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Abstract. In this paper we obtain uniqueness theorems for the Darboux problem of neutral 
type in an implicit form. Our proofs are based on a fixed point theorem and theorems on the 
spectral radius of the sum of operators. 
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1. Introduction 
Let E be a Banach space. It is well known that if A 1 , A2 : E - E are linear bounded 
and commutative operators, then 

r(A j + A 2 ) < r(A i ) + r(A2 )	 (1) 

where -(A 1 ), r(A2 ) and r(A i + A2 ) denote the spectral radii of A 1 , A2 and A 1 + A2, 
respectively. Classical examples show that in the above inequality the assumption of the 
commutativity is essential (cf. [3: Chapter II]). But there are many theorems which give 
sufficient conditions, different from the global commutativity, under which the above 
inequality is satisfied. In this paper we shall apply the following two theorems of this 
type. For the concepts of the first one we refer, e.g., to [3: Chapter II). 

Theorem 1 (see [21). Let K be a generating and normal cone in a Banach space 
E and let linear operators A 1 , A2 : E -* E be positive on K, sernicommutative and 
uo-upper bounded. Then the inequality (1) is satisfied. 

In fact, Esayan [2] has obtained a more general result but the above quoted one is 
enough for our considerations. 

Now, let (X, . , -<) be a Banach space with a binary relation -<. Assume the 
following: 

1 0 The relation - is reflexive and transitive. 
20 The norm 11. 11 is monotone, that is, if 9 -< x -< y, then 11x11	Ilyll. 
30 If x -.< y, then x + z -< y + z for x,y,z E X. 
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Theorem 2 (see [51). Let (X, II, -<) be a Banach space with a binary relation 
-< satisfying the assumptions 1 0 - 30, and let be given linear and bounded operators 
A 1 , A2 : E - E satisfying the following two conditions: 

40 If 9 -< w, then 9 -< A i w and 9 -< A2w. 
50 There exists an element 9 -< w0 E X such that 

r(A i + A2 ) = urn II(A i + A2)1w0II
n -00 

and
A2AAw0 -< AA'w0	(j ^ 1,k > 0). 

Then the inequality (1) holds. 

Remark 1. In an implicit manner, Theorem 1 contains the additional assumption 
r(A 2 ) = IAxoI[*. But a slight technical change in the proof of Theorem 2 
shows that this assumption can be omitted. 

In this paper we shall consider the following Darboux problem of neutral type: 

Zzy(x,y) = f(x,y,z(h(x,y)),zy(H(x,y))) for (x, Y) E 12 

z(x,0) = 0	 for x E 	 (2) 
z(0,y)=0	 for y E I	J 

where z, denotes the second mixed derivative and I = [0,a] with a > 0. Similar 
problems (with or without translation of arguments) have been considered, e.g., in [1, 
4, 5].

Our proofs are based on the following extension of the Banach fixed point theorem. 

Theorem 3 (see [4]). Let (X,II.II,-<,rn) be a Banach space with a binary relation 
-< and a mapping m: X - X. Suppose that assumtions 1 0 , 20 and 

6° 9 -< m(w) and 11 m(w )II = II w II for every w E X 

hold. Moreover, let F : X - X and A : X - X be operators with the following 
properties: 

70 A linear and bounded with r(A) <1. 

80 1f9-<w-.<v, then Aw-.<Av. 

90 m(Fw — Fv) -< Am(w - v) for every w,v E X. 

Then the mapping F has a unique fixed point. 

Recall that to prove Theorem 3 one show that, for some k E N, the k-th iteration 
of F is a contraction.
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2. The Darboux problem 

Consider now the problem (2). Assume the following: 

(i) h = (h i , h2) : 12 .. p is a continuous function and h(x,y) < (x, y) for every 
pair ( X , y) E 12, where (x 1 , y 1 ) < ( X2, Y2) stands for x 1 5 x2 and yj 5 y2. 

(ii) H : 12	P is a continuous mapping such that H(int12 ) = intl2 and H IjfltI2 
is a diffeomorphism. 

(iii) (x,y,u,v) - f(x,y,u,v) is a continuous real function defined on the product 
12 x 1R 2 , satisfying the Lipschitz condition 

f(x,y,u i ,v i ) - f(x , y , u2, v2)I	- u21 + L2I v i - v21 

for (x,y,u 1 ,v 1 ),(x,y,u 2 ,v2 ) e 12 x R2 , where L 1 > 0 and 0 < L2 < 1 are some 
constants. 

Our first result is given by the following 

Theorem 4. Assume additionally to (i) - (iii) that the functions h, H satisfy one 
of the following conditions: 

(iv) H '( x , y ) I < 1 and D(h(H(x,y))) c H(D(h(x,y))) for every (x,y) E intl2 
where I H'(x , y ) I denotes the absolute value of the Jacobzan of the mapping H in (x,y) 
and D(x,y) = {(t, .$) : 0	t	x and 0	s	y}. 

(v) IH'(x,y)I > 1 and D(h(H(x,y))) j H(D(h(x,y))) for every (x,y) E intl2. 

Then the problem (2) has exactly one solution defined on 

Proof. It can be easily verified that problem (2) is equivalent to the functional 
integral equation 

w(x,y) = i (x,,J	w(t, s) dtds, w(H(x, y))	((x,y) E 12).	(3) 
\	D(h(z,y))	 J 

Denote by C = C(12 ,R) the space of all continuous functions z : 12 - R with the 
supremum norm	1 . Consider the operator F given by 

F(w)(x,y) = i (x,y,J	w(t, s) dtds, w(H(x, y))	 (4) 
\	D(h(zy))	 J 

where w  C and (x, Y) €12 . It is clear that F(C) cC. Further, in view of assumption 
(iii) we have

	

IF(w)(x, y ) - F(v)(x,y) < ((A 1 + A2)l w - v I)( x , y )	 (5) 

where

(A 1 u)(x,y) = L1 J
	

u(t,$)dtds and (A 2 u)(x,y) = L2u(H(x,y)) 
D(h(z,y))
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for u E C and (x, Y) E 12 

Now we prove that the operators A 1 + A2 and F satisfy the assumptions of Theorem 
3. Obviously, (A 1 + A2 )(C) C C and the operator A 1 + A2 is linear and bounded. 
Moreover, A 1 + A2 is an increasing operator with respect to the binaryrelation w —< u 
if and only if w(x,y) <u(x,y) for every (x, Y) E j2 Let us remark that in view of (5) 
the assumption 9 0 of Theorem 3 is satisfied taking (in(u))(x, y) := Iu(x, y) 1. 

To end our proof it is enough to show that r(A i + A2 ) < 1. We have 

	

(A 1 A2 u)(x,y) = L1L2	f	u(H(t, s)) dtds 
D(h(x,y)) 

	

(A2 A 1 u)(x,y) = L1L2	f	u(t,$)dtds 
D(h(H(x,y))) 

for u E C and (x,y) E 12 . Let K denote the cone of non-negative functions in C, i.e.


K = { E C: w(x,y) >0 for every (x,y) E j2} 

This cone is normal and generating. Obviously, A 1 and A2 are positive on K and 
uo-upper bounded. Further, in view of assumptions (ii) and (iv) we obtain 

	

(A2A1u)(x,y)=L1L2	f	u(i,$)dids 
D(h(H(z,y))) 

	

= L1L2	f	u(H(t,$))IH'(t,$)I dids 
H'(D(h(H

 f -u(H(t,$))dids 
H' (D(h(H(z,y))) 

	

L i L2	f u(H(i,$))dids 
D(h(z,y)) 

= (A1A2u)(x,y) 

for u E K and (x, y) e 12 so the operators A 1 and A2 are semicomrnutative on K. 
Analogously, if assumption (v) holds, one obtain A 1 A2 -.< A2 A 1 , so A 1 and A2 are again 
semicommutative on K. In view of Theorem 1 we obtain 

r(A i .f. A 2 )	r(A i ) + r(A2). 

It can be easily verified that 

	

IIAwoII	
La2 Iwo
	and	II AwoII = L Iwo — (n!)2 

for every n E N where wo(x,y) 1 on 12. Thus r(A i ) = 0 and r(A 2 ) = L2 . In view of 
the assumption L2 < 1 we have r(A i + A2 ) < 1. Hence, applying Theorem 3 we deduce 
that the operator (4) has a unique fixed point in C, which obviously is a solution of the 
problem (2). Hence the proof of Theorem 4 is completed .1
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Now we consider the problem (2) and assume that the assumptions (i) and (iii) are 
satisfied. Moreover, assume that 

(vi) H .P - 12 is a continuous function and h(H(x,y)) < h(x,y) for (x, Y) E 12. 

Our next result is the following 

Theorem 5. Under the assumptions (i), (iii), (vi) the problem (2) has exactly one 
solution on 12. 

Proof. The idea of this proof is exactly the same as in the previous case. Hence it 
is enough to show that -(A 1 + A2 ) r(A i ) + r(A2 ). For this we will use Theorem 2. 
Obviously, for 9 -< w we have 9 -< A 1 w and 9 -< A2 w. Let wo(x,y) 1 on 12. Since K 
is normal and w0 E intK, 

r(A i + A 2 ) = lim II( A i + A2)2w0II* 

(cf. [3: Chapter III) . Moreover, for j > 1 and k > 0 we obtain 

(A2 Aj A WO) (x, y) 

=LL'	f	f	...	f	1dxdy ... dxidyi 
•	D(h(H(r,y))) D(h(x i y i ))	D(h(x1_i,y,_i)) 

and

'(AA'wo)(x,y) 

_L1Lk	J	f	...	J	1dxdy ... dxidyi. - 12
D(h(r,y)) D(h(x i , y , ))	D(h(x, i	- 

Thus, in view of assumption (vi), A2 AAw0 - AA'wo. By Theorem 2 we infer 
that r(A i + A2 ) r(A i ) + r(A2 ). The proof of Theorem 5 is completed U 

3. Remarks 

In what follows we indicate differences between Theorem 4 and Theorem 5, and com-
pare our methods of a proof with a method based on direct application of the Banach 
contraction principle. 

Remark 2. In Theorem 5 we do not assume that HIjfltJ2 is a diffeomorphism and 
H(intl2 ) = intl2 . Hence Theorem 5 does not follow from Theorem 4, obviously. For 
example, the functions h and H given by h(x,y) = H(x,y) = (, ) ((X, Y) E 12) 
satisfy assumptions (i) and (vi), so they can illustrate Theorem 5. Now let 

xy 
H(x,y)=(y,x)	and	h(x,y)=(,)	((x) y)E12).
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Obviously, the function H satisfies the assumption (ii). Further, we have IH'(x, )I = 1 
for every (x, y) E intl 2 and 

D(h(H(x,y))) = D(h(y,x)) = D(, ) 

H(D(h(x,y))) = H(D(, )) = D(, ) 

so the function H satisfies the assumptions (iv) and (v). Let us remark that the in-
equality h(H(x, y)) h(x, y) is satisfied only if x = y. Hence the functions h and H do 
not satisfy the assumption (vi) in Theorem 5. 

Remark 3. To prove an existence theorem for the problem (2) one can apply the 
Banach contraction principle. In this case it is enough to assume that the functions h 
and H are continuous. But this method requires the assumption L 1 a2 + L2 < 1, where 
a, L 1 and L2 denote the same constants as in Section 2. Recall that in Theorems 4 and 
5 we assume that L 1 > 0 and 0 <L2 < 1. 
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