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The Neumann Problem 
for the 2-D Helmholtz Equation 

in a Multiply Connected Domain with Cuts 
P. A. Krutitskii 

Abstract. The Neumann problem for the dissipative Helmholtz equation in a connected plane 
region with cuts is studied. The existence of classical solution is proved by potential theory. 
The problem is reduced to a Fredholm equation of the second kind, which is uniquely solvable. 
It means that the solution can be computed by standard codes. 
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1. Introduction 
The potential theory and the theory of boundary integral equations are the basic tools 
for studies of boundary value problems in different fields of applied mathematics. The 
majority of papers deals with problems in domains bounded by closed surfaces. Modern 
researches are mostly devoted to the generalized solvability in Sobolev and Besov spaces 
and to the extension of classical results to the case of Lipshitz boundaries. Recent 
advances in problems for the Laplace equation, wave propagation and the elastisity 
theory are presented in [5, 11, 12, 15, 18, 19, 231 (see also the references in these 
papers). 

Another direction of modern research [1, 2, 4, 7 - 10, 17, 18, 21, 22, 24] deals with 
boundary value problems in the exterior of open surfaces. The open surfaces model 
cracks, screens or wings in physical problems. 

It is very natural to join the two kinds of mentioned problems and to consider 
problems in general domains with boundaries containing both closed and open surfaces. 
Similar problems were not treated before even in the classical formulation for the 2-
dimensional Helmholtz equation. This situation can be explained by difficulties in the 
analysis of the boundary integral equation, which appear in these problems. Indeed, 
using classical single and double layer potentials in the 2-dimensional Neumann problem 
we arrive at a hypersingular integral equation on the open curves and at an equation 
of the second kind with compact integral operator on the closed curves. Clearly, the 
equation on the whole boundary is not classical and its analysis is quite complicated. 
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In the present paper we suggest another way to study the Neumann problem for 
the 2-dimensional Helmholtz equation in a domain bounded by closed and open curves 
(cuts). With the help of the non-classical angular potential we obtain an integral equa-
tion, which contains Cauchy singular integrals on the open curves and compact integral 
operators on the closed curves. Besides, we must satisfy additional integral conditions 
arising from the nature of the angular potential. The solvability of the system of integral 
equations is proved in appropriate weighted Banach spaces. In doing so, the system is 
reduced to a Fredhoim equation of the second kind on the whole boundary. The obtained 
Fredholm equation is uniquely solvable in the corresponding Banach space. Similar way 
has not been used before even in those cases, when the boundary contains only open 
curves or surfaces. For example, in [1, 4, 9, 10, 17, 18, 20, 241 the solvability of a 
boundary integral equation of the 1st kind has been proved directly, without reduction 
to a uniquely solvable Fredholm equation of the second kind, while such an equation is 
very useful for practical purposes, because it can be computed by standard codes. 

Thus, the present note is an attempt to consider the Neumann problem for the 
Helmholtz equation in a 2-dimensional external domain bounded by closed curves and 
containing cuts. Domains bounded by closed curves and exterior of cuts in a plane are 
particular cases of our problem. Our approach holds for both internal and external 
domains. 

2. Formulation of the problem 

In the plane x = ( XI, x 2 ) E R2 we consider the multiply connected domain bounded by 
simple open curves I' ] , ..., C2' and simple closed curves r, ..., r 2 e Ci A (A E 
(0, 1]), so that the curves do not have common points. We will consider both the case 
of an external domain and the case of an internal domain, when the curve r 2 encloses 
all other. We put

Ni	 N2 
r '=U r ,	r2=Ur,	r=r'ur2 

The connected domain bounded by r2 will be called V. We assume that each curve 
F (n = 1,...,Nk; k = 1,2) is parametricized by the arc length .s: 

= {X : x(s) = (xI(S),x2(S)) for s E [a, b]} 

so that
aI <b < ... <ak , <bk, <a <b < ... <a,j2 <b2 

and the domain V is to the right when the parameter s increases on r. Therefore 
points x E F and values of the parameters are in one-to-one correspondence exept a 
and b, which correspond to the same point x for n = 1, ..., N2 . Below the sets of the 
intervals on the Os axis 

N,	 N2	 2 Nk 
U[a , b ],	U[a,b],	U 
n=1	 n=1	 k=ini
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will be denoted by 1", 17 2 and F also. 
We consider F 1 as a set of cuts. The side of F', which is on the left when the 

parameter s increases, will be denoted by (r , ) + and the opposite side will be denoted 
by (F')—. 

We put 

COr(r2) = {r E C°"[a, b] with F(a) = F(b)}	(r e [0,1]) 

and
N2 

CoT(F2) = fl C(r). 
The tangent vector to -F at the pointx(s) -we denote by r = (cosa(s), sin a(s)), where 
cosa(s) = x, (s) and sina(s) = x' (s). Let n = (sina(s), - cosa(s)) be a normal 
vector to F at x(s). The direction of n is chosen such that it will coincide with the 
direction of Tr if n is rotated anticlockwise through an angle of 

We say, that the function u = u(x) belongs to the smoothness class K if the following 
conditions are fulfilled: 

1) u E C°(V\F') n C2(V\r'). 

2) Vu e CO(D\Fl\X), where X is a point-set, consisting of the end-points of F', 
i.e.

N, 

X =	(x(a)ux(b)). 

3) In the neighbourhood of any point x(d) E X, for some constants C > 0 and 
f> —1, the inequality

IVul <CIx—x(d)I	 (1) 

holds where x - x(d) and d=a, or d= b (n =	 Ni).1,..., 

Let us formulate the Neumann problem for the dissipative Helmholtz equation in 
the domain D\r'. 

Problem (U). To find a function u = u(x) of the class K which satisfies the 
Helmholtz equation 

u, 1 (x) + u 1212 (x) + j32 u(x) = 0	(x E D\F')	 (2)a 

where = const and 1mf3 > 0, and satisfies the boundary conditions 

au(x) I	

= F(s)

(2)6 
au(x)	= F(s) 

au(x)	= F(s).
0flz z



352	P. A. Krutitskii 

If V is an external domain, then we add at infinity the condition 

U = 0(l x l 4 ),	lVu(x)l = o(l xl),	xl =	+ x	. no.	(2) 

All conditions of the problem U must be satisfied in the classical sense. 

On the basis of the energy equalities we can easily prove the following assertion. 

Theorem 1. if r' E C 2 " and r2 E C' ,A (A E (0,11), then the problem U has at 
most one solution. 

The theorem holds for both the internal and external domain V. 

3. Integral equations at the boundary 

Below we assume that the functions F = F+(s) , F = F - (s) and F = F(s) in (2)b 
belong to the following spaces: 

F,F e C0 "(r 1 )	and	FE CoA(r2)	(A E (0,1]).	(3) 

If 8(r') and 82 (r2 ) are Banach spaces of functions given on r' and r2 , respectively, 
then for functions given on r we introduce the Banach space B 1 (r 1 ) n 82 (r2 ) with the 
norm II	IB, (rl)n8 2 (r' 2 ) = II N;, (N) + II 118(r2). 

We consider the angular potential w 1 [] = w i [](x) from [13, 141 for the equation 
(2)a on r' given by

	

Wi [j(x) = j p(a)V(x, a) da.	 (4) 

The kernel V is defined on each curve [' (n = 1, ..., N1 ) by the formula 

to 
V(x, a)

= J	
(/3[x - y( C)  d	(a E [a', bk]) 

where 4) is the Hankel function of the first kind given by 

z)
( 1 + 

it'\

	

Jexp(—t)t 
2	-	dt 

7r -15-	 2zJ 
0 

with y() = (y1(e),y2(e)) and lx - () l = .J(xi - yi())2 + (X2 - Y2())2. 

Below we suppose that the function ji = j.(x) belongs to the Banach space C-(r1) 
(w E (0, 1]), q E [0, 1)) and satisfies the additional conditions 

jy(o) do = 0	(n=1,...,Ni).	 (5)
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We say that p E C(r') if

N, 
/2(.) JJ	— i b' q E C°'(r') n 

n=1 

where C' , -(r') is the Holder space with index w and 

N, 

II/2 11c' (r' ) =	t() [J	bq
n=1 

As shown in [13, 141, for such p the angular potential w i [p](x) belongs to the class 
K. In particular, the inequality (1) holds with E = —q if q E (0, 1). Moreover, integrating 
w 1 [p](x) by parts and using (4) we express the angular potential in terms of a double 
layer potential

= - f p(-74 ' ( f3Ix -	 (6)
any 

with the density

p() =fee	( E [a, b' n = 1,...,N1). 

Consequently, Wi (p(x) satisfies both the equation (2),, outside r' and the conditions 
at infinity (2). 

Let us construct a solution of the problem U. This solution can be obtained with 
the help of potential theory for the Helmholtz equation (2a). We seek a solution of the 
problem in the form

W[v, p](x) = v [V1(X) + w[p](x)	 (7) 

where vi [v](x) = J v(a)fl'(/3Ix - y(c)I) do, 

and
w[p](x) = w[p](x) + W2[/2](X) 

with w 1 [](x) given by (4), (6) and 

w2[/z](x) = i J p (a)flIz - y( cr )l) da.	 (8) 
4	.2 

By frk ... dci we mean

jLd.



354	P. A. Krutitskii 

We will look for ii = u(s) in the space coA(rl) 
We will seek ji = z(s) from the Banach space C(r1 ) n c0 4(r2 ) (w (0, 1), q E 

[0, 1)) with the norm I II c.(r1)nco. +(r2) = II IIc(r') + 1 1Ico.4(r2) . Besides, it must 

satisfy the conditions (5). 

It follows from [13] that for such it and u the function (7) belongs to the class K 
and satisfies all conditions of the problem U except the boundary condition (2)b. In the 
case of the external domain V the function (7) satisfies the condition at infinity (2). 

To satisfy the boundary condition we put (7) into (2) & , use the limit formulas for the 
angular potential from [13] and arrive for the densities y and ii at the integral equations 

± u(s) + / u(ci) 
a —? (o 1 (/3Ix(s) -

jr'
	an, 

1 1 
2(a)

sin o(x(s), y(a))
da / 

Ix(s) - y(cr) 
it  

+ J /2(o) 
a 
—Vo(x(s),a)da 

+ 
4 J	

a	(1)(/3I() - y(a)I) da = F(s) 

J u(a)--74(/3Ix(s) - y(a)I) do, 
4 r'

111(a
1	sin o(x(s), y(a))

d.,
N	Ix(s) - 

+ f p(a)—Vo(x(s),a)da_ i(s) 
4	5n.
it  

+ 4 J 
/2(a) 

a 
—?4'(fiIx(s) - y(a)I) da = F(s) anx

and

(s E ')	(9)a 

(s E 2 )	( 9)b 

where 

and

Vo(x or) = 
t a 

h(a x — y(e)) d	(ae[a,b];n=1,2,...,Ni)
 any	

nJ - 
a In

h(z)	(1)(z)	! _.	 In z 
7r	0 

By p0(x 1 y) we denote the angle between the vector and the direction of the normal 
n. This angle is taken to be positive if it is measured anticlockwise from n2; and 
negative if it is measured clockwise from n 2;. Besides, 0 (x, y) is continuous in x, y E r 
if x	Y. 

Equation (9)a is obtained as x - x(s) E (r')± and comprises two integral equations. 
The upper sign denotes the integral equation on (r')+ , the lower sign denotes the
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integral equation on (r" ) - . In addition to the integral equations written above we have 
the conditions (5). 

Subtracting the integral equations (9)a we find 

u(s) = F(s) - F(s)	and	ii E C°''(F').	 (10) 

We note that v is found completely and satisfies all required conditions. Hence, the 
potential v 1 [u) is found completely as well. 

We introduce the function f = f(s) on F by the formula 

f(s) = F(s) - j (F(a) - F(a)) - 4' C8 I x (s ) - y(a )I) da (s E F)	(11)
anr 

where
F(s) = (F(s) + F(s))	(s E F'). 

As shown in [14], f e CoA (F I ) . Hence, f E C0A(r). 

Adding the integral equations (9)a and taking into account (9),, we obtain for p on 
F the integral equation 

1	P sin 'o(x(s), y(a))
da 

---J 
p(a) Ix(s) - y(a)I 

+ f p(a)-Vo(x(s),a)da — 6(s)p(s)	(s E F)	(12) 

a + I p(a)—?41(/3]x(s) - y(a)I) da = f(s) 

where 6(s) = 0 ifs E r' and 6(s) = 1 ifs E F2 , and where f is given on F by (11). 

Let us show that any solution of equation (12), which is integrable on F' and 
continuous on F 2 , belongs to C 0 4(r2 ). Indeed, it follows from [13, 141 that if s E I2, 
then the kernel of the integral term in (12) can be expressed in the form 

10 (s, a)
+ I,(s,a) 

s - a 

where 1a E C 0A (r2 x F) with Io(s,$) = 0 and Ii E C0 (r2 x F). From [16] we obtain 

Io(s,a) 
+1	

— 12 (s, a) 
,(s,a) —	A +I,(s,a) s — a	 Is_aI'T 

where 12 E C 0 4(F2 x F). In accordance with [5], due to this representation, the integral 
term from (12) belongs to C O , 4(F2 ). Since f E C°''(r2 ), the solution p of equation 
(12) belongs to C0 4(F 2 ). Thus, if p is a solution of equations (5), (12) from the space 
C'(r')flC°(F2) (wE (0,1],q E [0,1)), then p E C(F 1 )fl C O , 4(F2) and the potential 
(7) satisfies all conditions of the problem U. 

The following theorem holds.
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Theorem 2. if F' E C 2 " and F2 E C"', if conditions (3) hold and the system of 
equations (12), (5) has a solution p = n(s) from the Banach space C'(T' )flC°(F 2 ) (W E 
(0, 1],q E [0,1)), then a solution of the problem U is given by (7), where v = u(s) is 
defined in (10). 

Below we look for j in the Banach space C'(r') fl C°(F2 ). If s E F2 , then (12) is 
an equation of the second kind with compact integral operators. Ifs e F', then (12) is 
a singular integral equation [51. 

Our further treatment will be aimed to the proof of the solvability of the system (5), 
(12) in the Banach space C'(F') n C°(r 2 ). Moreover, we reduce the system (5), (12) 
to a Fredholm equation of the second kind, which can be easily computed by classical 
methods. 

Equation (12) on F2 we rewrite in the form 

u(s) + f (a)A2 (s, a) da = —2f(s)	(s E F2 )	 ( 13) 

where

a 

	

A 2 (s,a) = - {(	 (/3lx(s) - (a )l)} 1 - (a))—V(x(s),a) + 2t0) 
an, 

- 12(3,5) 
-	 ,A +I,(s,a). 

	

Is — al	2 

Here V is the kernel of the angular potential (4) and Ij E C0 (r2 < F) (j = 1,2) as 
shown above. 

It can be easily proved that 

sin po(x(s),y(a)) -	
C°" (F' x F') lx(s) - y(a)[	a - s 

(see [13, 141 for details). Therefore we can rewrite (12) on F 1 in the form 

1	
(a) 

da	
(a)Y(s, or) do, = —21(s)	(s E F 1 )	( 14) 

7r jrl	a — s 

where

Y(s,or) = {( i - ( a))	
Ix(s) - y ( a )l	a - s)	2 an 

11 / 	-	-i a V'ws)")] 

0 - -

	

	—o, flI x ( s) - (or)l) an, 

E C°°(F' x F) 

with p, = A ifO< A <1 and p, = 1 - for any Co E(0,1)ifA= 1.



The Neumann Problem for the 2-0 Helmholtz Equation	357 

4. The Fredhoim integral equation and the solution 
of the problem 

Inverting the singular integral operator in (14) we arrive at the following integral equa-
tion of the second kind (16]:

N, -1 
u(s) +	f p(ci)Ao(s,ci)dci +	 Gs	

(s er')	(15) 
= 1 

Q1 (S) 

where

	

if	
'Q,()d Ao(s,ci)	

ir r' 
N, 	____ 

Qi(s) =	--a H k/s 	 /b - slsign(s - a,) 
n=1 

o(S) = i I 2Q,(o)f(ci) dci 

	

'	ci — s 

and Go,, GN,_I are arbitrary constants. To derive equations for these constants we 
substitute p from (15) into the conditions (5) and obtain 

A( C ) In(c ) 	BnmGm = H	(i= 1,...,N1 )	( 16) 
Ir  m=O 

where
l(ci) = - I Q'(s)Ao(s,ci)ds 

Jr 

	

Bnm = - f Q 1 '(s)s m ds	 (17) 
Jr 

H = - I Qj'(s)o(s)ds. 
Jr 

By B we denote the (Ni x N,)-matrix with the elements Bnm from (17). As shown in 
[14], this matrix is invertible. The elements of the inverse matrix B' will be called 
(B) nm . Inverting the matrix B into (16) we express the constants GO,...,GN1_, in 
terms of p:

N, 
= >(B ')nm im -
 Ir 

IL(ci)lm(ci)dci 
M=1  

We substitute G,, into (15) and obtain the following integral equation for p on 

p( s ) +
1

	

	 =	1	
,(s)	(s Er')	(18) p(a)A,(s ci) dci 

Q,(s) fr	'	Q, (s)
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where
N,-1	N1 

A i (s,a) = Ao(s,a) -	S >(B')nmlm(a) 
n=0	m=1 

and
N,—!	N1 

= 4)o (s) -	n >(B')nmHm. 
n=0	m=1 

It can be shown using the properties of singular integrals [6, 16) that (Do = o( S ) and 
A 0 = Ao(s,a) (s E F 1 , o, e F) are Holder functions. Therefore, cI = 1 (s) and 
A l = A 1 (s, a) (s E F', a E F) are also Holder functions. Consequently, any solution of 
(18) belongs to C(F l ) and below we look for p on F' in this space. 

We put
Q(s)	(1 - 5(s))Q i (s) + s(s) (s E F). 

Instead of ,u E C1 (r 1 ) fl C°(F2 ) we introduce the new unknown function z.(s) = 
so that P. E C°-(F') fl C°(F2 ), and rewrite (13), (18) in the form of one 

equation

j.(s) + Ir .(a)Q'(a)A(s,a)da = (s)	(s e F)	 (19) 
 

where
A(s,a) = (1 - 6(s))Ai(s,a) + 5(s)A2(s,0') 

and
(s) = (1 - 8 ( s )) (s) - 26(s)f(s). 

Thus, the system of equations (12), (5) for p = p(s) has been reduced to the equation 
(19) for the function p = (s). It is clear from our consideration that any solution of 
the equation (19) gives a solution of the system (12), (5). 

As noted above, 4 = (s) and A 1 = A, (s, a) (s E F', a E F) are HOlder functions. 
More precisely (see [14, 16]), 4 1 E C° P (F') for p = min{ ,A} and A,( . , a) E 
uniformly with respect to a E F. 

We arrive at the following assertion. 

Lemma. If I" E C 2 '' and F2 E C 1, A (A E (0,1]), 4) E C°''(F')flC°(F2) for  = 
min{A,}, and if p	C°(r) satisfies the equation (19), then jz E C°''(F') fl C°(F2). 

The condition 4! E C°'P (r 1 )nC°(F2 ) holds if f E CoA (fl. Hence below we will seek 
p. = p.(s) from C°(F). Since A l E C°(r' x F) and due to the special representation 
for A2 from (13), the integral operator from (19) 

Ap = jp.(a)Q_1(a)A(S,a)da 

is a compact operator mapping C°(r) into itself. Therefore, (19) is a Fredholm equation 
of the second kind in the Banach space C°(r).
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Let us show that the homogeneous equation (19) has only a trivial solution. Then, 
according to Fredholm's theorems, the inhomogeneous equation (19) has a unique so-
lution for any right-hand side. We will prove this by a contradiction. Let PL2 E C°(r) 
be a non-trivial solution of the homogeneous equation (19). According to the Lemma 
yo E c° P(r') n C°(r2 ) for p = min{), }. Therefore the function p° = Q E 
c(r') n C 1 (r2 ) converts the homogeneous equations (13), (18) into identities. Using 
the homogeneous identity (18) we check that	satisfies conditions (5). Besides, acting
on the homogeneous identity (18) with a singular operator with the kernel (s - 
we find that ° satisfies the homogeneous equation (14). Consequently, p° satisfies the 
homogeneous equation (12). On the basis of Theorem 2, W(0,ji°](x) = w[°](x) is a 
solution of the homogeneous problem U. According to Theorem 1, w[j°](x) 0 on 
v\r'. Using the limit formulas for tangent derivatives of an angular potential [3], we 
obtain

a lim	—w[z°](x) -	lim = O()	
0 (s E F'). z—.z(s)E(r')+ T.	 r—z(s)E(r') aT 

Hence, w[.t°](x) = w2 [°](x) H 0 on V and yo satisfies the homogeneous equation 

-- 4' (/3 I xs	 2 - y(a)) do, =0	(s F).	(20) + J O() 

This Fredhoim equation is well-known in classical mathematical physics. We arrive at 
it when solving the Neumann problem for the Helmholtz equation (2)a in the domain 
V by the single layer potential. It is well-known [3] that the equation (20) has only the 
trivial solution °(s) 0 in C°(F2 ). This is true for both the internal and external 
domain V. 

Consequently, i°(s) 0 and ,i 2( s ) = z°(s)Q'(s) 0 on F and we arrive at a 
contradiction to the assumption that y o. is a non-trivial solution of the homogeneous 
equation (19). Thus, the homogeneous Fredholm equation (19) has only a trivial solution 
in C°(F). 

We have proved the following assertion. 

Theorem 3. If F' E C 2 '' and r'2 E C'' (A E (0, 1J), then (19) is a Fredhoim 
equation of the second kind in the space C°(r). Moreover, equation (19) has a unique 
solution z. E C°(r) for any f' E C°(r). 

As a consequence of Theorem 3 and the Lemma we obtain the following corollary. 

Corollary. if r' E C 2 , A , I2 E C (A E (0,1]) and 4 E C°(F')flC°(r2), where 
P = min{A, 1 1, then the unique solution of equation (19) in C°(F), ensured by Theorem 
3, belongs to C°"(F') fl C°(F2). 

We recall that 4 belongs to the class of smoothness required in the Corollary if 
f E C°(F). As mentioned above, if y. E C°'(F') fl C°(F 2 ) is a solution of the 
equation (19), then ji = E C'(F') fl C°(F2 ) is a solution of the system (12), (5). 
We obtain the following statement.
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Proposition. If r' E C211 , I-2 E C' , "and I E Co ' A ( r) ( A E (0,11), then the 
system of equations (12),(5) has a solution i E C(r') fl C°(r2 ) (p = min{,A}), 
which is expressed by the formula ,z(s) = ji.(s)Q'(s) where jz E C°'(F') n C°(I'2 ) is 
the unique solution of the Fredholm equation (19) in C°(r). 

We remind that, if conditions (3) hold, then f E C°"(r) and the solution of equa-
tions (5), (12) ensured by the Proposition belongs to C'(r 1 ) n c04 (r2 ). On the basis 
of Theorem 2 we arrive at the following final result. 

Theorem 4. If r 1 E C 2 '' and J2 E C l , ,A and if the conditions (3) hold, then 
the solution of the problem U exists and is given by (7), where u = v(s) is defined in 
(10) and i = p(s) is a solution of the equations (12),(5) from C(f') n C°(r'2 ) with 

p = min{, A) ensured by the Proposition. More precisely, j E C(r') n CO, (r2). 

It can be checked directly that the solution of the problem U satisfies condition 
(1) with c = - . Explicit expressions for singularities of the solution gradient at the 
end-points of the open curves can be easily obtained with the help of formulas presented 
in [14]. 

Theorem 4 ensures the existence of a classical solution of the problem U when r' E 
c2 ', r2 E C'' and conditions (3) hold. The uniqueness of the classical solution follows 
from Theorem 1. On the basis of our consideration we suggest the following scheme for 
solving the problem U. First, we find the unique solution M. = .(s) of the Fredholm 
equation (19) from C°(r). This solution automatically belongs to C° P(r') n C°(r'2) 
with p = min{A, -}. Second, we construct the solution of equations (12), (5) from 
c(r 1 ) n C°(r2 ) by the formula p(s) = L.(s)Q'(s). This solution automatically 

belongs to C(F 1 )flC0 4(F2 ) . Finally, substituting v(s) from (10) and 4s) into (7) we 
obtain the so2lution of the problem U. 
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