma 2.11 and we
have that the second term also converges to 0, uniformly with respect to '€ D 7 a, Q)
with ||| -1,¢* < 1. Finally, from Lemma 2.8 we have that a(w®, ®x) converges weakly
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to 0 in L%(Q); moreover, uy is in a compact set in L?(2,m). Then also the third term
converges to 0 uniformly with respect to ¥ € D;] (@, Q], with ||3]|—1,¢# < 1, and we have
proved that

lirr%J ®xw® =0 in D a,Q) and then lirr%) dpw® =0 ae inQ.
£— &—

Taking into account that a(w‘,w‘)% is bounded in L?(R2,m), then a(w*,w®)? is equi-
integrable in  where ¢q € (1,2). So we have, for every ¢ € (1,2),

lin}) oz(w‘,w‘)% =0 in LY, m).
Taking into account that lim,_ow® = 0 in L?(f2,m), we obtain lim,_ow® = 0 in
Dila, Q) B

The following corollary of Theorem 2.15 gives a generalization to our framework of
a previous result of F. Murat [25] relative to the usual Sobolev spaces.

Corollary 2.16. Let
€ D7 '[q,9), fe >0, w— lin})fc = f° in D7 '[a,Q).
£—
Then
lim /= in D;'[a,q)
for every ¢ € (1,2).

Proposition 2.17 (Inequality for positive data). Let u be the solution of the ho-
mogeneous relazed Dirichlet problem (1.1) in 0 with respect to the form a, the function
0< f € D7 'a,9Q] and the measure u € My. Then

/s;a(u,v)dmg/nvdf (2.14)

for all v € Dy[a, Q] N COQ) with compact support in Q and v > 0.

Let us remark that the hypothesis 0 < f € D™'[a, 9] thanks to Lemma 2.12 implies that
fER(N).

Proof. The proof is the same as given in [11] for the usual elliptic setting taking
into account the ”chaine” rule for the density of our form (see (4] and [15]) I

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. It is enough to prove the result for f € L%(f), and by
the linearity of the problem for f > 0. First of all we have the weak convergence of the

sequence u¢ in Dgla, 2] to u from the definition of I'-convergence. Then we can define
fe € D7 'a,] and f° € D7![a, Q] by the relations

/ a(u®,v)dm = (f — f%,v) for all v € Dygla, Q]
Q

and

/ a(u,v)dm = (f — f°,v) for all v € Dya, ).
Q

By Proposition 2.17 f¢ > 0 and f° > 0; moreover, we have also that w-lim._q f¢ = f°
in D7'(a; ). Then (1.5) follows from Theorem 2.15 il
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3. Proof of Theorem 1.5

First we give some preliminary results.

Lemma 3.1 (Convergence of integral terms). Let us assume that ¢ € D[a, Q) and
that there ezists a constant C such that the sequences ¥¢ and v& verify

[ @) imsc o (31)
0
lv° [l Leo (2,m) < C < 00 and v® = 0 a.e. with respect to m. (3.2)
Then
/ a(p®, ¢y dm — 0. (3.3)
Q ,

Proof. As in the proof of Lemma 2.2, it is easy to see that

la(¥?, $)| [v°| < a(v®,¥°) (4, 6)F|v°.

By integrating in Q with respect to m and by using the standard Hélder inequality, we
obtain

‘ / a(¢‘,¢)v‘dm‘ < [ oy, gl dm
(13 [1]
< / a(¥*, $) b a(d, )} [v°] dm
1]

<(/ a(w,w‘)dm)% ([ a(¢,¢)(v‘)2dm)%

1

<c ( / a(¢,¢)(v‘)’dm) "

Now, a(¢, $)(v*)? < Ca(s,¢) € L} (2, m) and a(¢, ¢)(v¢)? — 0 a.e. with respect to m,

and we conclude by using the Lebesgue convergence theorem i

Lemma 3.2 (Convergence of integral terms). Let us assume that
¢ € D[a,Q] N L*®(Q,m) and v € D[a,Q] N L®(Q,m)
and that there ezists a constant C such that the sequence ¥¢ € Dy[a, Q] verifies

Do[a,ﬂ]

l¥°llLo(amy <C  and  ¢°

Then
/ a(y®, dvdm — / a(y, ¢)vdm. (3.4)
Q /Q

Proof. From the compact embedding property (C) we have that ¥° — 1) into
L*(Q,m). Let us recall that the space Dofa,Q] N L®(Q,m) is an algebra and also
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an ideal in Dla,Q] N L*°(,m). Then the sequence ¥*v € Dyla,R] N L®(N,m), it

D[a,2
is uniformly bounded in Dy[a,f?], and we obtain that ¥*v fo 0l X. Again by the
compact embedding property (C) we have that
v - x strongly in L%(Q,m). (3.5)
Then x = v and
D[a,Q}
ey Y. (3.6)
We have :
/ a(yp®, ¢)vdm = / a(yv, ¢)dm - / a(v, )y dm. (3.7)
Q Q Q

Because of (3.6) the first term in (3.7) is such that

/a(z,/;‘v,qS)dm—»/a(d)v,qS)dm.
Q Q

By applying Lemma 3.1 to the second term in (3.7) we obtain

[ otw,8wim = [ atov,9)am - [ a(w,0ppdm = [ oty dm

and the assertion is proved B
Using Lemmas 3.1 and 3.2 it is easy to prove the following one.

Lemma 3.3 (Convergence of integral terms). Let us assume that ¢ € Dla,Q N
L>*(Q,m) and that

(i) lve|lzeo(2,m) < C for some constant C
(ii) v — v a.e. with respect to m
(iii) v € D[a, Q] N L°(Q,m)
and that the sequence ¥ € Dyla, ] verifies

. Dola,Q)

[¥% [ Lo (2,m) < C and

Then

/ a(y®, p)vdm — / o, d)vdm. (3.8)
Q Q

Remark 3.1 (”Comparison principle”). Let u®, w®, u and w as in (1.4), (1.6),
(1.7) and (1.8), and f € L°(f). Then using the properties of the strongly local reg-

ular Dirichlet form a we obtain the existence of a constant C independent on ¢ (but
dependent on || f|| e (q)) such that

|uf) < Cw® and ju| € Cw. (3.9)
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Lemma 3.4 (Convergence in the set w # 0). Let u®, w®, u, w and f be as in
Remark 3.1 and let the assumptions in Theorem 1.5 hold. Denote for any 6§ > 0

£
€ € uw

—yf - — .10
e sup{w, 6} (310
and
Q= {z€Q: wx)> 6} (3.11)
Then
lim a(rg,rg)dm = 0.
e—0 Qa5

Proof. The weak maximum principle for the strongly local regular Dirichlet form
a, the positivity of the measures p¢ and ;1, and Proposition 2.16 1mply the L*(£2) and
Dola, 2] uniform bounds

lufllLee(@,m) < C o w® (| Lo (@,m) < C (3.12)
| Doa, ) < C lw® |l Dofa,0) < C.

Moreover, it is easy to remark that
u® — u, w® — w weakly in Dyla, Q] (3.13)
u® = u, w® — w strongly in L*(Q,m) (3.14)
u® — u, w* — w ae. with respect to m in Q. (3.15)

By using (3.12) and (3.15) we obtain the following properties on the convergence of the
sequence r:
7‘; € Dy [a, Q]

limr§ =rs a.e. with respect to m in Q
e—0

. . (3.16)
sl Lo (2,m) < C and |Ir§llpgja,e) < C
rs — s weakly in Dgla, )

where C is a constant independent of € and

rs = u (1 - —w—) . (3.17)

sup{w, 6}
If ®15(t) = }inf{(t — 6)*, 6}, let us define the function ¢ by ¢(z) = @' 4(w(z)). It has

the following properties:

s Dol 2N I=@), sz el s={,_o mO¥, . G

We have to prove that fn“ a(r§,r§) dm tends to zero. Using (3.18) and the positivity
of a(-,-) and u® we have

/ a(rg,r§)dm S/a(rg,r§)¢dm+/(r§)2¢d/f. (319)
Na2s ’ Q Q
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We shall prove that the right-hand side in (3.19), denoted by I in the following, tends
to zero. Thanks to the definition of r§, the bilinearity of the form and the Leibnitz rule

/a(u 7‘6 ¢dm / (W )¢dm
r € L § ¢
+/ﬂu rsddu ‘A(Sup{w,é})ré(bd#
. . e ey W
=/(;a(u ,m)d’dm—/na(w ’Ts)sup{waé}qsdm
u € e crs € w” 5 )
= [/ a(u‘,"gd’)dm'*'/ ufrgd;d/f]
0 Q
e . u e ¥ e ¢
e (o ritiaye) am [ s o]
o (U \egm
_/na(u ,¢)T¢sdm+/a(w ’sup{waé})rédm

'/Q“(W )"’"’d'”

We have r§¢, rid ooy € Dy[a, 2] N L°°(2, m) and we can use the two functions as

(3.20)

test functions in (1.4) and (1.6), respectively, to get
u
I= / r‘¢dm+/ r‘d)————dm—/ a(u, ¢)rsdm
nf ’ Q ’ sup{w, 6} Q ( Iré

ug u s
& £ — (4 d X
*/n“(“’ ’sup{w,6}>“"””‘ L“(sup{w,é}’”)“’ pam

Let us consider the first two terms. From (3.16) we obtain that r§ — rs strongly in
LP(2,m) for any p € (1,00) and then

tim [/ fr6¢dm+/ro¢ p(w.3] ]

/f"6¢dm+/r6¢sup{w 6}
fr5¢dm+/ frsdpdm

Q\Q

u u
+ r§p——————dm + / Tsp———— dm
/(;6 6¢Sup{w: 6} Q\ Qs ’ Sup{w)é}

From (3.18) ¢ = 0 in Q\ Q5. Otherwise, in 5, w(z) > § and r5 = u(l — m“;—’ﬂ-) =0
which implies that the right-hand side in (3.22) is zero.

(3.21)

(3.22)

Qs

Let us consider the third term in (3.21). Applying Lemma 3.3, with * = u®,
¢ = ¢ and v = r§, thanks to (3.12) - (3.15) u® verifies the assumptions of the lemma.
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Analogously, ¢ € DP[a,] N L°°(Q,m) and r§ verify the assumptions of the lemma
thanks to (3.16). Then we obtain

/ a(u®, d)rsdm — / alu,¢)rsdm = 0.
Q Q
The last equality has been obtained using the Leibnitz rule. In fact, we have

a(u, )rs = a(u, érs) — a(u,rs)¢ = au,rs)é

a.e. in {2 where we take into account that ¢rs = 0; the result follows from the observation
that the term in the left-hand side is zero where ¢ or r4 are zero.

Analogously, for the fourth and fifth terms in (3.21) we have
/ (% Vream /a 5 | whdm
R, S - _ —
o " suplw,8}) T o \supfw, 6176 ¥
u¢ u
_ dm — _— =
fie (“” sup{w,a}) redn = o (sup{w,a} ’”) wedm =0

and the assertion is proved il

Lemma 3.5 (Convergence in the set w = 0). Let u® and w be as Section 1. Then

§—0 ¢

lim lim sup/ a(u®,u®)dm = 0 (3.23)
w<é
Proof. Let us consider the function
P2(t) =1 - "5(t) =1 — %inf{(t — 6, 6)

and denote
¥i(z) = 85(u(z)). (3.24)
The function %° has the following properties (thanks to Remark 1.2):

0 in Qgg

1/’6 € D[a,Q]N L*=(Q,m), 11’6(1‘) € [0,1], 1/)6 = { 1 inQ\ Q.

(3.25)
Moreover, we observe that 1 — ¢® € Dg[a, . Then, as in (3.19), from (3.25) we obtain
/ a(u®,u®)dm
w<é
< / a(uf,us)Ypldm
0
< / a(u®, u®)pldm + / (u€)2yp8dpt (3.26)
) Q ‘
=/a(u‘,u‘¢6)dm+/u‘(u‘z/;d)dy.‘—/ a(u®, v®utdm
Q Ja _ Q ,
= / f(uy®)dm — / a(u®, ¥ usdm.
Q Q
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Easily, because (3.12) and (3.15),

/ fusy®)dm — / (uyp®) dm. (3.27)
1] Q

Let us consider the second term in (3.26) and apply Lemma 3.3 where %¢ = u®, ¢ = 1)°
and v¢ = u®. Thanks to (3.12) - (3.15) u® verifies the assumptions of the lemma and

¥t € DP[a, Q) N L°(Q,m). Then
/a(u‘,z/;é)d’dma/a(u,¢6)udm. (3.28)
Q Q

By using (3.27) and (3.28) in (3.26) we obtain that

limsup/«S a(u®,u®)dm < /;If(ud)G)dm—/‘;a(u,l/)'s)udm. (3.29)

e—0

Now we have to let § converge to zero in (3.29). First let us consider the second term.
Thanks to the Holder inequality,

Jyotwsmans ([ “(‘*”6*'/’6)“2"’")% (/[ atwuram) %

Y

<c (/ﬂ a(w,w)u’dm) -

Using the strong locality of the form a, the truncature rule and Remark 3.1 on the
comparison principle, we obtain

/ a(tj)&, 8 )uzdm
Q

1
= /{2)(‘/;66(0,1)0(‘/)6,1/):)“2‘17" < ] wae(,g,gg)a(w,w)uzdm

1

1 (3.30)
< 05_2 Xw€(6,26)0'(waw)w2dm < Caz /{;xwe(éyu)a(w,w)wzdm
Q

1
< Cﬁézwae(a,zo)a(w,w)de CLXwe(a.zé)a(w’w)dm

where x 4 is the characteristic function of the set A. But xy¢(s,26) — 0 a.e. in2,as 6 —
0. Moreover, Xye(s26a(w,w) < a(w,w) and by applying the Lebesgue convergence
theorem

/ Xwe(s2s)a(w,w)dm — 0. (3.31)
Q

Let us consider the first term in the right-hand side of (3.29). Using (3.25) and Remark
3.1 on the comparison principle we get

\/ Flug?) dm| < / |fug®|dm < c/ lu| dm
Q Q w<26
—-C |u|dm§v/ |w|dm = 0.
w=0 w=0

(3.32)

Then the convergence of (3.29) to zero as 6 — 0 follows from (3.31) and (3.32)
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We are now in position to prove Theorem 1.5.

Proof of Theorem 1.5. Thanks to (3.16) and the Poincaré inequality we have
only to prove that

e—0

lim lim sup/ a(rg,rs)dm = 0.
50 Q .
From Lemma 3.4 we have

lin}) a(r§,rg)dm =0
e—
26

where we recall that Qs = {z € Q : w(z) > §}. Then we have to prove that

lim lim sup/ a(rg,r5)dm = 0. (3.35)

—0 .—0 <26 -

From the definition of r§ and the bilinearity of the form,

/ a(rs,rg)dm
w<26

32(/‘”960(“ u® /w (sup{wzts} Su;u:&}) )

From Lemma 3.5 we have

11m lim sup/ a(u®,u®)dm = 0.

e—0

Then, to prove (3.35), we have to prove that

uw® uw*
im li dm = 0. .
gl_r'n u:lj(lllp /:0526 “ (Sup{w) 6} ’ Sup{w’é}) ™ 0 (3 36)

/ N ( uw® uw® ) dm
w<26 sup{w,&} ’ Sup{wvé}
2
= [ Gartirgy) o wsam
* 2/@6 wop (5] (sup{l:u,a} ’“”) am
* v/:u$26(we)za (Sup{l:”a 6} ’ sup{‘!:‘)) 6}) dm

Let us recall that, thanks to the bilinearity and the Leibnitz rule, we have

a(u,u) = a’(zz, gz) =a (g, %) 22+ a(z,.z) (%)2 + 2a (;,2) .

(3.37)
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Denoting by R the right-hand side in (3.37),

/w Wt (ptay ™) o

@) Vdm
+/wsu (sup{w, e 2 (3.38)

- /wﬁit; (SUIE?;)Z}V (sup{t:u,é} )2 a(sup{w, 6},sup{w,8}) dm

(we)? ( u )
- 2 ua ,sup{w, 6} | dm
| 2tz e (g ot
=I+II4+IIT14+1V +V.
Let us consider separately the five integrals I, II,III,IV and V.

The integral I: To prove the convergence of the first term we use Remark 3.1 on
the comparison principle:

2
. u
I=/ (———) a(w®, w® deC/ a(w®, w®)dm.
w<26 sup{w, 6} ( ’ ) w<26 ( )
By Lemma 3.5 (applied to w® where f = 1; see (3.5)),

lim lim sup/ a(w®,w®)dm = 0.
60 c—0 Jw<26
Then
lim limsup I = 0. (3.39)

6—0 .—o0

The sntegral II + V: We have

e[ e (o)
<su;(>1f)w)6}>2 (sup{ peuelun)) am

First we let ¢ — 0. Then the limsup is obtained by using arguments analogous to those
in the proof of Lemma 3.4. More precisely, by Lemma 3.3, then

I / uw® u ) 4
lrzlj(l)lp .w526 sup{w 6} a Sup{w,&} yWw m
- (we)? u
/M (upfw, 517 \upfuw, 3 P18} ) 4

_/ uw a( u w)
we2s sup{w,8} ~ \sup{w, 6}’

(su;f{wzjz«snz  (saptaay ot} ) am

(3.40)
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Now letting § — 0 in (3.40) we get

uw u

§‘~o/w<26 sup{w,3] (sup{w,s}’“’>

< him (/ (ua(;,w>
6—0 \ Js<w<2s sup{w, 6}
—ua (%,w)) dm + / %a (%,w) dm)

w<é
uw  fu
= li —_ = d
6’l’(‘;/w<,, 5 “(5”") i
= lim e — a(u,w)dm

where we have used the strong locality of the form. Moreover, from Remark 3.1, there
exists a constant C such that |u| < Cw < C§ in the set w < §. Then

/ 3 6a(u w)dm{ < Cllm/ |a(u,w)|dm
w<é

=C |a(u,w)|dm = 0.

w=0

lim
50

For the last relation we can use the Holder inequality and the equality f —o la(w,w)|dm
=0 (see Remark 1.2).

The integral I1I: As in the preceding term let first ¢ — 0 and apply the Lebesgue
convergence theorem to get

1imsup/w &a(u,u)dru/w e w)dm, (341)

e—0 <26 (sup{w,6})? <26 (sup{w, 8})?
Now we let 6 — 0 in (3.41) to get

0<li / (w)” alu,u)d
im ————— a(u,u)dm
-0 Jyu<as (sup{w, 8})?
© < lim : a(u,u)dm:/ a(u,u)de/ afu,u)dm
6—0 w<28 w=0 u=0
=0

(see Remark 1.2 for the last equality). Indeed, thanks to Remark 3.1, on the comparison
principle u = 0 on the set w = 0.

The. integral IV: As in the precedmg term let ﬁrst € — 0 and apply the rema.rk to
Lemma 3.3 to get

€ 2 2 :
. w u
e [ (tear) (st otowtodhswua)an.

(342)
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Now we let 6 — 0 in (3.42). Using as in the preceding terms Remark 3.1 on the
comparison principle and the troncature rule, we get

2
w u
<
0 - ;E’.I(l) w26 (sup{w,&} Sup{waé}) a(sup{w’é‘},sup{w’&}) dm

< C lim a(w,w)dm = C/ a(w,w)dm =0
w=0

6—0 Juw<2s
where the last equality follows from Remark 1.2.

Thus we have proved that the lims_.q lim sup, (I + IT+ 11T+ IV + V=08t

References

(1] Attouch, H.: Variational Convergence for Functions and Operators. Boston - London -
Melbourne: Pitman 1984.

(2] Biroli, M. and U. Mosco: Formes de Dirichlet et estimations structurelles dans les milieuz

discontinus. C.R. Acad. Sci. 315 (1991), 193 - 198.

(3] Biroli, M. and U. Mosco: Sobolev and isoperimetric inequalities for Dirichlet forms on
homogeneous spaces. Rend. Acc. Naz. Lincei 9 (1995), 37 - 44.

(4] Biroli, M. and U. Mosco: A Saint-Venant principle for Dirichlet Forms on Discontinuous
Media. Ann. Mat. Pura e Appl. (Ser. IV) 169 (1995), 125 - 181.

(5] Biroli, M. and U. Mosco: Sobolev inequalities for Dirichlet forms on homogeneous spacés.
Proceedings of the Conference "Potential Theory and Degenerate Partial Differential Op-
erators” (ed.: M. Biroli). Dordrecht: Kluwer 1995, pp. 311 - 325.

(6] Brézis, H.: Analisi Funzionale. Napoli: Liguori 1986.

(7] Cioranescu, D. and F. Murat: Un terme étrange venu d’ailleurs. In: Nonlinear Partial
Differential Equations and their Applications, Collége de France Seminar, Vol. 11 and III
(Research Notes in Mathematics: Vol. 60 and 70; eds.: H. Brezis and J. L. Lions). London:
Pitman 1982, pp. 98 - 138 (Vol. I) and 154 ~ 178 (Vol. II). Engl. transl.: A strange term
coming from nowhere. In: Topics in the Mathematical Modelling of Composite Materials
(Progress in Nonlinear Differential Equations and their Applications; ed.: R. V. Kohn).
Boston: Birkhaiiser Verlag 1994 (to appear).

(8] Coifman, R. R. and G. Weiss: Analyse armontque sur certaines espaces homogénes. Lect.

Notes Math. 242 (1971).

[9] De Giorgi, E. and T. Franzoni: Su un tipo di convergenza variazionale. Part I: Atti
Accademia Nazionale dei Lincei, Rend. Cl. Sci. Mat. Fis. Natur. 58 (1975), pp. 842 -
850; Part II: Rend. Sem. Mat. Brescia 3 (1979), pp. 63 - 101.

(10] Dal Maso, G. and A. Garroni: A new approach to the study of limits of Dirichlet problems
in perforated domains. Preprint. Intern. Inst. Adv. Studies: Preprint 67/M (1993).

[11) Dal Maso, G. and U. Mosco: Wiener criteria and energy decay for relazed Dirichlet
problems. Arch. Rat. Mech. An. 95 (1986), 345 - 387.

(12) Dal Maso, G. and U. Mosco: Wiener’s criterion and I'-convergence. Appl. Math. Opt.
15 (1987), 15 — 63.

[13] Fabes, E., Kenig, C. and R. Serapioni: The local regularity of solutions of degenerate
elliptic equations. Comm. Part. Diff. Eq. 7 (1982), 77 - 116.



(14]

(15]
(16}

(17]
(18]

(19)
(20]
(21]
(22]
(23]
(24]
(28]

(26]

Relaxed Dirichlet Problems 309

Franchi, B., Serapioni, R. and F. Serra Cassano: Approzimation theorems for weighted
Sobolev spaces associated with Lipschitz continuous vector ﬁelds Preprint. Dip. Mat.
Politecnico di Milano, Preprint Nr. 174P, 1995.

Fukushima, M.: Dirichlet Forms and Markov Processes. Amsterdam: North Holland
1980.

Finzi Vita, S. and N. Tchou: Correctors result for Dirichlet problems. Aymptotic Analysis
5 (1992), 269 -281.

Giusti, E.: Equazioni ellittiche del secondo ordine. Bologna: Pitagora Ed. 1978.

Hérmander, L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967),
147 - 171.

Hille, E. and R. S. Phillips: Functional Analysis and Semigroups. Providence: Amer.
Math. Soc. 1957.

Jerison, D.: The Poincaré inequality for vector fields satisfying an Hormander’s condition.

Duke Math. J. 53 (1986), 503 - 523.

Jerison, D. and A. Sanchez Calle: Subelliptic second order differential operators. Lect.
Notes Math. 1277 (1987), 46 - 77. :

Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying a Horman-
der condition and applications. Rev. Iberoam. 10 (1994), 453 - 466.

Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994),
368 - 421.

Mosco, U.: Alcuni Aspetti variazionali dei mezzi discontinui. Bollettino della Unione
Matematica Italiana 7-A (1993), 149 - 198.

Murat, F.: L’njection du céne positif de H' dans W19 est compacte pour tout ¢ < 2.
J. Math. Pures Appl. 60(1981), 309 - 322.

Stampacchia, G.: Equations elliptiques du second ordre a coefficients discontinus. Montré-
al: Les presses de I’ Université de Montréal 1966.

Received 22.12.1995; in revised form 20.01.1997



