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On the
L-Characteristic of the Superposition Operator
in Lebesgue Spaces with Mixed Norm

Chen Chur-jen and M. Vath

Abstract. We consider the superposition operator Fz(f,s) = f(t,s,z(t,s)) of functions of
two variables in spaces with mixed norm (L, — L,). After establishing a necessary and
sufficient acting condition, we get some conclusions on the L-characteristic of F. We also
prove some theorems, which imply that F is uniformly continuous on balls in the interior of
its L-characteristic.
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0. Introduction

Let T and S each be measurable subsets of some Euclidean space with positive and
finite measure. A real function f(t,s,u) of three variables —co < u < 00,t€T,s€ S
is said to satisfy a Carathéodory condition, if it is continuous with respect to u for
almost all (t,s) € T x S and measurable with respect to (¢,s) for all u. We denote
by Fz(t,s) = f(t,s,z(t,s)) the superposition operator generated by the function f
which satisfies a Carathéodory condition. In this article we shall be interested in the
properties of the operator F for the case when it acts from (L, — L] into [L, — L,],
where 1 < p,q,7,0 < co. Here, [L, — Ly denotes the Lebesgue space with mixed norm

lelhz, ~L.) = ( L(L |z(t,s)|"ds)%dt>%.

Such spaces occur in a natural way in norm estimates for linear integral operators
(‘Hille-Tamarkin kernels’, see, e.g., [1]) and in the study of partial integral operators
[11]. For properties of these spaces see, e.g., (5].
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In the case p = ¢ we have (L, — Lg] = Lp(T x S). In this case many properties
of the superposition operator are of course well known (see, e.g., 7, 8]). In general,
[Lp — Lg] is a regular ideal space [10]. Thus also many properties of F' are known, e.g.
that F is always continuous, if it maps [L, — L,] into [Ly — L] (see [2); if T and
S are just assumed to be o-finite measure spaces, this is also shown in [9]). Thus we
shall mainly be interested in typical properties of F', which depend on the ‘additional
structure’ of [L, — L,].

1. The L-characteristic

Recall that for a ‘one-dimensional’ superposition operator Gz(s) = g(s,z(s)) in Lebes-
gue spaces the study of acting conditions is reduced to a study of growth conditions
for g (7). This leads to characterizations of the L-characteristic of such operators (8].
However, for the superposition operator Fz(t,s) = f(t,s,z(¢,s)) in Lebesgue spaces
with mixed norm already the simple growth condition |f(t,s,u)| < |u|* implies that F
acts from [L, — Lg] into [Lxp — Lig). Thus, if one wants to consider growth conditions
of the form

1f(t,s,u)| < a(t,s) + blul?,

one can not expect to find acting conditions for F : [L, — L;] — [L, — L,] without
the connection r = Ap and 6 = Ag, i.e. 0 = L. In this section we thus restrict to this

case. However, the first lemma will be formulated more general, since it will be needed
later in this form.

The proofs of the following lemmas follow (7].

Lemma 1. Suppose that the operator F acts from [L, — L.} into [L, — L,). Then
i1t 13 bounded, i.e. it maps bounded sets into bounded sets.

Proof. Without loss of generality, we can assume that 0 = 0. By [3: Theorem 3]
(see also [2: Theorem 2.6]), the operator F is continuous at the point 0. This means
that there can be found a number b > 0 such that

e

/T[/Slf(t,s,m(t,s))l’ds]'dz§1 if /T[/su(t,s)wdsrdtgbq,

Suppose now that u € (L, — L,} and

2
nb? 5/ U |u(t,s)|pds] " dt < (n+ )b,
T S

where n is an integer. Then T can be divided into parts Ti,...,T,4; such that

/n [/Slu(t,s)l”dsrdtgbq (i=1,...,n+1).

Hence,

JATAL “’s*““’s”"dsrdt < zi /. | [t sutesprras Tdsn



On the Superposition Operator in Mixed Norm Spaces 379

Thus )
ulliz, -2\’ g
NFulliz,~z,) < [(”[T']) + l} .

This proves the lemma B

We remark that using a similar method as in the previous proof, it can be shown
that [L, — L] is a A, space (and then a split space) in the sense of {4]. Thus Lemma
1 is a special case of the results in [4].

Assume f satisfies the growth condition
1f(ts,u)] < alt,s) + b(s)lul 7,

for some a € [L, — L,] and b € L., where

r= 22 >0
po —gqr

(which implies 7 > r > 1). Then F maps [L, — L,] into [L, — L,]): Indeed,

IFulliz, . < llalliz, 2oy + < / ( / |b<s)|'|u(t,s>|’fds) dt)

<Malliz, -,y + 1Bl 2, llwlliz, -

by Minkowski’s and Hélder’s inequalities.
We notice in the following example that the condition 7 > 0 may not be dropped.

Example 1. For o = ¢, p < r and f(t,s,u) = u the superposition operator F does
not map [L, — Lg| into [L, — L,).

It is remarkable that in case 7 = oo (i.e. po = ¢gr) the condition is even necessary:

Lemma 2. The operator F acts from X = [L, — L] into Y = [L, — L,%'] for
q 2 p, if and only if
|£(t,5,0)| < a(t, s) + blul¥,

where a €Y and b > 0. In case ¢ < p this condition is at least sufficient.

Proof. We just prove necessity. Without loss of generality, assume F'0 = 0. By
Lemma 1, there can be found a number b > 0 such that

/T[/Slf(t,s,z(t,s))l’dsrdtsb’f if /T[/sn‘(z,s)vds]%dtgl,

We define the function

C U s, w)| - blulF £t s, u)| > blul?,
p(t,s,u) = 2
0 i 1£(t,5,u)] < Bjul.
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Obviously, if ¢(t,s,u) # 0, then
lp(ts s, w)|” < 1f(2, s, u)]” = 07 |ulP.
Now, let u € X and G = {(t,s) € T x S : p(t,s,u(t,s)) > 0}. Suppose that

/T[/S Iu(tas)XG(t,s)P’ds}%dt=n+€’

where n is an integer and 0 < € < 1. Then T can be divided into parts Ty,...,Th41
such that

A [/S Iu(t,s)xc(t,s)lf’ds] ' d<1l (i=1,...,n+1).

Then )
/r [/s If(t’5’“(t’5)’<<?(t’8))|’ds] " dt
} Z: /n [/s £t 5,u(t, 9)xa (t, 8))I'ds] % dt < (n+1)b%
and

/T [/s lt’o(t’s’“(“s))l'dS] : dt

<[ |<p(t,s,u(t,s)xc(t,s»rds]%dt

< /T /S (15,5, (6 xatts NI = 8 lult, hxalts o)1) dsrdt

g/T /s If(t,s,u(t,s)xc(t,s))lrds]%dt—/r[/sb'lu(t,s)xc(t,sﬂ”ds]%dt
< (n+1b% —(n+ep¥

<b¥.
By the Krasnoselskii-Ladyzhenskii lemma (6] (see also [2: Lemma 6.2]), there exists a

sequence of measurable functions ux(t,s) such that |ux(t,s)] < k and (¢, s uk(t s)) =
max)y|<k ¢(t,s,u) (k =1,2,...). Obviously, ux € X. We set

a(trs) = sup cp(t,s,u) = kll_‘n;o<p(t)s;uk(t)s))'

—oco<u<oo

By the previous inequality and Fatou’s lemma,

I 1
/ [/ |a(t,s)|'ds] " dt < lim inf/ [/ |(p(t,s,uk(t,s))|rds] " dt <b¥.
T s k—oo Jr [Js

This means that ¢ € Y. Since
a(t,s) = sup  g(tsu) > sup  {If(t,s,u) - blul?
—oo<u<oo

—oo<u<oo

then |f(t,s,u)| < a(t,s) + blu|* B
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For a superposition operator F, let
Lp = {(a,ﬂ,’y)EIa‘F:[L% —-oL%]—o[L% —)LZ"?}

denote the L-characteristic of F, where I = (0,1]. We will mainly consider Lz on the
‘lprism”

A={(a,p1) €l a2n},

since ¢ > p is the condition of Lemma 2.

Theorem 1. If (ag,Bo,7) € Lr N A, then Lr contains all points (a,B,v) € I®
with

B2p, Lxt Pryfm (1)
a [0 7)) . (o4 «Q
or, equivalently, _ L }
a<AuTrae, B2 Ao, v2pTlvo  for some A, p > 1. C(2)

A
Proof. Lemma 2 implies|f(t,s,u)| < a(t,s)+|u|:% witha €Yy = [LBL — Lp_og_].
0 00
Sincea €Yy CY = [L% — Lf;'], again by Lemma 2, F : [L% — L%] -Y if§ > g—‘;
To see that (1) implies (2), put A = % and p = ’\—:1 The converse is straightforward il
As a representative example the following figure shows, how the surface of points of
equality in (2) looks like in case (aq, Bo,70) = (0.8,0.2,0.8):

1...
0.81
0.61

gamma
0.41
SN N
N

0.2 \\\\\\\\\\\ \\\{\\\\\\\\

The theorem is sharp in the following sense:

Example 2. Given some (ag, 8o, 70) € I®, there exists some f such that L consists
precisely of all points (a, 8,7) € I® satisfying (1).

Put f(¢,s,u) = |a(t)b(s)| +|ul*e, where a € Lo \U,5,, Lu and b€ Li\Upep, L
with : : : :

L
]

./\o=ﬁ—0 and Ho = o
ag Bovo
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On the one hand, Lemma 2 implies that Lr contains at least all points satisfying
(1). On the other hand, since ||F0||[Lé—‘Lf] = ||b||L§||a||Lf_, Lr may contain no

points (a,f,v) with ;—7 > po or B < fo. Furthermore, if 2 € L; \ Upsi Im, we
have that y(t,s) = |z(s)|* belongs to [Li — L.], but |Fy(t,s)| > |z(s)|*** implies
Fy¢ [L% —’Lﬁ] for %ﬂ > 1.

For some subset L of I’ we define the projections

LI(C() = {(ﬂa7) : (a’ﬂy‘)’) € L}
L*(B) = {(@.7) : (@,8,7) € L}
L*(7) = {(e,8) : («,B,7) € L}

on each component. Now we may reformulate Theorem 1 as
Theorem 2. L = Ly N A has the following properties:

1. Each L3(v) is zero-concave, i.e.
(@B e L} (y) = (Aa,2p)e L(y)
for A> 1 (and Aa, A3 < 1). Additionally,
(a0, B0) € L¥(v) = (a,B)€ L*(7)

for a < ag and B> By (and a > 7).

2. Each L?(B) is zero-convez, i.e.
(7)€ L*(B) = (A 'a,27'y) € LX)
for A > 1. Additionally,
(@0, 70) € L*(B) = (a,7) € L*(B)

for a < o and v > v (and a > 7).
3. Each L'(a) s zero-hyperbolic, i.e.

B, elli(a) = (M,2'y) e Ll(a)
for A > 1 (end A8 < 1). Additionally,
(Bo,0) € L'(a) = (B,7) € L'(a)

for B> Bo and v > v (and a 2 ).

4. We also have the inclusions

L'(a) N AMap) € L' (ao) for > ag
L*(B) S L*(Bo)  for B<Po

Ls(’l’) n As(’)‘0) c Ls('yo) for v < ¥o.
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The first three properties are just reformulations of (2) (restricted to A). The
remaining properties are consequences (or may of course also be verified directly by
(1))-

It is yet unknown, whether the zero-concave sets (with the additional propery of 1.)
coincide with the sets of £-characteristics of “one-dimensional” superposition operators
Gz(s) = g(s,z(s)) in Lebesgue spaces. However, this is at least ‘almost’ true (up to
some boundary points), see [8]. The next example shows that in this sense the first
property in the previous theorem is ‘sharp’.

Example 3. Given some set M, which is the £-characteristic of some superposition
operator of one variable Gz(s) = g(s,z(s)), there exists a superposition operator F in
spaces with mixed norm with

1) =0 {(@p: S21) 0<asy,

i.e. L} (v) coincides with the given zero-concave set M wherever possible.

Put f(t,s,u) = g(s,u). Ifg: L1 — L%‘ , we have by the well-known acting condition
of the ‘one-dimensional’ superposition operator (see, e.g., [7]) that

£
|f(t,s,u)l = lg(s,u)| < a(s) + blul=
for some a € L%. Thus Lemma 2 implies F : [L% —»L$] - [L% _’LB"?]'

Conversely, if F : [Lx — L. ] [Lx — LT] we have G : Ll —»Lx,sincefora.ny

z € Ly the function y(t,s) = z(s) belongs to [L 1 — L_L] whence Fy e [L y — LB"']
1mp11es Gz € Ln .

2. Uniform continuity

In general, the superposition operator is not uniformly continuous on balls in spaces
with mixed norm (an example will be given later). This is already well-known for the
‘one-dimensional’ superposition operator Gz(s) = g(s, z(s)). However, for that operator
a useful sufficient condition is given in [8: Theorem 17.4]. We will extend this result for
spaces with mixed norm.

The following lemma is implicitly proved in [8: Theorem 17.4], but we give a proof
without referring to the Scorza-Dragoni lemma (thus our lemma holds on more general
measure spaces {2, see the remarks at the end of the paper).

Lemma 3. Let B be a set of measurable functions on Q = T x S, which is bounded
in measure, i.€.
lim sup mes{w € N: |z(w)| > n} =0.
Then the superposition operator F is uniformly continuous on B in measure, i.e. for
any Tn,,yn € B with z, —y, — 0 in measure, we have Fz, — Fy, — 0 in measure.
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Proof. It suffices to prove that any subsequence of z, = Fz, — Fy, contains a
subsequence, which converges to 0 in measure. Thus we even may assume z, — y, — 0
a.e. Now, fix ¢ > 0 and § > 0. There exists some M such that the measure of

Q, = {w €N |zp(w)| 2 M or |yn(w)| > M}

is less than § for any n. Since f(w, -) is for almost all w uniformly continuous in [- M, M],
the sequence

wa(w) = x5 (W)za(w) = xag (W) (Fza(w) — Fya(w))
converges to 0 a.e., whence in measure, i.e., for n big enough, the measure of

Q= {weQ\ QU |za(w)| > 6}

is less than % Thus

mes{w € Q: |za(w)| 2 5} < mes(2, UQ;) < ¢,

which means z, — 0 in measure i

Recall that a set M of functions in X = [L, — L] is said to be of equicontinuous
norm, if

lim sup ||Pp.z|| =0
n—O zeM

for any decreasing sequence of measurable sets D, with (D, = 0. Here Pp, z(t,s) =
XxD.(t,8)z(t,s) denotes the ‘projection’ of z on D,. Since X is a regular ideal space,
Vitali’s convergence theorem holds true {10]:

A sequence z, € X converges in norm to some z € X, if and only if z, — z in
measure, and the set of all x,, is of equicontinuous norm.

Lemma 4. Let X = [L, — Ly and Y = [L, — L,) (1 < p,q,r,0 < 00). If the
superposition operator F acts from X into Y, it maps sets of equicontinuous norm into
sets of equicontinuous norm.

Proof. We just apply the fact that F' is continuous at 0: Assume, there is some
set M C X of equicontinuous norm such that FM is not of equicontinuous norm.
Then ‘there exists ‘a decreasing sequence of sets D, with (D, = 0 and z, € M
with ||Pp, Fzally # 0. Since M is of equicontinuous norm, Vitali’s convergence the-
orem implies ||Pp, zn||x — 0. Hence the continuity of F at 0 yields the contradiction
|Pp,Fznlly = |F(Pp,za)~ FO+ Pp,FO|ly < ||F(Pp,zn)— FO|ly +||Pp,FOlly — 08

Lemma 5. Each ball of [L, — L,] is of equicontinuous norm in [Lp, — Lo}, if
p>po>1and g>qo > 1.

Proof. For the proof just apply Holder’s inequality on the product xp, -z



On the Superposition Operator in Mixed Norm Spaces 385

We now consider the following situation: Let
Xo =[Lp, = Lg,), Yo=[Ly, = Loo], X =[Lp— Lg), Y =[Ls— L,),

where
1<po<p, 1<¢g<gq 1<r<r, 1<0<o00.

Then it is clear that any operator F': Xy — Y, maps X into Y. However, the mapping
F: X — Y may have ‘better’ properties than F.

Theorem 3. Assume the superposition operator F acts from X snto Yy. Then the
mapping F' : X — Y is uniformly continuous on each ball of X, if at least one of the
conditions

Po<p and g <gq - (3)

or
T >T and o9 >0 (4)

13 true.

Proof. Let z,,y, € X be bounded in norm with ||z, — ys|]|x — 0. We have to
prove that 2z, = Fz, — Fy, satisfies ||z,|ly — 0. By Lemma 3 we have z, — 0 in
measure. By Vitali’s convergence theorem we thus have to prove that the set M of
all z, is of equicontinuous norm. If (4) is satisfied, this is true by Lemma 5, since M
is contained in some ball of Yy by Lemma 1. If (3) is true, the set of all z,, and y,
is of equicontinuous norm in Xy by Lemma 5. Thus the set of all Fz, and Fy, is
of equicontinuous norm in Y be Lemma 4, whence also the set of all z, by triangle’s
inequality B )

We emphasize that in (3) and (4) both inequalities must be strict. In fact, the
theorem is sharp in the following sense (we modify an example from [8]):

Example 4. Given numbers py, qo,70, and putting Xo = [L,, — Lg,], Yo = [Lr, —
Loy), 00 = 42, and X = [L, — Lg], Y = [L, = L,) for T = S = [0,1] there
exists an (even autonomous) superposition operator F acting from X into Y, such that
F: X =Y is not uniformly continuous on any ball of X, if either

P=po, ¢2q, r=r, 0<0g (5)

or
P2po, 9=¢qo, T <r19, O=0. (6)

Indeed, put f(t,s,u) = |u|§t‘>1 sinu, and in case (5) consider Qn = T x [0, (4%)”]
(B > 0 fixed), z, = %F7rxq, and yo = 22-17xq,. Then we have ||z x, [lyallx <
B, and |z, — ya| = 7xq, implies ||z, — ynllx — 0. On the other hand |Fz, —
Fy.| > xQn(2n7r)§% implies ||Fz, — Fyn|ly 2> (g)lt;l 4 0. In case (6) consider
Qn = [0,( B )qo] x S instead.

4nw
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3. Remarks

Most results hold for more general measure spaces T and S (with similar proofs):

If one just assumes that T and S are o-finite measure spaces, T being atomic free,
Lemmas 1 and 2 still hold true. If additionally T and S have finite measure, Theorems
1 and 2 remain true.

Lemma 3 holds for arbitrary measure spaces 2, if convergence in measure is replaced
by convergence in measure on each set of finite measure (just apply the lemma for Q
replaced by such a set).

Since Vitali’s convergence theorem may be generalized in the same sense for o-finite
measure spaces (9], Lemma 4 is still true for arbitrary o-finite measure spaces T and S.

Lemma 5 and Theorem 3 just make use of the fact that T and S are finite measure
spaces (in case (4), additionally T should be atomic free, since Lemma 1 is needed).
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