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On the Mixed Problem for
Quasilinear Partial Differential-Functional Equations
of the First Order

T. Czlapinski

Abstract. We consider the mixed problem for the quasilinear partial differential-functional
equation of the first order

DzZ(I,y) = Zfi(zuyvz(z,y))DViz(z)y) + G(z)y1z(z.y))

i=1

z(:,y) = ¢(:c,y) ((xvy) € [_Tsa] X [-—b,b + h] \ (0?‘1] X [_bab))

where z(z4) : (—7,0] x [0,A] — R is a function defined by 2z, (t,8) = z(z + t,y + s) for
(t,s) € [~7,0) x{0,h]. Using the method of characteristics and the fixed-point method we
prove, under suitable assumptions, a theorem on the local existence and uniqueness of solutions
of the problem. '

Keywords: Partial differential-functional equations, classical solutions, local ezistence, bichar-
acteristics, fized-point theorem
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1. Introduction

If X,Y are any metric spaces, then we denote by C(X ;Y) the class of all continuous
functions from X to Y. Let B = [—7,0] x [0, 4], where h = (hi,...,hs) € R} and
r € R4, with Ry = [0, +00). For a given function
z: [-7,a] x[~b,b+ k] = R
where @ > 0 and b = (b1,---,ba), with b > 0 (i =1,...,n), and a point (z,y) =
(z,Y1,--.,Yyn) € [0,a] x [, ], we define the function z(z,y) : B — R by the formula
2(z,)(t,8) = z(z +t,y + ) ((t,s) € B).

Define
8oEs = [0,a] x [—b;b+ ]\ [0,a] x [-b,b)

Es = [0,a) x [~b, b]
E: = [=7,8) x [=b,b + h]
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for any a € [0, a].

For given functions

¢ EJUBOE‘,—»R
G: E,xC(B;R)—= R
f=(f1,---,fa): B« xC(B;R) > R"

we consider the following mixed problem:

DzZ(I, y) = Z f,‘(I,y,Z(,,y))Din(I, y) + G(I’ Y, z(z,y)) (1)

=1

oz,9) = d(z,y)  ((2,9) € B UBEL). )

In this paper we consider classical solutions of problem (1),(2) local with respect to
the first variable. In other words, a function z € C!(E};R) is said to be a solution of
problem (1),(2) if it satisfies equation (1) on E; and fulfils initial-boundary condition
(2) on E§ U 3y E;, for a certain @ € (0, a].

Note that in equation (1) the given functions f and G are functional operators
on C(B;R) with respect to the last variable. This model of functional dependence
contains as a particular case equations with a deviated argument, and if r = h = 0
equations without any functional dependence. In non-functional setting generalized
(in the “almost everywhere” sense) solutions of quasilinear systems with Cauchy and
boundary conditions have been discussed in [1, 6, 7], while continuous solutions (i.e.
solutions satisfying integral systems arising from differential equations by integrating
along characteristics) of mixed problems have been discussed in (1, 15].

As a particular case of (1) we may also obtain some differential-integral equations
and equations with operators of the Volterra type (cf. [16]). Classical solutions of
quasilinear systems with such operators were investigated in 8, 9]. From the literature
concerning other problems for first order partial differential-functional equations where
classical solutions are considered we refer here to the papers [12, 13]. Differential-integral
problems are often used as mathematical models of various problems in nonlinear optics
(4, 5] and may be used to describe the growth of a population of cells [10]. Differential
problems for equations with a deviated argument arise in the theory of the distribution

of wealth [11].

In this paper we prove a theorem on the local existence and uniqueness of solutions
of the mixed problem (1),(2). Our result is analogous to that of [14] for generalized
solutions of weak-coupled systems in two independent variables. We use the well known
method of bicharacteristics (cf. [2, 3, 8, 14]) and the Banach fixed point theorem.



On a Mixed Problem 465

2. Bicharacteristics

If || - ||lo denotes the supremum norm in C(X;Y), where X is a domain in R™*" and Y is
an Euclidean space, then the norm in C!(X;Y) is defined by ||w||, = ||w|lo+ || D¢z, |lo,
where D, 4w denotes the Jacobi matrix of w. For any w € C(X;Y) let

lwllz = sup {w(z,v) - w(@, )l [l - 3l +ly - 9] ™"+ (2,),(2,9) € X}.

If we put lwllo, = llwllo + |lw||z and ||w]1,L = |[w]x +_||D(,,y)w||L, then we denote by
C“Y(X;Y) (: =0,1) the space of all functions z € C'(X;Y) such that ||z|; . < +oo
with the norm || - ||; .

Assumption (H;). Suppose that ¢ € C!(Eg U 8y E,;R) and that
ll¢llo < Ao, [|Dz¢llo < Ay, [[Dydllo <A1, |D:4llL <Az, Dyl < A,

where Ag, A1, A; are given non-negative constants.

Supposed that Assumption (H,) is satisfied and given non-negative Qo, @1, Q2 such
that @; > A; (1 = 0,1,2) we will denote by C‘-:'L(Q), where a@ € (0, a], the set of all

functions z € C(Ej;; R) such that
(i) z(z,y) = é(z,y) on Ef UG E;
(i) llzllo < Qo, [IDzzllo < @1, [|Dyzllo < @1, ID:2l|L < Q2, [ Dyzllr < Q-
Assumption (H2). Suppose the following:

1° f=(fi,.-..,fn) € C(Es x C(B;R);R™) is a function of the variables (z,y, w),
and the derivatives Dy f and D, f exist on E, x C!(B;R).

2° There exist non-decreasing functions Lo, L, L2 : Ry — R4 such that for all
(z,9),(z,7) € Es we have

[f(z,y,w)| < Lo(q)  (w € C(B;R), |lwllo < q)
[f(z,y,w) = f(Z,9,0)| S Li(g)le — 2| (w € C*X(B;R), |lwllo,z < q)

1Dy f(z,y,w)|, IDwf(z,y,w)ll < Li(q)  (w € C'(B;R), [lwlh <4q)

|Dy f(z,y,w) — Dy f(Z,§,@)| < L2(g)[|z — Z| + |y — §l + |lw — @|lo]
| Dw f(z,y,w) ~ Dw f(Z,9,0)|| < L2(g)[lz — Z| + |y — g| + llw — @llo] -
where w,w € C]’L(B;R) with |lw|l1,z, ||®]l1,2 < q.

3° For every g € R, there is 6(q) > 0 such that fi(z,y,w) > 6(q) (1 =1,...,n)
for (z,y,w) € Ea x C(B;R) with ||wl|jo < g.
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For a fixed z € C‘-}’L(Q), where a € (0, a], and for any (z,y) € E,, we consider the
Cauchy problem

%p(t) = —f(t p(8) 2(1,pe1)) } (3)

p(z) =y.

If Assumption (H,) is satisfied, then there exists a unique solution of problem (3) which
we denote by

g[z](~, z, y) = (gl [2](‘) z, y)a e ,gn[Z](', z, y))
Let A[2](z,y) be the left end of the maximal interval on which the solution g[z}(-,z, y)

is defined. Then -
(Mz)(=z,9), 9l=)(Al2)(2,y). 2,)) € (Eg U Ea) N Eq
because of condition 3° of Assumption (H;) and we may define the following two sets:
Esolz] = {(z,9) € Ea : Mz(z,y) = 0}

E;lz) = {(::,y) € E; : gi[2}J(\[2)(z,y),z,y) =b; forsome 1<i< n}.

Furthermore, we define the constants

!
™

= Liaexp{L][l + Q:]a}

Tya = (1 + L3)exp{L}[1 + @]}

T2a = {Li[1+ Qi)(1 + T1a) + [L3[1 + Q) + L]] TT,a} exp{L;[1 + Qi )a)
where L} = Li(3}-, Q;), for = 0,1,2.

Lemma 1. Suppose that Assumption (Hz) is satisfied, z,Z € Cé’L(Q), and (z,y),
(z,9) € Es. If the intervals

Ky = [max{\[e](z,y), Az)(Z, )}, min{z, 2}]
K, = [max{A[z)(z,y), Az](z, v)}, =]

are non-empty, then we have the estimates

|Dzglz)(t, z,y)| < Tha, |Dygl2l(t,z,y)| < T1a ift € [A2)(z,y), 2] (4)
|Deglz)(t, z,y) — D:glz)(t,%,5)| < Taallec — 2|+ jy — 7] ifte K (5)
|Dyglz)(t, 2,y) — Dygl2)(t,%,9)| < Taallz — 2| + ly - §l] ifte K (6)

Ig[z](taza y) - ylzl(th’y)l < F&”Z - 2“0 ift € K. (7)
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Proof. Let g = g[z] and § = g[z]. It follows from classical theorems on differenti-
ation of solutions with respect to initial data that the derivatives D,g and D,g exist
and fulfil the integral equations ‘

ng(ti z, y) = f(I) Y, z(z,y))

- / [Dyf(PT) + Dwf(PT) ° (Dyz)(r,g(r,z,y))]ng(T)z’ y) dr

Dyg(t,:t,y) =1 _/ [Dyf(Pf) + Dy f(Pr)o (Dyz)(r,g(r,:,y))]Dyg(T:I; y) dr

for t € [Alz)(z,y), z] and (z,y) € Es, where I denotes the identity matrix and P, =
(T,g(T,I,y),Z(,,g(,,z,y))). Hence, by Assumption (Hz), we have

t .
Daglt,z,y)| < L3 + / Li[1 + @i]|Dzg(r,2,9)| dr

z

t
IDyg(t,z,u) <1+ / Li[1 + @] |Dyg(r, )| dr

from which (4) follows by the Gronwall lemma. Analogously, by Assumption (H,) and
(4), we get

|ng(t;1',y) _ ng(t’i’g)|

<L+ Qi [l — 2|+ ly - 9l] + / L1+ Qu)Tis dr

t
+-/ (L300 + Qi + L3} T2, (1o - 2l + |y — g1] dr
t
+ / Li[1 + @1 Deg(r,2,y) - Dag(r,2,9)| dr
and
|Dyg(t,z,y) — Dyg(t,z,9)]
< / Li[1 + Q1|Thadr
t
+ / {Li[1+ Qi) + LT3, [l — 2| + |y — gl) dr
t
+ / Li[1 + Q]| Dys(r,z.v) — Dyg(r,2,5)| dr

for t € K, from which (5) and (6) follow by the Gronwall lemma. In the same way we
may get for t € K; the estimate

|g(t,.’1,',y) - g(t7z)y)|
t
[ 2z - le.ar

from which using again the Gronwall lemma we get (7) which completes the proof of
Lemma 10

t
< + / L1+ Qullg(r, 2,9) — §(r 2,y)| dr
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Lemma 2. If Assumption (H2) is satisfied and 2z € C,—i’L(Q), then \[2] is piecewise
of class C*? on Ejp2] and
o 1 _ _
M=)z, ) = MeAE )] < &Tualle - 2l + Iy - 9] ®)
for (z,y) € Eas[z], where 6° = §(Qo).

Proof. In the proof of this lemma, for simplicity, we will write A and ¢ instead of
A[z]) and g[z], respectively. Note that A is defined by the relation

g,'(/\(Z,y),I, y) =b; ((I$y) € Eab[z])

for some 1 < ¢ < n. Thus, since g; is of class C! and %"f # 0, we see by the theorem on

implicit differentiation that A is locally of class C', and its partial derivatives are given
by the formulas

D,gg(/\(:c,y),x,y)
D Mz, y) = 9
(=) [iMz,9), 9(M2,9), 2, 9), S(a(z,9),9(A(z.),2.9))) ®)
DyMz,y) = DuoilX(z,9),7,) (10)

fi(A=:9), 9(M(2,9), 2, 4), b0z ) s ) ,200))
From the above relations we get
1 1
ID:A(z,9)l < wTha and [DyA(z,9)l < 2 Tha
which gives (8) il

Remark 1. Note that from the proof of Lemma 2 it follows that A[z] is of class C?
on each of the sets {(z,y) € Eas[2] : gi(2}(A[2)(z,y),2,y) = b} (1<i<n).

Lemma 3. If Assumption (H;) is satisfied and 2,z € C;'L(Q), then we have

[Al#)(z,4) = Al2l(z,¥)] < goTallz 2l (1)
on E;. ' ‘

Proof. Since (11) is obviously satisfied if (z,y) € Eao[2z] N Eao[2], without loss of
generality we may assume that A[Z](z,y) < A[z](z,y) and (z,y) € Eas(z). Let 1 <i<n
be such that g[z](A[z)(z,y),z,y) = b;. Then we have

gi[z](’\[z](zr y)a z, y) - gg[E](/\[z](x, y)a I, y)
2 gi[E](’\[E](z» y)v z, y) - gi[z](’\[z](‘r’ y)’ T, y)
Alz)(z,y)
= / il glEl(r 7 y)s 2 gtz an) AT
Alzl(z,y)

2 6 [)‘[z](Ia y) - ’\[2](1:) y)] .

The above estimate together with
0 < gil2l(Azl(=, ), 2,¥) - gilE)(M=)(z, ), 2,¥) < Tallz - 2o

gives (11) 0
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Remark 2. Note that condition 3° of Assumption (H2) is essential in the proof of
Lemma 3. In Lemma 2 it suffices to assume that fi(z,y,w) > é(q) for (z,y) € E, such
that y; = b; for some 1 < i < n and fi(z,y,w) > 0 on E, x C(B;R) while in Lemma 1
only the latter condition is necessary.

3. The main result

Now we prove a theorem on existence and uniqueness of solutions of the mixed problem
(1:(2)-
Assumption (H;). Suppose the following:

1° G € C(Ea x C(B;R); R) is a function of the variables (a: y,w), and the deriva-
tives D,G and D,,G exist on E; x C'(B;R).

2° There exist non-decreasing functions Mo, M1, M, : Ry — Ry such that G fulfils
conditions analogous to those given in 2° of Assumption (Hz), with L; replaced by M;,
respectively.

3° The consistency condition
D,_-¢(-T, y) - Z fl(zi Y, ¢(z,y))Dy¢(Ia y) = G(:l:, Y, ¢(:,y)) (12)
=1
holds true on (E§ U 8o Eq) N E,.
We define the operator W on C;’L(Q) by the formula

(Wz)(z,y) =
¢(/\[z](:c, y), g[z](’\[z](z’y)’:E’y)) )
+ / G(t: g[Z](t,:E, y))z(l,g[z](t,z,y))dt for (x’y) € E('l (13)
Alz)(z,y)
é(z,y) for (z,y) € E§ U G Es.

Remark 3. The right-hand side of (13) arises in the following way. We consider
(1) along bicharacteristics

D.(t,glz)(t,2,v)) — 3 fi(t 9l2l(t,2,9), 2(eelcee.00) Dy (6, 928, 2,9)
=1
= G(t,gl2)(t, 7, ), (e gla) (020

from which by (3) we get

d
5z(t,g[zl(t,x,y)) = G(t,9[z)(t, T, ¥)s 2(t,g:)(1,2.))) -
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Integrating this equation with respect to ¢t on the interval [)\[z](z,y), I] we get the
righ-hand side of (13).

~ Assumption (H,). Suppose that
Qo > Ao
Q1 > A(1+ Lg) + My

Q2 > Az [%(1 +Lg) + .1] (14 Lo)* + A, [%;L{(l +Lo)* + Li[1 + @)(2 + Lg)

+ M1+ Qi)+ [1 + 51_-(1 + Lo)} M1+ Q1)1 + Lo)

where M} = Mi(z;=o Q;), for 1 =0,1,2.
Define the constants
Soa = A(‘) + (_ZMO'
S1a =AMl + My +aM{ (1 +Q1)T1a

1

1
S2a = A [6_‘(1 + Lg) + 1] Tl + A [5.

RN

)
+a[M;(1+ Q1) + M{ QaT1a + M;[1 + Qi 2.

- 1
+ M1+ Q]+ [1 + _.Flﬁ] M1+ Qs

Remark 4. Note that since
lim+l"“-, =1+ Lg and lim+Fga =Li[1+ @1)(2+ Lg)
a—0 a—0
we may by Assumption (H4) choose a € (0,a] sufficiently small in order that S;z < Q;,
fori =0,1,2.

Theorem 1. If Assumptions (H;) ~ (H3) are satisfied, then for a € (0,a] suffi-
ciently small the operator W defined by (13) maps C,}L(Q) into itself.

Proof. Let 2z € C;’L(Q). As in the proof of Lemma 2, for simplicity, we will write
A and g instead of A[z] and g(z], respectively. From (13) it follows that

Dt(WZ)(Ivy) = Dy¢(019(0’1:y))DIg(O)Iyy) + G(I$y:z(z,y))

+ /: [DyG(Pg) + DuwG(Pi) o Dyz| Dg(t,z,y) dt (14)
0

and
Dy(WZ)(.’Zi, y) = D!l¢(0a g(O,Isy))Dyg(O:I, y)

z 15
+/0 [DyG(Pg)+DwG(P,)oDyg]Dyg(t,z,y)dt (15)
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on Ej3¢|z], where P, = (t,g(t,z:,y),z(,,g(‘,,,y))). Suppose that (z,y) € E;|z], which
means that g;(A(z,y),z,y) = b, for some 1 < j < n. From (13) and (3) we have then

D:(Wz)(z,y) = D:¢(Mz,v),9(Mz,v),7,9)) D: A(z,y)
+ Z Dyxé(’\(‘r’y)’g(/\(mly))ziy))
1=1,i#j
x [ = fi(Pr(z,9)) Dz A(2,y) + D:gi(M(z,y), z, y)]

+ G(I7 y:z(z,y)) - G(P/\(z,y))Dz’\(z)y)
# [ [uG(P) + DuG(P) o (Dy2) e | Desltsz ) .
z,y

Using consistency condition (12) and (9) we may transform the above relation into the
form

D:(Wz)(z,y)
= Dyqu()‘(xsy): g(/\(z,y),z, y))fj(PA(z,y))Dz’\(z:y)
+ Y Dy6(M=,9),9(Mz,v),2,9)) D2gi( Mz, ), 2, 9)
i=1,i%j

+ G(z,Y, 2(z,4)) (16)

+ / [DyG(Pl) + DywG(P) o (Dyz)((,g(t,z,y))] D.g(t,z,y)dt
A

(z,y)

= Dyé(A(i,y),g(A(x, y),z, y)) ng()\(z, y)vxay) + G(zayaz(z,y))

+ [ DGR+ DuGP) 0 (Dy2)usteen] Prgltsz,v) o
Alz,y)
Analogously, by consistency condition (12) and (10), we get
Dy(Wz)(I: y)
= Dy (A(z,v),9(A\(z,1),2,¥)) Dyg(A(z,¥),2,y)

+ / [DyG(P;) + DuwG(Pr) 0 (Dyz)(1,g¢e,2,9)) | Dy9(t, z,y) dt.
A

(z.y)

(17)

Note that the right-hand sides of (16) and (17) do not depend on 1 < j < n, which
means that Wz is of class C' on Ej(z].

It is obvious that Wz is continuous on E} and that

Dy(Wz)(0,y) = Dy¢(0,0,y) = Dyé(0,y)
for y € [=b,b]. Morcover, the relation

DI(WZ)(an) = Dy¢(0)y)Drg(0101y) + G(ana ¢(0,y)) = Dz¢(01 '!/)



472 T. Cztapitiski

for y € [—b, b follows from (14) and from the consistency condition (12). Analogously,
(16) and (17) give

Dy(Wz)(z) y) = Dy¢(3» y)Dyg(I’ z, y) = Dyd’(z, y)

and
D;(Wz)(z, y) = Dy(b(zv y)ng(Iﬂ»‘,y) + G(z: Y, ¢(z,y)) = D:¢($:y)

for (z,y) € E; such that y; = b; for some 1 < ¢ < n. In order to get Wz € C'(E:; R)
it remains to prove that formulas (14),(15) and (16),(17) define the same values for
(z,v) € Eaol[z) N Eas[z], but this is obvious since A(z,y) = 0 in this case.

Now we prove that

[(W2)(z,y)| € Qo, [D(Wz)(z,y)] <Q1, IDy(W2)(z,y)l < (18)

on E;. From (13), (16) and (17) we have

z

(Wz)(z,y)l < Ao + / M;dt < Soa
AMz,y)

|D23(Wz)(zuy)|SAlP]ﬁ+M0‘+/ Ml‘[l'*'Q]]F]adtSS“—l

A(z,y)
T

|Dy(W2)(z,y)| < AiTha + /( )M;[l +Q1)T1adt < Sia
Az,y

on Ez;|z]. Note that since the integral f:(z’y) is estimated by [ the above estimates
will still be valid on Ejzg[z]. Taking a sufficiently small in order that Spz < Q¢ and
Si1a € @1 we get (18) for all (z,y) € Ez. Since Ag < Qo and A; < @, we see that (18)
hold true for all (z,y) € E}.

Finally, we prove that
|Do(W2)(z,y) — Do(W2)(2,9)| £ Qaflz — 2| + ly — 3]
| Dy(W2)(z,y) — Dy(W2)(2,§)| < Qz(lz — Z| + |y — 9]

on Ef. For (z,y),(Z,9) € Easlz] we have

(19)

|D(W2)(z,y) — Do(W2)(2,7)|
< |Dyb (A=, 1), 9(Ma, ), 7,9)) Dag(Mz, ), 7,v)
- Dy¢(’\(57 g)ag(’\(‘iag)ai: :‘7)) D;g(/\(f,ﬂ), z, g)l

+ |G($,y, z(x,y)) - G(iagaz(i,g))

+

[ [.6(P) + oGP0 Dysttstt, 00| Disttz. )
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A(2.9) . o
[ [D6(PY + DuG(RY o Dyt o(t,2,7)] Dot 2,5 e
A

(z,y)

+

/: { [D,,G(P,) + DyG(P;)o Dyz(t,¢(t, %, g))] Dy(t,z,9)

(z,9)
~ [DyG(P) + DuG(P) 0 Dyat,o(t,2,9))| Dy(t, 7, g)}dt‘

1

1
< {Az [;(1 +Ly) + 1] I + Ay [5_

LiT}; + F2a]
1
# M7+ Qi+ [1+ 0] M7+ Qulls

+ [ [ME+ QT+ M7 @aua + M1+ Qs 12 = 21+ 1y — 9]
0
where P, = (t,9(t,2,9), Z(¢,4(1,2,5)))- Analogously we get the estimate
|Dy(W2)(z,y) — Dy(Wz)(2,7)]

1
6:

1

5 FraM{[1+ Q1]la

1
S {A2 [6_‘(1 + L(.)) + 1] ng +A1 [ LlFfa + FZ&]

+ [ M0+ QuPT + M7 QaTs + M1+ QulPaa) e 12~ 31+ 1y ~ 51
0

The above estimates hold true also in the case (z,y),(Z,%) € Eaolz], or (z,y) € Eao[z]
and (Z,7) € Eap[z]. Taking @ sufficiently small in order that S;z < Q; and making use
of the relation Ay < Q2 we get (19), which completes the proof of Theorem 1 il

Theorem 2. If Assumptions (H,) — (Hy) are satisfied, then for sufficiently small
a € (0,a] the problem (1),(2) has a unique solution on E; in the class Ci'*(Q).

Proof. We prove that for sufficiently small a € (0, a] the operator W : C‘—}’L(Q) —
g’:L(Q) is a contraction. Indeed, if 2,z € C;’L(Q), g9 = glz],§ = ¢g[z], » = Alz] and
A = A[Z], then we have

|Wz(z,y) - Wf(z,y)l
< ‘¢(A(x,y),g(/\(r,y),x,y)) - ¢(;\($,y),§(;\(r,y),x,y))‘

Az,y)
/; G(t,3(t,2,¥), Z(5(t,2,9)) dt

(z,y)

+

z
+ A( ) |G(t) g(tyzv y)) z(t'g((,z,y))) - G(t’g(t$:E)y)!‘-?(l,g(t,z,y)))‘dt
T,y .

< M [(1L+ LYIAEY) = M) + |90z, 9),2,9) — 50z v, 2,0)]

+ Mg |z, y) — XNz, y)|

+ /0 M]‘{[l + Q]]Ig(t,z,y) - g(t,I,y)' + ”z(t,g(t,z,y)) - E(t,g(t,z,y))”o}dt
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from which by (7), (11) and the obvious relation (Wz)(z,y) = (W2)(z,y) on EJUdE;
we obtain

Wz - Wzjo < Sallz — Z[lo
where )
1
Sa = Ay [6_'(1 +Lg) + 1] s + M55_~P" +aM; {Ta[l + Q] + 1}.

Since lim; g+ Sz = 0 we may choose a € (0, g sufficiently small in order that S; < 1.
Consequently W is a contraction, and by the Banach theorem there exists a unique
fixed-point of W. Denoting this fixed point by z* we prove that it is a solution of
equation (1).

For any (z,y) € Es0(z"] we have

Z(z,y) = ¢(0,9(0,z,y))+/ G(t,9(t,2,9), {1 g(1,z,5)) at- (20)
0

For a fixed = we consider the transformation y — ¢(0,z,y) = €. Using this transforma-
tion and the group property (20) takes the form

z*(z,9(=,0,¢)) = ¢(0,¢) +[) G(tag(t70’§)! z(‘z,g(t,O,E)))dt'

Differentiating this equation with respect to z we get
. - . dg,
Dzz (119(11076)) + Z Dy.‘z (Ivg(:rvO,E))?;t_(x)Oa{)
. =1

= G(2.9(2,0,6), 2(z g(z.0,00)-
Making use of the inverse transformation € — g(z,0,£) = y and (3), we get (1).
For any (z,y) € Ess[2*] we have

I

2‘(1:) y) = ¢(/\($,y),g(z\($,y),z,y)) + [\( )G(t’g(tyz:y)az(t,g(t,z,y)))dt' (21)
.,y

For simplicity of notation suppose that g;(A(z,y),z,y) = b; for 1 = n, and write
£=(,-26n)  and g =(g1,..,9n-1)
Fixing z and using the transformation
vy (9'(Mz,y),2,9), Mz, 9)) = (€'sm)
we sce that (21) takes the form

2'(1,9(-’5:"’{’)!’11)) = ¢(7’1€lubn) +/ G(tyg(t,n>£!7bn)vZzt,g(t,vl,f',bn)))dt'

U
Differentiating the above equation with respect to = we get

* - - dgi '
Dlz (z,g(z, U,f’:bn)) + ZD!I-“Z (I,g(I,T],{',b"))-d—t(l‘,?],{ ,b")
=1 .
= G(.L‘, g(x, 7, 6,7 bn)7 z(‘x,g(z,n,f’,bu)))‘
Making use of the inverse transformation (£',7) — g(z,7,€',b,) = y and (3) we get (1).
Since z* € C,:I(Q) obviously fulfils the mixed condition (2) this completes the proof of
Theorem 2 B
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4. Some noteworthy particular cases

Given f,‘, G: E, xR —= R (i =1,...,n) let us consider the differential-integral equation
with deviated argument .

D.z(z,y) = ;f.‘(l‘, y,z(z,y),z(a(z, y), B(z, y)))Dyiz(m,y) (22)

+ é(z, Y, z(:z:,y), Z(O’(-T, y), ﬂ(:l:, y)))

where a : E; — R and 8 : E; — R". We give sufficient conditions for the existence '
and uniqueness of solutions of the problem (22),(2).

Assumption (Hs). Suppose the following:

1° f= (fl,...,fn) € C(E, x RxR;R") and G € C(Es x R x R;R) are functions
of the variables (z,y,z,p), and the derivatives Dyf, D.f, D, f, D,G, D,G and D,G
exist on E;, x R x R.

2° There exist non-decreasing functions L; : Ry — R (i =0,1,2) such that

|f(x,y,z,p)| S i’O(Q), |f(:t,y,z,p) - f(iay)zap)l S -ﬁl(q)lz - il
|Dyf(z,v,2,p)| < Lr(q), |D:f(z,v,2,p)| < Li(q),  |Dpf(z,9,2,p)| < Li(q)

and

|Dyf(z,y,2,p) — Dy f(2,9,%,5)| < La(q)[lz — | + ly — §| + |2 — 2 + |p — 5]

|D.f(z,y,2,p) — D:£(2,3,%,5)| < La(a)[lz — 2| + ly — | + |z — 2| + |p — 5]

|Dof(z,y,2,0) — Dy f(5,5,2,5)| < La(g)[lz — £ + [y — gl + |2 — 2| + |p — 7]
for (z,y),(%,v),(Z,9) € E. and 2,%,p,p € R with |z|,|z|,|p|, 7] < ¢.

3° There exist non-decreasing functions M; : Ry — Ry (i = 0,1,2) such that G
fulfils conditions analogous to those given in 2°, with L; replaced by M;, respectively.

4° For every ¢ € Ry there is 6(¢) > 0 such that fi(z,y,z,p) > 6(q) (: =1,...,n)
for (z,y,z,p) € Ea x R x R with |2|,|p| < q.

5° The consistency condition
D.4(z,y) - Y fiz,y,6(z,9), ¢(a(z,v), B(z,9))) Dy, 6(z,y)
=1 :

= G(z,y,(z,y), $(a(=,v), B(z,v)))
holds true on (E§ UGy E,) N E,.
Assumption (Hg). Suppose the following:
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1° a € C(Eq;R) and B € C(E,; R™) are functions of the variables (z,y) such that
(a(z,y) — z, beta(z,y) — y) € B for (z,y) € E,.

2° The derivatives Dya and D,y f3 exist on E;, and there are constants N, P €
R+ (1 =1,2) such that

la(z,y) - a(Z,y)| < M|z — Z| and 18(z,y) - B(Z,y)| < PiJz — 2
on F, and

iDyallo < Ny, [IDyBllo < A1, [[Dyalle < Noy | DyBlL < Py.

Theorem 3. If Assumptions (H,), (Hs) and (Hs) are satisfied, then there are
Qi € Ry with Qi > A; (2 = 0,1,2) such that for sufficiently small @ € (0,a] the
problem (22),(2) has a unique solution on E; in the class CY*(Q).

Proof. If we define the function f = (fi,..., fa) by

f(z,y,w) = f(z,y,(0,0),w(a(z,y) — z,8(z,y) - v))
for (z,y,w) € Ea x C(B;R), then the relations
Dy f(z,y,w) = Dy f(z,y,w(0,0),w(a(z,y) — z,B(z,y) — v))
+ Dy f(2,y,0(0,0), w(a(z,y) - z,8(z,y) — y))
x [wa(a(z, y) - z,8(z,y) - y) Dya(z,y)
+ Dyw(a(z,y) - 2, 8(z,y) - v) (DyA(z,v) — 1)
and

Dwf(x,y,‘w) oh= D,f(z:, y,w(0,0),w(a(z,y) —z,0(z,y) — y))h(0,0)
+ Dpf(za Y, w(0,0), w(a(z, y) -z, ﬂ(I) y) - y))
x h(oz(:r,y) —z,0(z,y) - y),

where (z,y,w) € E; x C}(B;R) and h € C'(B;R), imply that f fulfils Assumption
(H2) with the functions

Lo(‘]) = I:o(‘l)
Li(g) = Li(g)[2 + (N1 + Py +1)]

L2(q) = Lo(@){1 + [1+ o(Ny + By +1))°)
+ Li(g)[a(1 + Ny + Py) + g(1 + N2 + B)].

Analogously, the function G defined by

G(z,y,w) = G(:c, y,w(0,0), w(a(a:, y) —z,B(z,y) — y))
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for (z,y,w) € E; x C(B;R) fulfils Assumption (H3) with the functions

Mo(q) = Mo(q)
M(q) = MI(‘I)[2 +q(M + P+ 1)]

Ma(q) = Ma(g){1 + [1 + g(Fy + By +1)]°}
+ Mi(q)[a(1 + Ny + Py) 4+ g(1 + Ny + By)).

Then we choose Q; > A; (i = 0,1,2) such that Assumption (H,) holds true, and our
claim follows by Theorem 2 il

Remark 5. The equation with a deviated argument considered by Eichorn and
Gleissner [11] is a special case of (22).

Remark 6. With f and G as in equation (22) consider the differential-integral
equation

D 2(z,y) = z__;f, (m,y,z(:c,y),/gz(z +ty+ s)dtds> Dy, 2(z,y) -

+6 (x,y,z(x,y), [ty s)dtds) |
B

If we define the functions f and G by

flz,y,w) = f (I,y,w(O,O),/Bw(t,s)dtds)
G(z,y,w) =G (z,y,w(O,O),/Bw(t,s)dtds)

for (z,y,w) € E; x C(B;R), then it is also easy to formulate assumptions on f and G
in order to get an existence and uniqueness theorem for problem (23),(2) as a particular
case of problem (1),(2).
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