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On the 
,C- Characteristic of the Superposition Operator 


in Lebesgue Spaces with Mixed Norm 
Chen Chur-jen and M. Väth 

Abstract. We consider the superposition operator Fx(t,$) = f(t,s,x(t,$)) of functions of 
two variables in spaces with mixed norm [L9 - LJ. After establishing a necessary and 
sufficient acting condition, we get some conclusions on the C-characteristic of F. We also 
prove some theorems, which imply that F is uniformly continuous on balls in the interior of 
its C-characteristic. 
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0. Introduction 
Let T and S each be measurable subsets of some Euclidean space with positive and 
finite measure. A real function f(t, s, u) of three variables -00 <u <cc, t E T, s E S 
is said to satisfy a Carathodory condition, if it is continuous with respect to u for 
almost all (t, .$) E T x S and measurable with respect to (t, s) for all u. We denote 
by Fx(t,$) = f(t,s,x(t,$)) the superposition operator generated by the function f 
which satisfies a Carathéodory condition. In this article we shall be interested in the 
properties of the operator F for the case when it acts from [L -* L] into [L,. -+ 
where 1 <p, q, r, a <cc. Here, [L - Lq ] denotes the Lebesgue space with mixed norm 

I 
IIXII[LpLq) = (IT (f x(t	ds	dt) 

Such spaces occur in a natural way in norm estimates for linear integral operators 
('Hille-Tamarkin kernels', see, e.g., [1)) and in the study of partial integral operators 
11]. For properties of these spaces see, e.g., f5J. 
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In the case p = q we have [L,, - L q] = L(T x S). In this case many properties 
of the superposition operator are of course well known (see, e.g., [7, 8]). In general, 
[L L q ] is a regular ideal space 110]. Thus also many properties of F are known, e.g. 
that F is always continuous, if it maps [L,, -+ L q ] into [Lr -* L] (see [2]; if T and 
S are just assumed to be a-finite measure spaces, this is also shown in [9]). Thus we 
shall mainly be interested in typical properties of F, which depend on the 'additional 
structure' of (L - Lq]. 

1. The C-characteristic 

Recall that for a 'one-dimensional' superposition operator Gx(s) = g(s, x(s)) in Lebes-
gue spaces the study of acting conditions is reduced to a study of growth conditions 
for g [7]. This leads to characterizations of the L- characteristic of such operators [8]. 
However, for the superposition operator Fx(t, s) = f(t, s, x(t, s)) in Lebesgue spaces 
with mixed norm already the simple growth condition lf(t,s,u)I Jul implies that F 
acts from [L -+ L] into [L An -+ L,, 9 ]. Thus, if one wants to consider growth conditions 
of the form

If(i,s,u)I	a(t,$) + bluI+, 

one can not expect to find acting conditions for F : [L - L q] .' [Lr L g ] without 
the connection r = Ap and a = Aq, i.e. a =21 .In this section we thus restrict to this 
case. However, the first lemma will be formulated more general, since it will be needed 
later in this form. 

The proofs of the following lemmas follow [7]. 
Lemma 1. Suppose that the operator F acts from [L -* L] into [Lr -* LJ. Then 

it is bounded, i.e. it maps bounded sets into bounded sets. 

Proof. Without loss of generality, we can assume that FO = 0. By [3: Theorem 3] 
(see also [2: Theorem 2.6]), the operator F is continuous at the point 0. This means 
that there can be found a number b> 0 such that 

IT [L If( t , s , x(t, s))I r ds] dt	1
I 

if	IT[1Ix(t,$)Idsl dt < bq.
LJS	j 

Suppose now that a E [L -* L] and 

< 1
7,

IfIu(i,$)ldsldt <(n + 1)b, 
.1 

where n is an integer. Then T can be divided into parts T1 ,.. . ,	such that 

J [J 
	di	(i = 1,...,n+ 1). 

Hence,

If( t , s , u(t, s))I r d.9] dt	
: IT, EL 

f(t,s, u(t, s))I r ds] dt	n + IT [L 	1.
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Thus
I 1' IUII[Lp_LqJ	

g	-, 
IIFuII[L,_LJ	[1	b	)


This proves the lemma U 

We remark that using a similar method as in the previous proof, it can be shown 
that [L,, -* L q ] is a L 2 space (and then a split space) in the sense of [4]. Thus Lemma 
1 is a special case of the results in [4]. 

Assume f satisfies the growth condition 

If(t,s,u)I <a(t,$) + b(s)IuI, 

for some a E [Lr -* La] and b E Lr, where 

PTa 
pa - qr 

(which implies r > r > 1). Then F maps [L -* L] into [Lr _+ La]: Indeed, 

II FU IIEL,_L]	III[L—L] + 
(JT(is Ib(s)InIu(i,	

)  
s)I ds) di 

< 1a11 [f -.L,] + Il b il L II U II[L _Lq] 

by Minkowski's and Holder's inequalities. 

We notice in the following example that the condition T 0 may not be dropped. 

Example 1. For a = q, p < rand f(t,s,u) = u the superposition operator F does 
not map [L - L] into [L,. .' La]. 

It is remarkable that in case r = cx (i.e. pa = qr) the condition is even necessary: 

Lemma 2. The operator F acts from X = [L - Lq ] into Y = EL,. -. Lr] for 
q ^: p, if and only if

If(t,s,u)I	-(t, s) + 

where a E Y and b > 0. In case q <p this condition is at least sufficient. 

Proof. We just prove necessity. Without loss of generality, assume FO = 0. By 
Lemma 1, there can be found a number b > 0 such that 

I. 

IT [I 
If(t,s,x(t,$))I rds] di	b	if 

We define the function

I 

IT [L Ix(t, s)I P ds] dt	1. 

U) -= 
I s, u)I - blul' ço(t,s,
10

if f(t,s,u)I > 

if f(t,s,u)I <
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Obviously, if cp(i, s, u) 54 0, then
s, u)I' < 1(1, s, u)I' - 

Now, let u E X and G	(t, s) E Tx S: p(i,s,u(i,$)) > O}. Suppose that 

IT [f 
Iu(i, s )XG( i , s)I Pds] di = fl + 6, 

where n is an integer and 0 e < 1. Then T can be divided into parts T1 ,... , T,,+1 
such that

fTi[is 
Iu(t, s)XG(t, s)I P ds] di	1	(i = 1,... , n + 1). 

Then

IT [f 
f(t , s, u(i, s)XQ(t, s))ITds] ' di 

T%+1 =	IT, [L If( t , s , u(i, s)XG(i, s))I T ds] di < (n + 1)b 
i=1 

and
I 

IT [I 
I(i, s, u(i, s))I r ds] di

I 
< fT V 	i, s, u(t, s)XG(t, s))I r dsl dt 
 j ii 

IT [I ([f(t,s, u(t, s)XG(t, s))I r - br;u(i, s)XG(i, s)) ds] di 

I 
1 If f(i, s, u(i, s)XG(t, s))t r dsI ' dt - IT [I bu(t, S)XG(i, s)I P ds] dt 
JTLJS  

<(n + 1)b - (n + 

<b. 

By the Krasnoselskii-Ladyzhenskii lemma [6] (see also [2: Lemma 6.2]), there exists a 
sequence of measurable functions u k( t , .$) such that IUk(t, s)I k and (t, s, uk(i, s)) = 
max II<k cp ( t , s , u ) (k = 1,2,.. .). Obviously, Uk E X. We set 

a(i, s) =	sup	cp(i, s, u) = lim p(i, s, u k( t , s)). 
k—oo 

By the previous inequality and Fatou's lemma, 
I	 I 

	

IT [f 
Ia(t, s)l r ds] dt <lim inf 

IT [is	
i, s, uk(i, s))l rds di

S	 k—.00   

This means that a E V. Since 

a(i, s) =	sup	(i, s, u)	sup	If(1, s, u)I - bIuI 
— <u<	 —<u< 

I then 1(1,3, u)[	a(i, s) + bIuI



[I) 

0. 
gamma

0. 

On the Superposition Operator in Mixed Norm Spaces	381 

For a superposition operator F, let 

denote the C- characteristic of F, where I = (0, 1). We will mainly consider LF on the 
"prism"

= {(a,fi,) E i3 : a 
since q ^! p is the condition of Lemma 2. 

Theorem 1. If (ao, go, i'o) E L F fl , then Lp contains all points (a,#, -y) E j3 

with

f3^0,	
>°	

(1) 

or, equivalently,	 --	-	-	-	 - 

	

a < A'ao, fi ^! Ago,	2 i' yo	for some ) p2 1.	(2) 

Proof. Lemma 2 implies If(t,s,u)I <a(t,$)+IuI	with a E Yo = [L1 —
p0.,0 

Since  E Yo 9 y= [L* — LJ,againby Lemma 2, F: [L1 —Lk] —4Yif^ 

	

Ck 

To see that (1) implies (2), put A =	and z =	. The converse is straightforward I 00
As a representative example the following figure shows, how the surface of points of 

equality in (2) looks like in case (ao,flo,-yo) = (0.8,0.2,0.8): 

The theorem is sharp in the following sense: 
Example 2. Given some (ao, go, -yo) E I, there exists some  such that LF consists 

precisely of all points (a,B,-y) E P satisfying (1). 
Put f(t, s, u) = I a ( t ) b( s )I+I U I AO , where a E L,0 \U> 0 L,, and b E L1... \U< fl0 L 

with	 -
a0 A 0 =— 00 	and	/10-. 

ao	 19o7o
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On the one hand, Lemma 2 implies that Lp contains at least all points satisfying 
(1). On the other hand, since IIFOII [ L * —.L ] = II b IIL * II a IIL # , Lp may contain no 

points (a,#, -y) with > P0 OF < 00 . Furthermore, if x e L 1 \ Urn>i Lm, we 
have that y(t,$) = Ix(s)I Q belongs to [L 1 - L 1 ], but IFy(t,$)I 2 Ix(s)I 0 ' implies 

Fy[Li—L]for>l. 

For some subset L of j3 we define the projections 

L'(a) = {(fi,y): (a, #, ,y) E L} 

L2 (/3) = {(a. y): (a, #, ,y) E L} 

L'(-y) = {(a,): (a,y) E L} 

on each component. Now we may reformulate Theorem 1 as 

Theorem 2. L = L I., ii A has the following properties: 

1. Each L3 (y) is zero-concave, i.e. 

(a,) E L3 (7)	..	(Aa,A13) E L3(y) 

for A 2 1 (and Aa, Af3 < 1). Additionally, 

(ao,13o) E L3 (7)	=z (a, 0) E L3(7) 

for a < ao and $ 2 00 (and a > -y). 

2. Each L2 (/3) is zero-convex, i.e. 

(a,7)EL2(/3)	==	(A'a,A1y)EL2(3) 

for A 2 1. Additionally,

(ao, -yo) E L2 (13 )	=- (a, y) E L2(f3) 

for ci<a0 and 7 >-yo (and a27). 

3. Each L'(a) is zero-hyperbolic, i.e. 

(0,y)EL'(a)	==	(Afl,A'y)EL'(a) 

for A 2 1 (and Af3	1). Additionally, 

(0oyo)eL 1 (a) (/9,'y)EL'(a) 

for 0	Oo and 7 > -yo (and a2). 

4. We also have the inclusions 

L'(a)flL. 1 (ao)c L '(ao) for a>a0 

L2 (j9)9L2 (130) for /3/3 

L 3 (y) n	3(7) 9 L3 (y0 ) for y	yo.
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The first three properties are just reformulations of (2) (restricted to Li). The 
remaining properties are consequences (or may of course also be verified directly by 
(1)).

It is yet unknown, whether the zero-concave sets (with the additional propery of 1.) 
coincide with the sets of £-characteristics of "one-dimensional" superposition operators 
G-(s) = g(s,x(s)) in Lebesgue spaces. However, this is at least 'almost' true (up to 
some boundary points), see [8]. The next example shows that in this sense the first 
property in the previous theorem is 'sharp'. 

Example 3. Given some set M, which is the £-characteristic of some superposition 
operator of one variable Cr(s) = g(s, x(s)), there exists a superposition operator F in 
spaces with mixed norm with

a 
—>1	(O<71), L(7)=Mfl{(a,fi):	

_ 

i.e. L.(y) coincides with the given zero-concave set M wherever possible. 
Put f(t,s, u) = g(s, u). Ifg: L1 - L*, we have by the well-known acting condition 

of the 'one-dimensional' superposition operator (see, e.g., [7]) that 

If( t ,s,u)I = Ig(s,u)I	a(s) + bIuI 

for some a E L. Thus Lemma 2 implies F: {L 1 -+ L1] - [L* -* L]. 

Conversely, if F: [L 1 - L i. ] -* [L Wi - Lt.], we have G: L 1 -* L, since for any 
x  L 1 the function y(t,$) = x(s) belongs to [L 1 -* L i ], whence Fy E [L * -' Lt.J 
implies Cx E L*. 

2. Uniform continuity 

In general, the superposition operator is not uniformly continuous on balls in spaces 
with mixed norm (an example will be given later). This is already well-known for the 
'one-dimensional' superposition operator Cr(s) = g(s, x(s)). However, for that operator 
a useful sufficient condition is given in [8: Theorem 17.4]. We will extend this result for 
spaces with mixed norm. 

The following lemma is implicitly proved in [8: Theorem 17.41, but we give a proof 
without referring to the Scorza-Dragoni lemma (thus our lemma holds on more general 
measure spaces fl, see the remarks at the end of the paper). 

Lemma 3. Let B be a set of measurable functions on 11 = T x 5, which is bounded 
in measure, i.e.

lim sup mes{w E : x(w)I > T2} = 0. 
zEB 

Then the superposition operator F is uniformly continuous on B in measure, i.e. for 
any Xn,Yn E B with x,, - y, —* 0 in measure, we have Fx - Fy -* 0 in measure.
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Proof. It suffices to prove that any subsequence of z,, = Fx — Fy contains a 
subsequence, which converges to 0 in measure. Thus we even may assume Zn — yn .- 0 
a.e. Now, fix e > 0 and 8 > 0. There exists some M such that the measure of 

= { E Q : X n ()I ^! M or I y (w )I ^! M} 

is less than for any n. Since f(ILJ,.) is for almost all w uniformly continuous in [—M, M], 
the sequence

w(w) = Xcz(W)Zn(W) = xc(w )(Fxn(w ) — Fyn(w)) 

converges to 0 a.e., whence in measure, i.e., for n big enough, the measure of 

=	E Q \ IZn : Izn()I ^! b  

is less than . Thus

mes{L E Q : Izn('')I ^! fi} <mes(n U l) <e, 

which means z, —* 0 in measure I 

Recall that a set M of functions in X = [L — Lq ] is said to be of equicontinuous 
norm, if

lim sup II PD x II = 0 
n 00 x EM 

for any decreasing sequence of measurable sets Dn with fl D = 0. Here PD,, x(t, s) = 
XD,,(t,$)x(t,$) denotes the 'projection' of x on Dn. Since X is a regular ideal space, 
Vitali 's convergence theorem holds true [10]: 

A sequence x E X converges in norm to some x E X, if and only if x, — x in 
measure, and the set of all x, is of equicontinuous norm. 

Lemma 4. Let X = [L —+ Lq ] and Y = [Lr —+ L] (1 p,q,r, < oo). If the 
superposition operator F acts from X into Y, it maps sets of equicontinuous norm into 
sets of equicontinuous norm. 

Proof. We just apply the fact that F is continuous at 0: Assume, there is some 
set M C X of equicontinuous norm such that FM is not of equicontinuous norm. 
Then -there exists a decreasing sequence of sets Dn with flDn = 0 and Zn E M 
with IIPD,,FxnhIY 74 0. Since M is of equicontinuous norm, Vitali's convergence the-
orem implies I IPD,XnIIX — 0. Hence the continuity of F at 0 yields the contradiction 
I1D,,FmmIIY Il 1 '(1 Dn 2 n) — F0+ PD,, FO IIY < II '(PDn Z n) — FOy + IPD,,FOIIy —p 01 

Lemma 5. Each ball of [L,, — Lj is of equicontinuous norm in [L 0 — Lqo ], if 
p>po^!l and q>qo>1. 

Proof. For the proof just apply Holder's inequality on the product XD,, X 
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We now consider the following situation: Let 

X0 = [L 0 _ L q0 ], }0 = [Lro :' L,0 ], X = [L	.' Lq], Y	[Lr . 

where
l_<pop, lqo<q, 1rr0, 1<T<TO. 

Then it is clear that any operator F: Xo - 1'0 maps X into Y. However, the mapping 
F: X - Y may have 'better' properties than F. 

Theorem 3. Assume the superposition operator F acts from X0 into Y0 . Then the 
mapping F : X - Y is uniformly continuous on each ball of X, if at least one of the 
conditions

po<p	and	qo<q	 (3) 

or
r0 > r	and	a0 > a	 (4)


is true 

Proof. Let Xn,Yn E X be bounded in norm with II x - IIx - 0. We have to 
prove that z,, = Fx - Fyn satisfies II z II - 0. By Lemma 3 we have z -+ 0 in 
measure. By Vitali's convergence theorem we thus have to prove that the set M of 
all z, is of equicontinuous norm. If (4) is satisfied, this is true by Lemma 5, since M 
is contained in some ball of Y0 by Lemma 1. If (3) is true, the set of all x, and 
is of equicontinuous norm in X0 by Lemma 5. Thus the set of all FXn and Fyn is 
of equicontinuous norm in Y be Lemma 4, whence also the set of all z, by triangle's 
inequality I 

We emphasize that in (3) and (4) both inequalities must be strict. In fact, the 
theorem is sharp in the following sense (we modify an example from [8]): 

Example 4. Given numbers Po, qo, ro, and putting Xo = [L 0 - L9. 1, Yo = [L,.0 
00 = 20ro , and X = [L _ Lq], Y = [Lr - L] for T	S = [0,1] there 

PO 

exists an (even autonomous) superposition operator F acting from Xo into Yo such that 
F: X - Y is not uniformly continuous on any ball of X, if either 

P = Po,	TT, 7<ao	 (5) 

or
p^!po, q=qo, TTo, =ao.	 (6) 

EQ / B \pO1 Indeed, put f(t,s,u) = luVo sin u, and in case (5) consider Q, = Tx 
(B > 0 fixed), Zn = 4jLi irx	and Yn =	-' 7rXQ . Then we have JjXn 11 X, JjYn 11 X ^ 

B, and jXn - YI = 7r XQn implies II X n - linuX - 0. On the other hand IFx - 

EA	 EA 
Fy I ^! xQ (2nr)'o implies II Fx - FynII y ^! () 'o 74 0. In case (6) consider 

,	J Qn	[0, (- 4 n7 --°l x S instead.
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3. Remarks 

Most results hold for more general measure spaces T and S (with similar proofs): 

If one just assumes that T and S are a-finite measure spaces, T being atomic free, 
Lemmas 1 and 2 still hold true. If additionally T and S have finite measure, Theorems 
1 and 2 remain true. 

Lemma 3 holds for arbitrary measure spaces Q, if convergence in measure is replaced 
by convergence in measure on each set of finite measure (just apply the lemma for Q 
replaced by such a set). 

Since Vitali's convergence theorem may be generalized in the same sense for a-finite 
measure spaces [9], Lemma 4 is still true for arbitrary a-finite measure spaces T and S. 

Lemma 5 and Theorem 3 just make use of the fact that T and S are finite measure 
spaces (in case (4), additionally T should be atomic free, since Lemma 1 is needed). 
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