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Remarks on Analytic Solutions
of Leray-Volevich-Coupled Systems 

W. Watzlawek 

Abstract. A Banach-scales approach is used for studying analytic solutions of systems of linear 
partial differential equations satisfying the Leray-Volevich conditions. Results on the Cauchy 
problem lead to a continuation result which is of the same type as the well known result of 
Widder [10] on analytic solutions of the heat equation. 
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1. Introduction 
Recently M. Reissig [4] discussed the Cauchy problem for systems of abstract evolution 
equations satisfying Leray-Volevich conditions within the framework of Banach scales 
(in this way generalizing abstract forms of the Cauchy- Kowalewski theorem, see [2, 3, 
6]). A simple example of such a system is given by 

Du 1 = Du 1 +aDu 2	 (1.1) 

Dt u2 = f3Du 1 + Du2	 (1.2) 

if an appropriate scale of Banach spaces of analytic functions is used. (We use the 
notations D =	and D = .) With m = 2, m 12 = 3, m2 = 1, m22 = 2, q = 

= 1 we have	q1—q3+1 for i,j = 1, 2. These inequalities are Leray-Volevich 21 q2 
conditions since the numbers - have to be considered as orders of the differential 
operators DZ' in the appropriate Banach scale. These conditions allow to get results 
on the existence of a unique solution for systems which are not of the Cauchy- Kowalewski 
type.

Of course, the terms aDu 2 and 8Du i can be considered as perturbation terms 
which are added to the (non-coupled) system 

Du 1 = Du 1 ) 

D 1 u 2 = Du2.	
(1.3) 
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If analytic solutions of the system (1.3) are studied, a result of D. V. Widder [10] on 
the continuation of analytic solutions of the (scalar) heat equation Du = Du is of 
interest. He proved that a solution

tm 
u(t,x) =	,--	for ui <a and lxi <p	(1.4) in! ii! mn 

of the heat equation can be continued into the strip I tl <a, x E lit This follows from a 
representation of u in the form 

u(t,x) = E ao,n --j h,,(t,x)	 (1.5) 
n0 

(hn are heat polynomials, see also Rosenbloom and Widder [5]) and the fact that the 
series (1.5) is convergent in the strip Itl < a, x E R. (There is no simple generalization 
of this continuation result to analytic solutions of the higher-dimensional heat equation, 
see, e.g., 181.) 

It is easy to see that such a continuation result cannot hold for arbitrary analytic 
solutions of the system (1.1), (1.2) without any restrictions on the perturbation terms. 
The functions

ui(t x) = —D1 u 2 (t x) ) 
u2(t,x)=(1—x 2	 (t ER, x  

)	) 
give a solution of the system (1. 1), (1.2) if a = /3 = 1. Of course, a very similar example 
can be given for the simpler system Du = ADu, where A is a real (2 x 2)-matrix with 
rank  = 1. 

Results on the continuation of analytic solutions of an equation P(D, D )u = 0 
which are based on expansions in terms of polynomial solutions were proved in [9] for two 
classes of linear partial differential equations. In [9] the structure of the argumentation 
was the same as it was used by Widder [10], but the details were quite different. The 
results of Rosenbloom and Widder on the convergence of the series (1.5) were based on 
sharp estimates for the heat polynomials h, in [9] a Banach-scales approach was used 
which is appropriate for the discussion of the Cauchy problem in analytic classes too. In 
the following we will use this approach for the discussion of systems which are analogous 
to the system (1.1), (1.2). For the Cauchy problem we shall get a representation of 
solutions which immediately leads to an expansion in terms of polynomials. This result 
is more specific than the existence result which follows from the discussions of Reissig 
[4]. In addition, the approach is suitable for a discussion of the continuation problem. 

The investigations are based on a reduction to a system Dt v = ALv, where A is a 
real matrix and the scalar equation D t w = Lw has the property that analytic solutions 
can be continued into a strip. In the Sections 2 and 3 we shall not study the most general 
situation since the discussion of a system which is similar to (1.1), (1.2) already shows 
the main features of the approach. In the last section, generalizations are sketched.



Remarks on Analytic Solutions	365 

2. On the Cauchy problem in analytic classes 
Let £r,s (r E 12, 3 .... }, s > 0) be the linear space of (complex) sequences (ak)kEN0 
(No NU{0})with

ll(ak)llr,s = i Iakl(k.)
-i .5 .±i.

< 00. 

An injective map j: £ —* C°°(R) can be defined by 

j((ak))(x)=>akxk	for xEIR 

and the space Xr,o = .i(r,$) becomes a Banach space if the norm 

Ill llr,s = Ili - '( f) 11r,a 

is used. If f E Xr, 3 and m E N, then f(m) E Xr,a for a E (0, s) and 
fm\ 

Ill
(m) 

llr, < I -)	(s - a)	llflIr,3	 (2.1) — 
(see [7]). This fact implies that the system 

Du 1 = DU, + aD 1 u 2	 (2.2) 

Dju 2 = /3D'u 1 + Dr u 2 (2.3) 

where r E {2,3 .... } and a,/3 E R with $ 54 0, considered in the scale (Xr,j X 

Xr,$)3E(01o] is a special case of the systems which were studied by Reissig [4]. If 

Fi (u i , u 2 ):=Du 1 +aD'u2 

F2 (u i , u 2)/3D'u i + Du2 

then according to (2.1) we have for izi, u2, vi, V2 E Xr, (0 < a <s <so) 

I lui — vi II,., , 1 u 2 - V2IIr,s F(u 1 , u 2 ) - F,(v i , V2)11 r	C,1 (s - a)Pi.1 + G'32
(s - 

with p1,1 = 1, P1,2 = 1 + Ir , P2,1 = 1 — Ir , P2,2 = 1 and C, ,1 > 0, C, ,2 > 0 independent 
of .s and a. Therefore, with qi = 1 + 1 and q2 1 the Leray-Volevich conditions 

(j=1,2) 

are satisfied. On the basis of the results of Reissig [4] it can be expected that the system 
(2.2), (2.3) combined with the initial conditions 

u i (0) = 1 
u2(0)=,bJ	

(2.4) 

has a unique solution in Xr,g X Xr, g for t E [0, const (s — a)) if W, 0 E Xr,j (s > a). 
But for the system (2.2), (2.3) it is possible to replace the assumption W, 0 E Xr,s by 
another one which is largely adapted to the perturbation terms aD 1 u 2 and /Dui. 
This will be a consequence of results of [9]. These results show that the sequence (ao)n 
is an element of a space £T,3 if a certain recursion formula holds for the coefficients am,n 
of the function (1.4).
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Lemma 2.1. If a >0,/3>0 and

tk Xm 

	

u,(t,x) = >Ja1,k,m—j—	(j 1,2)
k! m! km 

is a solution of the system (2.2),(2.3) for Jxj < xo, Iti < to, then 

(ai,om +	a20m+i) e er,r(1+a,/j)(to—c)	 (2.5) 

fore E (0,t 0 ). If a >0, 0 >0 and af3 $ 1, then in addition 

(ai,o,m - \/I a20m+1) e r , r I l -/	(to—c)	 (2.6) 

for cE (0,t). 

Proof. A short computation shows that the function 

v(t, x) = u i (t, x) +	D1u2(t, x)	(I x I <x0 , Iti <t 0 )	(2.7)

is a solution of

	

D t v(t, x) = (1 + /) Dv(t, x).	 (2.8) 

Since km 
v(t,x) = > (ai,i, + V5 a2,k,m+1) j —j-	(i x i < x 0 , Itl <t0), 

results of Lemmas 1 and 2 of [9] show that (2.5) holds. The function 

w(t, x) = u i (t, x) -	D1u2(t,x)	(I x I <To, I t l <to)	(2.9)

is a solution of

	

Dtw(t,x) = (1 - /)Dw(t,x).	 (2.10) 

If 1 -	> 0, the results of [9] again show that (2.6) holds. If 1 -	< 0, we
consider the function

@(t, x) = w(—t, x)	([ x I < xo, Itl < to). 

Since Dü(i, x) = 1 -	I Dü(t, x), (2.6) follows again I 

Since rr(1+'/) C £r,rl1_,/;I3, Lemma 2.1 has the consequence that an assump-
tion of the type cp, ,b E X 

rI1—j'Is 
is adequate if the Cauchy problem (2.2) - (2.4) is 

studied in analytic classes and a > 0, 3 > 0, a/3 54 1. 

	

The estimate (2.1) shows that a bounded linear operator T(t): Xr,	Xr,a (where
0<<s) can be defined by

T(t)=
m=O
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for Itl < (s - a). (Of course, D°f = I E Xr,, for I E Xr, 3 .) It follows that the 
function u(t) T(t)uo (hi < s - a) is a solution of D t u = Du if U0 E Xr,rs 

A bounded linear operator J: Xr,s	Xr,s can be defined by 

(Jf)(x) = I f (e) de	for x E R and I E Xr,s.	 (2.11) 

This follows from the estimate 

hi Jf Irs = 
co

 i aki((k + 1)!) 1 s ±i
	Ihf Irs. 

k=0 

(We have used that I = j((ak)) for some (ak) E 
Theorem 2.1. Assume a > 0, fi >0, af3 1, . > S > a >0, W E X11_,çj18, 

E Xr,rIi _.,/; lj and

p + .JjDb E Xr, r( I + v'i ) s• 

Then a solution u(t) Xr,rIl

	

	x Xrrii_V_ of the Cauchy problem (2.2) —(2.4) a k 
is given by 

u i (t) = ((i + /)t)( + /Db) + T((i -  

U2(t) =	((i +	)t)(J +	- T((1 -	)t)(J - 

for Iti < s - a. 

Proof. Combining the assumption (2.12) with 

J(y + VF; DZ 0) = Jp +	- VF; 0(0) 

we get Jp + E X00  Since E X / is and D1 0 E Xrrii_,ci5, 
we have

-	DX E Xr,rii _ is	and	J -	E X,11_15. 

Therefore u(t) E Xrrti	(j = 1,2) are well defined for Iti < .s - a. it is easy to
see that u i (0) = and u 2 (0) = b. The functions 

v(t) = T((1 + /)t) (J + 

w(t) = T((1 - / )t)(J -

(2.12)
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are solutions of the system

	

Dtv(1+/T/)D'v	
2.13 

	

Dtw=(1—)Dw	
(	) 

for Itl < .s - a. (The equations (2.13) have to be interpreted in X 
X 11f- 1 with a E (O,a) arbitrary.) It is also easy to see that we may use 

T((1 + /)t)( +	= Dv(t) 

T((i - ' )t)(ço -	= Dw(t) 

for Itl < s - a. It follows 

	

= -(Dv + Dew)	and	u2 =	- w)	(2.14) 

and

Dju1 = ((i + /)D 1 v+(1 - /)D'w)	 (2.15) 

D j u 2 =((1 + /)Dv(1 - /)Dw).	 (2.16) 

Since (2.14) implies 

	

D'v = Du 1 + /jD 1 u 2	and	D'w = Du1 - J D'u2 

for k E N0 , a short computation shows that (2.2) and (2.3) follow from (2.15) and 
(2.16)1 

Remark. The case a <0, 0 < 0 with afi 54 1 can be reduced to the situation which 
we have discussed in Lemma 2.1 and Theorem 2.1. If a < 0, /3 <0, with w(t) := —u2(t) 
we get the system

Du1 = Du 1 + iaiD'w 
D iw = ifli D ' u i + Dw. 

It is easy to adapt Lemma 2.1 and Theorem 2.1. 
The representation of u, u 2 which we have given in Theorem 2.1 can be inter-

preted as a representation in the form of an expansion in terms of polynomials. If 
e k(x) = - (k E N0 ) and I E Xr,s with I = j ((ak)), then it is easy to see that

	

1 -	akekMr, -# 0 for in -	. Since T(t) : Xr,	. X,,, (a < s) is continuous, 
it follows

T(t)f = >akT(t)ek. 

It is easy to see that the functions T(t)e,, (n E N0 ) are polynomials: 

(T(t)en)(x) = E jk 

rk+m=n 
Since T(t) is depending on r, we will use the notation 

Vr,n(t,X) := (T(t)e)(x) 
for (t, x) ER2 (n E No) .
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3. On the continuation of analytic solutions 

In some sense, the representation which was given in Theorem 2.1 is typical for analytic 
solutions of the system (2.2), (2.3). We shall prove a corresponding result for locally 
given analytic solutions. This result will be an appropriate base for a discussion of the 
continuation problem. If the solution is defined for lxi < xo, I tl < to, it will be continued 
to the strip x E R, I tl < to. This shows that an analytic solution which is given for 
lxi <x0 , t E IR can be continued into R2. 

Theorem 3.1. Let 

u3(t,x)	>ajkm	 (j = 1,2) 

be a solution of the problem (2.2), (2.3) for lxi < xo, I tl < to. Define 

bn = a i ,o, + 01ia20n+i 

for n E N0. 

If  >0,/9>0, 0 54 1, then

and	Cn a i ,o, - Jia2,0,n+1 

u (t, x) =	(: bn Vr,n ((1 + Va,8 )t, x) + E Cn Vr,n ((1 - /)t, x))	(3.1) 

u 2 (t, x) = a200+ 

(:^ bn i vr,n((1 +	)t,x) -	vr,n((1 - V/afl) t , X) 	(3.2) 

If a > 0,fl> 0 , a/9 =1 , then 

u i (t,x) = (u l x - aDu2 (0,x) + E bnvrn(2tx))	 (3.3) 
n0 

/ 
11	'	 00 

U 2 ( t , x) = - I - / ui(0, ) d + au2 (0, x) +	b_ 1 vr,n(2i, x))	(3.4) 2a	j 

	

\ 0	 n0 
with b_ 1 = aa2,0,0. 

In both cases the series are absolutely and uniformly convergent on compact subsets 
of(—to,to) x R. 

Proof. As in the proof of Lemma 2.1, we consider the functions v and w which 
are defined by (2.7) and (2.9), respectively. Since v is a solution of (2.8) with v(0, x) = 

b	, results of the first part of [9) imply that 

v(t,x)	bnvr,n((1 + /)t,x)	 (3.5)
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for Itl < to, x E R. In addition, the series is absolutely and uniformly convergent 
compact subsets of (—to, to) x R. 

If a/i 0 1, we use (2.10) and w(0, x)	 0=This implies 

w(t, x) 
=

Cn Vr,n ((1 -	)t, x).	 (3.6) 

Obviously, (3.5) and (3.6) lead to the representation (3.1) for u 1 and to 

Du2 (i, x) = 
/ 00	 00 

(	bnvr,n((1 +	)t,x) -	cv,((1 -	__) t ' x).	(3.7) 
2v

\n=O	 n=O 

Lemma 2.1 shows that 

( bfl ) flEN0 E £

	

r,r(I+/)(to-c)	for e E (0, to) . 

If a/i 5A 1, then also

	

(cn)0EN0 e cr1i,1(i0....)	for -E (0,to). 

Since the integral operator (2.11) is a bounded linear operator, we also have 

(bfl _ 1 )OEN e £

	

r,r(i+/j)(to-e)	and	(cn_1)0EN E £ r,rI1-JI(to-e) 

Hence, results of [9] show that a function U : (—to + e, t 0 - E) x R - C can be defined 
by

U(t,x) =	 vr,n((1 +	)t,x) -	Cn_l vr,n((1 - 

where the series are absolutely and uniformly convergent on compact subsets of the 
strip (—to + e, to - e) x R. Since 

Dxvr,n(t,x) = vr,n_i(t,X)	for n E N, (t, X) E R2 

it follows from (3.7) that 

	

DU(t, x) = Du 2 (t, x)	for (t, x) E (—to + e, to - e) x R. 

Therefore we have u 2 (t,x) = U(t,x) + u 2 (t,0) - U(t,0). Hence, (3.2) is proved if we 
can show that u2 (t, 0) - U(t, 0) = a2,0,0 for Itl < to - E. We define 

W(t ) = u2 (t, 0) - U(t, 0).
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Since the definition of the polynomials Vr, 0 shows that 

U(t,o) = V	(bri(i +	 - Crk-1( 1 - 2 k=1 

we have w(0) u 2 (0, 0). It is easy to see that with 

V,(t,x) := v, , ,, ((I + /)i,x)	and	V(t,x) : v,, ,, ((1 - 

the pairs (V,, /V 1 ) and (V,, V.-+ 1 ) ( n E N0 ) are solutions of the problem 
(2.2), (2.3). It follows that the functions u 1 and u2 - w give a solution of the problem 
(2.2), (2.3) too. This implies '(t) = 0 and consequently (t) = w(0) = a2,0,0 for 
I t I< t o — E. 

Now assume aj3 = 1. If we define 

U i (t,x) = u i (t,x) - 
1 (u i (0,x) —Du2 (0,x))	 (3.8)

1 U2 (t,x) = 11 2( t , X ) 
-

c. 
(- 

f u1(0,)de +u 2 (Ox))	(3.9) 

a simple calculation shows that the pair ( U1 , U2 ) is a solution of the problem (2.2), (2.3). 
Since a9 = 1, we also have

aDDjU2 = DU1 .	 ( 3.10) 

The definitions (3.8) and (3.9) show that 

Ui (O,x) - cxD1 U2 (0,x) = 0.	 (3.11) 

From (3.10) and (3.11) it follows U i (t,x) = aDU2 (t,x). Since (2.3) holds for (U1,U2), 
we get DU2 = 2DU2 . The definition of the coefficients b0 shows that 

CO

n U2(0,x)=-->b - 
X 

2o	n! n=0 

It follows

U2 (t,x) = -	b_ 1 vr,n(2t,x)	for x ER and ti <to —6 
to 

(6 E (0,t 0 ) arbitrary). Now the representations (3.3) and (3.4) are evident I 

Remark. The results of Theorem 3.1 lead to the following observations on analytic 
solutions of the problem (2.2), (2.3) (with a,6 > 0): 

(I) If a8 54 1, "continuation via polynomials" is possible. 

(II) If a/3 = 1; the question of a possible continuation of a given analytic solution 
into the strip (—to, to) x R only depends on the properties of ui(0, .) - aDu 2 (0, .).
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4. Generalizations 

The method of reducing a Leray-Volevich-coupled system to non-coupled equations is 
applicable to more general systems of the form 

	

Dgu j =	ajkDz1kuk	(j = 1,... ,n)	 (4.1) 

if the matrix (r3 k) has the properties 

rk EN	for j,k = 1,... ,n	 (4.2) 
r3,=r>2	for j=1,...,n	 (4.3) 
rlk - r,k = p, ^! 0	for j = 2,... ,n; k = 1,... ,n	(4.4) 

and the real matrix (a,k) is diagonalizable. 

The Leray-Volevich conditions are satisfied if this system is studied within the frame-
work of the spaces Xr,s: The considerations of Section 2 show that we have-to use 
P,k = 1 rik forj,k = 1,.. . ,n, and if we choose 

qi=1+max{Pi:i=2,...,n} 

qk = q l - Pk for k = 2,. . . , 

then it is easy to see that q, > 0 for k = 1,... , n and p ,	qj - q + 1 for j, k = 1,. . . , n.

In the following lemma we use the notations 

	

= max{r,, : k	1,... ,n},	A = (a k) ' k_l,	p1 = 0. 

Lemma 4.1. Let (u 1 , . . . ,u,) E (C((-t0,t0) x (-x0,x0)))" be a solution of the 
system (4.1) (with (4.2) - (4.4)). If T = ( t k) is an invertible real (ri x n)-matrix with 

TAT- ' =diag(Ai,...,An) 

and

	

Wj := tkDuk	for j = 1,. .. , n,	(4.5) 

then

	

Dw3 = AD'wj	for j = 1,... ,n.	 (4.6) 
Proof. Because of (4.3) and (4.4) we may notice 

T1kr+pk

>	for k=1...n. 
r,k = rlk - fj (j = 2,... ,n) J
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If (u i ,. . . , tL,) E (C((—t 0 , to) X (—x 0 , xo)))" is a solution of system (4.1), it follows 

	

D(D' u) =	aJkDuk =	akD(DUk)	 (4.7) 

for = 1,... ,n. Hence we can write D iv = ADv if v is the column vector with the 
components v, = D1' u. If the column vector w is defined by (4.5), we can notice 
w = Tv. This leads to

D 1 w = TD 1 v = DTAv = DTAT'w 

which is identical with (4.6) I 

It is easy to see how results which are analogous to those of Sections 2 and 3 can 
be obtained by using Lemma 4.1. We mention the following ones: 

(i) If u,(t,x) = >km aikm() (j = 1,... ,n) is a solution of the system (4.1) k! 
rnfor lxi < x 0 ,	< t0 and A, E R \ {O} is an eigenvalue of the matrix A, then 

( > .. I tjk ak o m + pk)m E £r,rI).,l(to_e) 

for  E (O,to). 

(ii) If A, 54 0 for all eigenvalues of the matrix A, then corresponding to Theorem 
3.1 we get a representation of DPI Uk (k = 1,... ,n) in the form of a sum of expansions 
in terms of the polynomials Vr,m(A,t,x) (mENo, j = 1,... ,n). 

(iii) If there is at least one jo E {1,... ,n} with A 0 = 0, then the question of a 
possible continuation of tfl,... , u,, into the strip (—t 0 , to) x R depends on the properties 
of the initial values u i (0,x),.. . , un(O,x). 

The proof of Lemma 4.1 shows that even more general systems can be treated by 
the same methods. We consider a system 

Du 
=

akL3 kuk	(j = 1,... , n)	 (4.8) 

where again the real matrix (a,k) is diagonalizable and L,k are linear differential op-
erators (in general not with constant coefficients), which are coupled by the following 
conditions: 

(a) L,, = L 11 for] =2,...,ri. 

(b) There are p2,• ..,p, EN0 such that with p ' = 0

	

= L i 	for 3,k = 1,... ,n, j	k. 

It is evident that these assumptions allow to get an analogue to (4.7). This leads to a 
reduction to the non-coupled system 

D 1 w, = A,L 11 w	(j = 1,...,n).
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Therefore it is important to know that a result on "continuation via polynomials" holds 
for the equation D i w = \L 11 w (.\ 0 0). It was shown in [9J that this is possible also 
for operators L 11 with variable coefficients. For these operators the approach to the 
continuation result was the same as in the case of constant coefficients. In both cases, 
an appropriate recursion formula for the coefficients bm,n of a solution E bm,n t m x n was 
the essential fact. In the following we mention two examples. 

Of special interest is the example of the operator 

L= ( 1 + y )D1+ xD	(y>—l) 

since it is tightly connected with the "Laguerre heat equation" 

Du = xDu + ( y + 1 - x)Du 

which was discussed by Cholewinski and Haimo [1]. It is easy to see that the transfor-
mation =	T = 1 - c leads to the equation 

Du =	+ ( y + 1)Du 

for which continuation via polynomials was shown in [9]. Now, constructing a system 
of the form (4.8) with n = 2, L 11 = L. and p2 = 1 we get the system 

Du 1 = L.u 1 + aL.D1u2 

D t u2 = f3(xDu 1 + -yu 1 ) + L.1u2 

which has the same properties with respect to continuation via polynomials as the 
system (2.2), (2.3). 

Results of 1 91 show that analytic solutions of the equation D i u = La,btz with 

L,,,6 = ax2D 4 + 2axD 3 + bD	(a > 0, b> 0) 

have the appropriate continuation property. Therefore we get a second example for a 
system of the form (4.8) with n = 2 if we choose 

L 11 = L0,6, L22 = La,b, L 12 = L0,&D, L21	ax2 D + bD. 

Finally, we mention that the methods of the present paper are applicable to systems 
with derivatives of higher order with respect to t. Results of [9] show that continuation 
via polynomials is possible for analytic solutions of certain equations of higher order 
with respect to t.
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