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Bifurcation from Simple Eigenvalue 
for Functional-Differential Equations 

E. Stepanov 

Abstract. A method to determine bifurcation points of complicated boundary value problems 
for functional-differential equations is developed, which provides sufficient conditions on exis-
tence of intervals containing bifurcation points in terms of some simple estimates rather than 
in terms of spectral properties of the linearized problem. In the case of Frechét-differentiable 
non-linearity the method reduces to the study of bifurcation from simple eigenvalues of the lin-
earized problem. It still works, if the linearized problem contains homogeneous but nonlinear 
operators. The heart of the approach consists in the study of branching equations obtained by 
Lyapunov-Schmidt reduction and a special non-equivalent change of variables. Construction 
of such equations based on the choice of generalized Green's operator is discussed. At last, 
some applications to second order equations with deviating argument are provided. 
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1. Introduction 
Consider the following simple nonlinear boundary value problem for a second order 
functional-differential equation with deviating argument of the unknown x E AC" from 
the space AC" = AC"(O,T) of functions with absolutely continuous first derivative 
and second derivative from the Lebesgue space L'(0, T): 

I + (A, + q(t))x(h(t)) = r(x) (t E [0, T]), 

x(7)=0	[0, T)),
(1) 

x(0) - x(T) = 

a(0) - (T) = 

where T >0 is given, q E L'(O,T), h : [0,T] - R is measurable, r : AC" - L'(0 1 T) 
and 01, 02 : AC" - Rare highly nonlinear operators satisfying r(0) = 0 and q5 ( 0 ) = 
0 (i = 1, 2), while A 1 E R is a bifurcation parameter. It is clear that this problem 
admits a trivial solution x 0. One is interested however in finding those values 
of the parameter A, (called bifurcation points) that give rise to branches of non-trivial 
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solutions. We note that the question of finding constructive methods to study solvability 
of similar linear eigenvalue problems raised recently in the paper of V. Maksimov and 
A. Rumyantsev [12]. 

It is well-known that under rather unrestrictive conditions of smoothness of the 
operators all the bifurcation points of problem (1) provide non-trivial solvability of the 
respective linearized problem 

I +	+ q(t))x(h(t)) = 0 (t E [0, T]), 

	

x(T)=0 (7[0,T]),	
(2) 

x(0) = 

1(0) = 1(T), 

in other words, they are characteristic values of the latter. Thus to solve the posed 
bifurcation problem it is reasonable first to find all characteristic values of problem 
(2) and then to check each of the latter, whether it is really a bifurcation point of 
problem (1). Such a classical scheme can be easily established for many certain simple 
ordinary (or partial) differential equations. However, this is evidently not the case in 
the above posed problem. First, (2) is too complicated to be solved explicitly and hence 
even the existence and location of its characteristic values (i.e. points "suspectable" 
for bifurcation) constitute non-trivial problems. What is more, although one has a 
whole variety of classical results starting from the simple eigenvalue theorem of M. G. 
Crandall and P. Rabinowitz [5] or a linearization theorem of M. A. Krasnosel'skii [11: 
Theorem 56.4], to verify whether a characteristic value of (2) is actually a bifurcation 
point of (1) one needs usually deeper knowledge of the structure of the solution set of 
the linearized problem to apply them, like the multiplicities of the characteristic values. 
Such an information is clearly difficult to obtain. 

We emphasize that it is a typical situation in classical bifurcation methods (see [4, 
101 for a general overview) that one needs firstly points "suspectable" for bifurcation 
and secondly some more information about the latter formulated usually in terms of 
certain multiplicities. This applies also to the most general bifurcation results obtained 
by P.M. Fitzpatrick and J. Pejsachovicz, which use the topological invariant (called 
parity) of the parametrized families of Fredhoim maps "responsible" for the bifurcation 
phenomena. However, the difficulty in computing the parity in applications [6, 71 is 
again reduced to checking the multiplicity of the characteristic values of the respective 
linearized problem. 

In this paper, to handle the bifurcation problems for rather general functional-
differential equations, including the ones of type (1), we develop a very simple method 
originally presented by S. A. Vavilov in [21] and then applied with some modifications 
in [19, 221 to the analysis of non-trivial solvability of various boundary value problems. 
The general advantage of this method consists in the fact that it allows to formulate 
sufficient conditions on the existence of bifurcation points only in terms of the solvability 
of some systems of algebraic inequalities. In practice (e.g., in applications to functional-
differential equations) such conditions can always be easily verified, unlike conditions 
involving spectral properties of the linearized problem, which can be effectively verified
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only if the latter has not too complicated structure. Hence, this approach seems to be 
particularly adapted for such problems. Besides, from the algorithmical point of view, 
it consists of several rather straightforward steps, many of which can even be performed 
by some computer programs doing analytic calculations because in practice they involve 
only symbolic substitutions. The second advantage of the method is that it still works 
in somewhat less classical cases dealing with linearizations leading to problems which 
are homogeneous of order one while being not linear. In such situations it is impossible 
to refer to the linear spectral theory. Applications of this kind frequently appear in 
functional-differential equations with "maxima". 

In principle, the method used in this paper allows not only to localize the inter-
vals containing the bifurcation points, but also to apply some numerical approximation 
techniques to find both the bifurcation points and the branches of non-trivial solutions. 
However, we pay a high price for such a constructivity of the approach. In fact, it will 
be shown that in most important cases this method leads only to analogies of the simple 
eigenvalue theorem, and hence, from the abstract point of view, is much less general 
than the above-mentioned classical results. 

The heart of the approach consists of special linearization theorems extending their 
prototype claimed in [23] and based on the application of a standard Lyapunov-Schmidt 
reduction, the special non-equivalent substitution of variables and the Leray-Schauder 
topological degree theory to analyze the solvability of systems of infinte-dimensional 
branching equations. We mention that each of these instruments, both separately and 
in combinations, is more or less customary in general bifurcation theory. A very similar 
approach combining these methods in the same way as we do here (only the non-
equivalent substitution was different) has been successfully used recently by M. Martelli 
in solving so-called cobifurcation (atypical bifurcation) problems in [13]. It is interest-
ing to note that the results also of "simple eigenvalue" character, which seem to be 
rather close to ours, have been obtained in bifurcation theory for differential equations 
on manifolds by M. Fun, M. Martelli and M.P. Pera (see [8] and the references therein). 
However, in most papers devoted to local bifurcation an attempt is made to find bifur-
cation points explicitly, while due to the complexity of the problems we are only able 
to prove their existence inside some regions (and then, if necessary, try to find them 
numerically). Thus, some results of global bifurcation seem to be more in this spirit 
(see, e.g., [9: Theorem 2.2]), although in this paper we deal only with local phenomena. 
The reader will notice that the results we present here have common background with 
the general continuation principles introduced and elaborated by J. Mawhin (for an 
uptodate survey see [141). 

Our interest lies mainly in applications to functional-differential equations. In fact, 
we will show how by means of the appropriate choice of the generalized Green opera-
tor and the respective construction of branching equations it is possible to formulate 
sufficient conditions on the existence of bifurcation points for rather complex functional-
differential equations in terms of rather sharp estimates sensible to the presence of non-
local operators in the problem. Moreover, we will show how to construct such estimates 
in a simple and straightforward way, independently of the particular structure of the 
chosen solution space.
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2. Abstract problem formulation and preliminaries 

In the sequel we study bifurcation problems for some functional-differential equations 
of the form

	

( 1x=qf(x,A1),
	 () 

where x E E1 is the unknown element inside a real Banach space E1 of sufficiently 
"regular" functions, A 1 E R is a bifurcation parameter, £ : E1 -* E is a linear (densely 
defined) operator, .1 : E1 x R - E is a nonlinear operator such that .F(O, A 1 ) = 0 for 
all A 1 , 1: E1 -p R'1 and 0 : E1 x R - R' are linear and nonlinear vector functionals, 
respectively, representing the boundary conditions. Moreover, let (0, A) = 0 for all A1 
and E1 E x R', where E is a real infinite-dimensional Banach space and means 
isomorphy. 

It is well-known [1: Chapter 6] that if E is a space of summable functions, like 
Lebesgue or Orlicz space, the above setting covers a wide range of problems in the 
theory of functional-differential equations. In each case, the respective class of equa-
tions is determined by the choice of the space E1 and the isomorphism between E1 
and E x R'1 . For example, for systems of first order ordinary differential equations or 
differential equations with deviating argument the space E1 is usually a space of ab-
solutely continuous functions on an interval, while for systems of impulsive differential 
equations E1 can be chosen as a space of piecewise absolutely continuous functions with 
fixed points of discontinuity (see the constructions of A. Anokhin in [1: Sections 6.3 
and 6.4]). For more examples we refer to paper [3], where some general approaches 
to construct appropriate pairs of spaces E1 and E with E1 E x R' for many other 
important classes of functional-differential equations are considered (in particular, for 
equations "with quasi-derivatives" and for integro- differential equations over the whole 
real axis) and to [2] where such constructions are applied to various types of singular 
functional-differential equations. 

Recall the following definition of a bifurcation point [11: § 56]. 

Definition 1. Ai E R is called a bifurcation point of problem (3) if in each neigh-
borhood of A for any e > 0 there exists a value of the parameter A 1 such that (3) 
admits a non-trivial solution x 54 0 of norm li x liE1 < E. 

Recall now some well-known facts from bifurcation theory. Consider our problem 
in the form of one equation

	

Lx=F(x,Ai),	 (4) 

where x E E 1 , L: E1 -* E x R, L = IL, 11 and F: E1 x R -i E x R,F = {1,} 
are linear and nonlinear operators, respectively, and F(0, R) = 0. Assuming sufficient 
smoothness of F, namely that in some neighborhood of x = 0 the representation 

F(x,A i ) = F(O,A 1 )x + R(x,A i ),	 (5) 

is valid with F1 (0,A i ): E1 -* ExlR' being a linear and R: E 1 xR - ExR'anonlinear 
operator containing higher-order terms in x (in the sequel we make these conditions more
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concrete), one gets the well-known fact [11: Theorem 56 . 11 that all bifurcation points 
of (4) provide non-trivial solvability of the respective linearized problem

(6) 

in other words, they are characteristic values of the latter. To answer the converse ques-
tion, which of the characteristic values of the linearized equation (6) are the bifurcation 
points of the original nonlinear equation, one has available a lot of powerful statements 
like the M.A. Krasnosel'skii principle of index change and related theorems (see [4) and 
[10] for an overview of bifurcation theory). However, trying to apply even the simplest 
of such principles like the famous simple eigenvalue theorem to functional-differential 
equations, one often encounters the following obstacle: in general the linearized problem 
(6) can have a rather complicated structure, so it is rather difficult to examine even the 
existence of characteristic values, to say nothing of their multiplicities. Moreover, in 
certain problems F(0, )ti )x is not a linear operator, but only homogeneous of order 1 
in x. This situation appears rather frequently when studying differential equations with 
"maxima" [17). This could make the analysis of a linearized probleni (6) rather difficult. 
Nevertheless, one can have complete information on the structure of the left-hand part, 
i.e. on the operator L, which can help in solving the problem. This will be exploited in 
the sequel. 

3. Leray-Schauder degree theory for a class of mappings 

In what follows we will need a tool to study the solvability of systems of functional 
equations of the type

() 

where u E E0 , ..\ E Rk, 1: E0 x R!C -p E0 is a nonlinear operator, D : E0 x IR k .. k is 
a nonlinear vector functional, and P2 0 is a (infinite-dimensional) Banach space. For this 
purpose we apply the ordinary Leray-Schauder degree theory to mappings of the form 

Iu —F(u,.X)) 
D(u,A)	 (8) 

Introduce the regions (open bounded subsets) Q, C E0 and Q2 C IRk, and denote their 
boundaries by 31l and 31 2 , respectively. Also, let ) = Q, x 

To apply the Leray-Schauder degree theory one needs the compactness property of 
'I', which is provided by assuming that F is a compact and continuous operator and D 
is a continuous vector functional, i.e. it maps bounded sets into bounded ones. The 
additional assumption of non-degeneracy of the mapping 'I' on oQ is enough to define 
correctly a topological degree deg('I', Q, 0) satisfying all ordinary properties (see [15]). 
We say that the mapping 'I' (the system (7)) is topologically non-trivial on the regions 

i and Q2 (is of type V( 1 , 2 ), for short) if deg('I',,0) 0. Under some additional 
requirements on 'P one can calculate its topological degree in a rather simple way.
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Namely, consider the auxiliary finite-dimensional continuous vector field D 0 IR/c 
and let I be the norm in IRIC. To verify the topological non-triviality of a system (7) 
one can use the following result extending the analogous ones stated in [18, 21]. These 
results probably originate in the theorem of J. Cronin [15] and constitute a common 
topological background, as mentioned in the introduction, for our approach and the 
coincidence degree of J. Mawhin [14]. 

Theorem 1. Let Q, C Eo be contractible, .F be a compact and continuous operator 
and D be a continuous vector functional which maps bounded sets into bounded ones, 
while the following conditions hold: 

(1) 1r(ac 1 ,cicl2 ) c ci. 

(ii) 0	ID(u,A) - Do(A)I < IDo(A)I for all u E cU1 1 and all) E 3112. 

Then deg('I',1l,0) = deg(Do,11 2 ,0). In particular, when the latter differs from zero, 
then the system of equations (7) has at least one solution (u', A') E Q. The set of such 
solutions can be approximated by the Galerkin numerical scheme applied to the system 
of equations (7). 

Remark. In the sequel we will take D O (A) = D(0, A), 11 = B,(0) C Eo (the ball 
II U IIE0 < p) and c12 = B 2 (A) C lR C (the ball I - A' 1 < P2, where A* is one of the 
roots of the system of algebraic equations D 0 (A) = 0). To verify that the system (7) is 
of type V(11 1 ,11 2 ), it is enough (by Theorem 1) to study the solvability for a system of 
inequalities for P1 > 0 and P2 > 0 of the type 

f
Ui (p,p2 ) < P1, 

l U2 (p i , p2 ) <P2. 

Proof of Theorem 1. Contractibility of Q implies the existence of a continuous 
map h: 11i x [0,1] - 11 1 , such that h(O,u) = u, h(1, u) = uo and h(t,u) E 11 i for all 
(u, t) E Q i x [0, 1]. Consider a homotopy 

'I' t (u, .)) -  I	 u - h(t, 1(u, A)) 
- Do(A) + (1— t)(D(u, A) - D0(A)) I (i e [	1]). 

Obviously, it is compact and according to conditions (i) and (ii) non-degenerate on 
311. Thus by the homotopy property of the degree and the product formula (see [11: 
Theorem 22.4]) 

deg('I', 11, 0) = deg(Wo,11,0) = deg(W i ,11,0) = deg(Do,122,0). 

The rest of the statement follows trivially from the basic properties of the Leray-
Schauder degree. I
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4. Linearization theorems 

Consider an equation of type (4) and assume that L is a Fredholm operator of index 
zero with non-trivial kernel and adjoint kernel given by 

kerL = Span {1,. .. ,Pk}	and	kerL = span{74' i ,.. . ,I'k}, 

respectively. Note that this is not a restriction; in practice one can provide such a 
condition even "artificially", e.g. when L is continuously invertible and there exists a 
linear operator L 1 : E l - E x R'2 such that L + L 1 is a Fredholm operator of index 
zero with non-trivial kernel, one simply considers the equation 

(L+L i )x=Fi (x,A j ),	 (9) 

where Fi (x,A i) F(x,A) + L 1 x. Furthermore, assume the operator F(0,A 1 )x to be 
homogeneous of order 1 in x (not necessarily additive). Now, following the technique 
presented in [21], we will look for bifurcation in the direction W , by introducing into the 
problems (4) and (6) a substitution of variables 

X = (U + W, +	A)	 (10) 

where u E E0 = Ei /kerL and A i E R. Applying then the Lyapunov- Schmidtreduction 
procedure and assuming 0 one arrives at the auxiliary systems of branching equa-
tions with respect to the unknown elements U E E0 and A = (A,,..., Ak } E Rk written 
out below: 

1. For the nonlinear problem (4): 

(  k 

L1F(e( I	-°-	 u+i +A) A1) 
)	 i=2 
.	 (11) 

(F ( ( I -	u + i + k A j p̂ j 	A 1 )	= 0 (j = 1,... ,k), 
I..	 i=2 

or, for short,
Ji(u,A,.)=0	for 

2. For the linearized problem (6): 

L 1 F(oAl )(u+ I + 
2 

A 1) =,
 

(12) 

KFz(0,AI)(u+l +A 1) Oj = 0 (j = 1,...,k), 

or, for short,
'I'(u,A,O) = 0
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where the mapping W(u,)) is defined as 

—L—'R ( ( + + = 2 Aiwi, ) 1 

(u,A,)= (u,A,O)+	
(R(e(u+i 

at	0 and

	

- L — 'F(o, A ' ) ( +	+ i=2 

(u,A,O)= 

t	
1. 

(F(o, A 1 ) (u +	= 2	,k) J 
Here the parameter	0 is free and the operator L' : E, - Eo stands for the

generalized inverse of L. 

Note that a trick with a non-equivalent substitution and dividing by a parameter 
of branching equations is applied frequently in bifurcation theory, in particular in the 
proof of the simple eigenvalue theorem (see [5] and [151). Nevertheless, our trick differs 
a bit from the one in the mentioned proof: we look for bifurcation in the direction of 
the element i of the kernel of L, and not in the direction of the kernel of L - F(0, )4), 
where A', is "suspected" for bifurcation. The reason is that we are supposed to know 
much about L and almost nothing about L - F(O, A',) (we even may be unaware of the 
location of A',). 

We are now able to formulate the following linearization result generalizing [23: 
Theorem 3]. Denote P, : A	i-p A l E R and let cl stand for the closure. 

Theorem 2. Assume that the operator F is continuous and maps bounded sets into 
bounded ones, while L'F is compact, the representation (5) is valid with F(0,A1)x 
homogeneous of order 1 in x, and that there exist regions ci, C Eo and ci2 C R' such 
that the following conditions hold: 

(i) II R(, A ,)IIExj	= o (II x IIE,) when II x IE1 -p 0, uniformly with respect to A, E 
Pi (cici2).

(ii) The system of equations (12) is of type V(ci, , 

Then the original equation (4) has in PI(Q2) at least one bifurcation point which is also 
a characteristic value of (6). 

Proof. From the representation (10) it follows that e 54 0 implies x 54 0 (otherwise 
it would contradict the definition of a factor-space). Hence all solutions of (11) and (12) 
correspond to non-trivial solutions of the respective original equations (4) and (6).
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From condition (ii) it follows that deg('F(•,.,0),Q1 x 2,O) 54 0 and the system 
(12) is solvable in Q, x Q2. Due to condition (i) and the principle of topological degree 
stability with respect to small perturbations of the map [11: Theorem 19.21 one has 
deg ('P(.,.,),1 x Q2, 0) 54 0 for all e from a small neighborhood of zero, and the 
system (11) is solvable for sufficiently small . Let T0 stand for the solution set of (12) 
in f2 i X Q2 and T stand for that of (11). From the estimate 

IItII (u, A, )IIEo xL k	II 1P (u , A,	- 'P(tL, A, 0 )IIE0 XR k + II'F (u , A, 0)IIE0XRk 

and the fact of uniform non-degeneracy of 'F on any closed bounded set where it is 
different from zero [11: Section 19.41 it follows that given any neighborhood U of T0 

there is 5 > 0 such that T C U for all c with	< 8. Thus, there is a sequence 
- 0 such that for the corresponding Al k E Pl(T k ) we have A 1 ,, - Ai € P1 (T0 ). To 

show that Ai is a bifurcation point it is enough to note according to (10) that for the 
respective Xk we have Xk	01	 -	 -	- 

To analyze the above statement, consider the classical particular case that F(0, A1) 
E1 -+ E x R" is a linear continuous operator, and hence, according to condition (i) of 
Theorem 2, the nonlinear operator F is Fréchet differentiable in x = 0. It is clear that 
'Ji(u, A, 0) = 0 if and only if x € ker(L - F(0, A 1 )), where x = x(u, A) is defined by (10). 
We show then that for condition (ii) of Theorem 2 to be fulfilled it is necessary that 
for each characteristic value Ai e P1 (11 2 ) the above kernel is one-dimensional. In fact, 
otherwise we would have that there is a line {x 1 + tx2 € ker(L - F(0, A)) : t € IR}, 
which has a projection on span ço I equal to one, and thus the degree deg('F,c1 1 x 112,0) 
would be undefined. Therefore, it is clear that in this situation we deal with bifurcation 
from a "simple" characteristic value, and it is not difficult to see that the above degree 
is equal to the sum of jumps of the indices of L - F(0, A 1 ) on characteristic values A'1 € 
P1 (c12 ). However, even in this case the advantage of our approach in comparison with 
the standard simple eigenvalue theorem is the fact that one does not need any explicit 
information on the location of characteristic values and on the kernel of L - F(0, A1) 
but only uses the information on the operator L. 

One should also emphasize that the above result opens the way for numerical treat-
ment of the bifurcation problem (4). Namely, to seek bifurcation points on the interval 
P1 (11 2 ) which gives rise to branches of non-trivial solutions with the parametrization 
(10), one can under the conditions of Theorem 2 apply the Galerkin numerical scheme 
to the system of equations (11) when - 0. 

Let us also mention that in bifurcation theory one frequently finds existence results 
for bifurcation points in an open set formulated in terms of non-triviality of a topological 
degree or other homotopy invariant over this set. In general, however, one tries then 
to localize the bifurcation points within this set. A related example, where the further 
localization is not easy, is provided in [9: Theorem 2.2]. At last, it is worth recalling 
that what we have done by means of the Lyapunov- Schmidtreduction and the Leray-
Schauder degree, is equivalent to the coincidence degree construction of J. Mawhin 
(except that we deal here not with the coincidence degree of a map in E1 but on a 
hyperplane of E1). 

An analogous assertion for the situation when F,, (0, A 1 ) is a linear operator can be 
proved by finite-dimensional reduction of system (12).
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Theorem 3. Assume that for the continuous operator F the representation (5) is 
valid with F(O, A i )x linear in x and L is continuous, and that there exist P2 > 0 and 
A E R k such that the following conditions hold: 

(i) II R( x , A )IIExII	o(II x IIE,) when II x IIE, - 0, uniformly with respect to A 1 E 
I, where I = [ A l - p2, A + p21. 

(ii) The linear equation u —LF(0,A i )u = v (u E E0 ) admits for all A 1 E I an 
a priori estimate II u IIEo	C II v IIE0 with C = C(p2 , Afl, and there exists a A 1	) e I 
such that this equation is solvable for all v E E0. 

(iii) The vector field X(A) :	. k is non-degenerate on the sphere 19B2(A*), 
and its topological degree satisfies deg(X,B 2 (A),0) 54 0, where 

X(A) = (F(o A 1 ) (IdEo +H_ 1 (A i )L_ 1 F(0,A l )) (Wi
i=2	)	) 

for j = 1,.. . , k, H(A 1 ) = IdE0 - L'F(0, A 1 ) and IdE0 the identity in E0. 

Them the nonlinear equation (4) has at least one bifurcation, point A, 	- P2, .X +

P2).

Proof. The first equation of system (12) is uniquely solvable with respect to the 
unknown u for A E clB2: 

u = H -1 (A 1 )L' F(O, A1) (, + E A i Wi + 0(1) 

as -, 0. Note that u(A) is continuous due to the conditions of the theorem. Substi-
tuting the expression u(A) into the finite-dimensional part of the system of equations 
(12) we come to an equivalent system of algebraic equations. From condition (iii), using 
the principle of (finite-dimensional) topological degree stability with respect to small 
perturbations [11: Theorem 19.2], one yields the desired conclusion I 

The major shortcoming of the linearization Theorem 3 is that it requires to construct 
the expression for X(A), that can be a rather hard job because of the necessity to invert 
the operator H(A j ). It is therefore helpful to reformulate this theorem so that its 
conditions become easier to verify. For this purpose we claim the following assertion. 

Corollary 1. Let the conditions (i) and (ii) of the linearization Theorem 3 be sat-
isfied and the finite-dimensional vector field D 0 (A) be non-degenerate on the sphere 
aB 2 (A), while

deg (Do, Bp, (A*),O)	0 

and

Max
	max kD(u,A i )I <	mm	Do(A)I, 

A 1 E{A "p2,A+p2} II U IIE 0 ^pl	 AE8B2(A) 

where

Pi = C(p2 , A) W1 + 1AiWi
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and

k 

I	 i=2 
Do1(A)=(F(OA1)(1	

(j = 
LD,(u,A1) 

	

Then the nonlinear equation (4) has at least one bifurcation point A, €	—p, 

5. Branching equations for abstract functional-differential 
equations 

We turn now to bifurcation problems for an abstract functional-differential equation in 
the form (3) and derive for it the respective systems of branching equations (12) which 
we are going to analyze using the linearization theorems stated in the previous section 
in order to get bifurcation results. It is important to note that when constructing such 
systems we are rather free in the choice of the generalized inverse operator L' induced 
by the factorization of the space E1 by kerL. An appropriate choice of the latter could 
be rather essential in constructing systems of branching equations which are easy to 
study. 

To explain the latter statement, we recall that our general idea is to get conditions 
for the existence of bifurcation points of (3) in terms of only some estimates, which 
at the same time should be sufficiently sharp to be sensible to the structure of the 
problem. These estimates are to be obtained by majorizing the branching equations. 
The problem is to choose the right space to make these estimates in. In fact, the original 
space E1 is possibly not the most comfortable to work with, since, as one can see from 
the examples given in [1: Chapter 6] and in the papers cited in Section 2, it can have 
rather complicated structure depending on the class of problems under consideration. 
We prefer to work in E, for which we always choose a "simple" space (usually, just 
a Lebesgue space). Besides, we get then a certain standardization of the technique, 
since the choice of E usually does not depend on the class of problems considered. 
We pass therefore from the system of equations in the space P3 0 x R!C to the system 
of equations in P3 x R1+'. A negative result consists in increasing the dimension of 
the finite-dimensional part of the system. Fortunately, in some cases (in which the 
right choice of the generalized inverse is most important), we are able to preserve this 
dimension and to work in E x Rk. As we see in the next section, this technique really 
leads to rather sharp estimates. 

Instead of the standard constructions based on Schmidt's lemma [20], which. are 
usually more adapted to the study of semihomogeneous problems (i.e. çb 0), we use 
here a construction based on the generalized Green operator that was suggested by L.F. 
R.akhmatullina in [16]. 

Suppose that £ is a Fredholm operator of index ind.0 = n satisfying dim kerC = n. 
Then the equation Lx = I has for all I E E a solution x E E1 . Assume that the



554	E. Stepanov 

homogeneous problem

f Lx = 0, 

lx = 0 

has k >0 linearly independent solutions x 1 ,.. ,x. If k <n, then let 

X = {x 1 ,... , X k, V 1, .... V_k} 

be a fundamental vector of the equation Lx = 0 with (v 1 ,13 ) = ö, (i,j = 1,... ,n - k) 
where 8, denotes the Kronecker delta. If k	n, then X = {x 1 , . . . ,x}. Let E1 
be embedded into a Banach space E2	.E x IRk, the respective isomorphism being 
determined by the map

Y  E2	(iry,py) = (x,/3) E E 1 x IRk 

where the projector it : E2 -* Ei and the vector functional p : E2 -+ R' satisfy 
pit = 0. Then, the assertion is (see [1: Theorems 6.1.11 and 6.1.13]) that there is a 
linear extension £ : E2 -* E of the operator £ and a vector functional 1 E2 - R  
such that the problem

Lx = f, 
lx = a, 

lx = & 

admits a unique solution for each I E E and {a, &} ER". In particular, if a = 0 and 
& = 0, then the respective solution is given by = Cf E E2 , where C : E - E2 is a 
Green operator for the above problem. Moreover, in this case the problem 

fcx=f, 
Ix =a, 

is solvable if and only if a E R n and f E E are connected by the relationships 

an-k+	a(v,lfl_k+) - (Of, p)	(i = 1,..., k; k < n) 

a1 = — ( Of, p )	 (i = 1,...,n, k = n), 

and the solution x E E 1 is given by 

Ik Ax
1 +	a1v1, when k <n, 

x =Gf+A 	 when k=n, 

where C = irG is a generalized Green operator. 

Assume now that in problem (3) the nonlinear operators .T : E 1 x IR -* E and 
: E1 x IR -* IR'2 admit the representations 

(x,A i ) = F(0,A 1 )x +R.(x,Ai),	
(13) 

= 01 (0 1 A i )x +(x,Ai),
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where J 1 (0,Aj)x and (0,.X i )x are homogeneous of order 1 in x, and 

{ IR.(x,A I )II E = o(IIxIIE),	
as IIxIIE	: 0, 

= o(IIxIIE), 

uniformly with respect to A 1 from closed bounded sets. Consider a non-equivalent 
change of variables of type (10) 

	

x= e(u + xi+Axi)	 (14) 

where u E E0 E 1 /kerL and A i E R, and write out the respective systems of equations - 
of type (12) with respect to the unknowns u E E0 and A E R'. For the case k < n the 
latter has the form

u+xi+Ajxj), 

	

k	\	n-k	

(	

k	\
Ai	

j=1	 i=2 I 

k	

(	 k 
(0,A1)  

j=2 

K 
GF1(0,A1) (
	

k	 (15) 

u+x 1 +Ax) Pi) 
j=2	/ 

n-k	

(

k 
U + X1 + +	(Vj,lnk+ i)x(0,A l )	 AXi)	(i = 1,... ,k), 

j=i	 j=2 

while for the case k = n the form of system (12) is 

u = G(0, A 1 ) (+1 +Ax1) 

(0,A 1 ) (+1+ 

k 

Ajxj)= _(a(0A 1 ) (+1 +Ax) Pi) 

(i=1,...,n).
(16) 

The linearization Theorem 2 for these cases would read in the following way. 

Proposition 1. Assume that under the above conditions the systems (15) and (16) 
for k <n and k = n, respectively, are of type V(l 1 jl 2 ) for some regions Q 1 CE0 and 
11 2 C R'. Then the set of bifurcation points of problem (3) inside the interval P1(112) 
is non-empty.
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Sometimes it is not worth distinguishing a linear part I of the vector functional, 
determining the boundary conditions of (3). Namely, consider a problem 

Lx =T(x,Ai), 
(x,A i )=	0,	

(17) 

and suppose that it admits the trivial solution x = 0, while conditions (13) hold with 
A 1 )x and cf(O, A 1 )x homogeneous of order 1 in x. Recall [1: Chapter 6] that the 

assumptions imposed on the operator L imply the existence of an isomorphism 

J: (z,/3)EExR'1 '-i 
with the inverse

J 1 X  E1 -p (z,3) = (Lx, IX) E E x 

where C E - E1 (a Green operator), X R' - E1 (a fundamental matrix) and 
1: E1 -* R'2 are linear operators. Then, letting k = n and E0 = E i /kerL and using 
the substitution

x = (u + x i + 

where the x i stand for the columns of the matrix X, the respective "linearized" problem 
is a system of branching equations of form (12) with respect to the unknowns u e E0 
and A E R'

=u, 

0.(0 1 	+Ax) =0. 

The linearization Theorem 2 can be easily extended to this case. The keypoint is 
that topological non-triviality of the latter system of equations implies the existence 
of bifurcation points of (3). It is probably easier to study instead the topological non-
triviality of an equivalent system of equations with respect to the unknowns z E E and 
A E R'1

=z, 

/	 k	 (18) 
=0. 

j=2  

Thus we come to the following version of the linearization Theorem 2 (or, equivalently, 
of Proposition 1). 

Proposition 2. Let under the above conditions the system (18) be of type V(l1,2) 

for some regions 1 C E and ci2 c R. Then the set of bifurcation points of the problem 
(17) inside the interval P1 (112 ) is non-empty.
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6. Applications 

In this section we illustrate the above abstract technique in particular examples. First 
consider the following sample boundary value problem for a functional-differential equa-
tion with deviating argument

+ (\ i f(t) + q(t))x(h(t)) = r(x) (t E [0,T]), 

x(r)=0	(T[0,T]), fT 
i(t) dt = 01(x),	 (19) 

T	 T 

j
(t)dt + A, f x(i)dg(t) + Ax(T) = 

where T > 0 is given, f,q E L'(O,T), It : 0,T1 - R is measurable, g has bounded 
variation on [0,T], A, is a bifurcation parameter, r AC" - L'(O,T) and 
AC"(O,T) - R are nonlinear continuous operators satisfying r(0) = 0, II r ( x)II, = 
o(II x IIAC I,I ) and q 1 (0) = 0, I(x)I = o(IIxIIAcl,1) (i = 1,2) as II X IIAC I,1 - 0. Let 
denote the norm in LP (0, T). We assume that r( . ) is compact. It is not quite easy to get 
some information on the structure of the spectrum of the respective linearized problem. 
However, using the developed technique we can find some intervals containing bifurca-
tion points and applying the Galerkin numerical scheme to the systems of branching 
equations we can localize the bifurcation points in these intervals. In fact, recall that 
AC"	L'(O,T) x R2 and the isomorphism can be represented, for example, in the 
form 

(z,) E L'(0, T) x	:.' J Go(t,r)z(r)dr + (i -
	

p, + 02 E AC 1,1 ,	( 20) 

where
{ (i — T)r	

ifO<rt<T, 

	

Go(t,r	T)=	t(T—r) 
if0<trT - T 

is the usual Green function for a two-point boundary value problem 

f 
(t) = 

x(0)=0, 
Ix(T)=0. 

Let
T	T 

	

(rx)(t) = 1(0	and	lx = {JJ}
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Obviously, one has then (with the previous notation) k = 1 < n = 2, x i (t) = 1 
and v i (t) = t/T. The system of branching equations of type (12) with respect to the 
unknowns U E E0 = AC"/kerL and A 1 E R can be written in the form 

I Go (t,r) (A I f(-) + q(T))Sh(u(T) +I) dr  = 

	

f (A
i f() + q(r))Sh(u(T) +I) dT 	 (21) 

+A 1 f(u(r) + 1)dg(7) + A(1 + u(T)) = 0, 

where Sh is an inner superposition operator [1: Chapter 1] defined formally by the 
expression

1
x(h()), if h(i) E [O, T], 

0,
(Shx)(t) = 

if h(t) V [0, T]. 

Minding the isomorphism (20), after some simple transformations, we observe that 
system (21) is topologically non-trivial on a region of E0 x R if and only if the following 
system with respect to the unknowns z E L'(0, T) and A 1 E Ron the respective regions 
is so:

(A1f(t) + q(t)) (l h (t) + (A h z)(t)) = z(i), 

/ (A l f(,) + q(')) (ih(r) + (Ahz)(r))	
(22) 

+A1 f (lh(T) + (Ahz)(T)) dg(T) + A = 0, 

where

(Ahz)(i) = Sh 
I 

Go (t, T)z(T) dT	and	lh(t) = (Shl)(t). 

Consider now the auxiliary one-dimensional vector field 

Do(A 1 ) = A 3 + a 11 A 1 + b1, 

where

all = J f(t)lh(t)dt + I 1 h( t ) dg(t)	and	b1 = I q(t) 1 h (t) dt,
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and denote
Cf =11fJ111T, 

Cq = jjqjj i IT, 

Ch =	sup	I G0(h(t), T)I, 
E [0, T] rE [0, T) 

c9 = (var1og(t))/T. 

One can now proclaim the following simplest statement. 

Proposition 3. Assume that there exist a number P2 > 0 such that Do(—p2) 
Do(p2 ) < 0 and the system of inequalities

Tch(p2 cf + cq ) < 1, 
T2 ch(p? cf + cq)(P2(cf + c9 ) + 

cq) <d(p2) 
{  

1 - Tch(p2 cf + cq) 

holds, where d(p2 ) = m1n { I D0( —p2)I, I D0(p2)I1 . Then problem (19) admits at least one 
bifurcation point on the interval ( —p2, p2). 

Proof. Let f2 i C L'(0, T) be the open ball II z IIi <P1- By Theorem 1, it is easy to 
verify that (22) is of type V( 1 ,(— p2 , p2)) whenever the system of inequalities 

J	Tc(pcj + c)(1 + fi l) <i, 
T(p2 c + cq ) i + Tp2 c91 <d(p2) 

holds, where fi l = chpl . Applying the principle topological degree invariance with 
respect to linear homeomorphic transformations of the map and the Leray-Schauder 
lemma [11: Theorem 7.3], one shows that there is a region Q' E E0 such that (21) is of 
type V(,(—p2,p2)). The assertion now follows from Proposition! I 

We note that the conditions of the above proposition are always satisfied for suffi-
ciently large p2 and sufficiently small 11f 11 1 , II q IIi and var10 g(t), while the necessary 
smallness can be easily estimated from the system of inequalities in the statement. It 
is also worth mentioning that the above estimates are rather sharp in the sense that 
they involve also the information on the function h(t). Furthermore, one easily proves 
by the same method that under appropriate choice of a 11 and b 1 the original problem 
admits three different intervals containing bifurcation points. The characteristic values 
of the linearized problem within such interval(s) can be found by applying the Galerkin 
method to the system of equations (22), while the branches of non-trivial solutions 
(and the bifurcation points) of the original problem are found by applying the Galerkin 
method to the respective system of equations of the form (11) when e - 0. 

The same method can be applied to analyze the solvability of bifurcation problems
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for differential equations with "maxima" like, for instance, the following sample one: 

i + (A 1 f(t) + q(t)) max x(r) = r(x) (I E [0,T]), 
rES(t)

	

x(r)=0	(r[0,T]), 

T 

1 
T	

T	
= 1(x),	 (23) 

f
(t) di + A10 x(t) dg(t) + Ax(T) = 

where S [0, T] —* R is a given set-valued measurable map. Reiterating the above 
scheme for such an equation is a simple exercise. However, here the "linearized" problem 
contains an operator being positively homogeneous of order 1 but non-additive. The 
linearization theorem remains still valid for such operators. Clearly, the free parameter 

should not considered to be positive. 
To understand better the results that can be obtained by the developed technique, 

we study the problem (1) announced in the introduction, preserving all above notation. 
Without loss of generality we require that f0Tq(T)1(y)dr = 0. A system of branching 
equations of type (22) with respect to the unknowns z E V(O,T) and A 1 E R would 
read as

	

— (A 1 + q(t)) ((Ahz)(i) + lh( t ))	z(i), 

{	

(24)


f (A 1 + q(T)) (Ahz)(T) + l h(T)) dT =0.  

In the following proposition we assume for simplicity that h(t) e [0, T] a.e. on [0, TI. 
Proposition 4. Let under the above conditions cqch < 3 —	Then problem (1)


has at least one bifurcation point A'1 E [ —p , p], where 

* 1 — 3cch - (cc — 6cc + 
P2 

Proof. Setting D0 (A 1 ) = TA I and using Theorem 1 one observes that (24) is of 
type V(1 1 ,(— p2 , p2)) with Q the same region as in the proof of Proposition 3, whenever 
p ' > 0 and p2 > 0 satisfy the system of inequalities 

I

c(p + cq)(i + 1) <m 

1(p2+cq)<p2 

where ,5 i = c h p l . After a few straightforward transformations one arrives at the equiv-
alent system of inequalities

Cgch < 3 - 

cqch \I (1 — cqch) 2	 -* 1 -	— 	cqch = Pi <1 < 1,	 (25) - 2	 4	
cqI 

<P2 <	
Pi 

ch(1 + 1) 
+ Cq, 

1-1
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wherefrom the correctness of the statement follows immediately if we choose the se-
quence of numbers P2k .- p = fi?4. As usual, applying Galerkin's numerical pro-
cedure to the respective system of equations of type (11) written out for the original 
problem (1) as -- 0, we can find the bifurcation points of this problem inside the 
closed interval indicated in the statement of the theorem I 

We remark that p - 0 as Cq - 0, T fixed, and p - 0 as T . 0, Cq fixed. 

7. Conclusions 

In this section we summarize the principal features of the method developed to deal 
with bifurcation problems for functional-differential equations. The general scheme of 
analysis of such problems is divided essentially into three steps. 

First the original problem is linearized and, combining the Lyapunov- Schmidttype 
reduction technique with some non-equivalent substitution of variables one comes to a 
system of branching equations, with the following two main features: 

(a) Its solutions correspond to all solutions of the linearized problem, except the 
trivial one. 

(b) The spectral parameter A 1 becomes one of the unknowns of the system 

Then the latter system is analyzed by means of the Leray-Schauder degree theory (e.g., 
using Theorem 1). If it happens to be topologically non-trivial on some regions, then 
the linearization Theorem 2 asserts the existence of bifurcation points in the respective 
intervals of the real axis. Thus the existence (and location) of intervals containing 
bifurcation points is usually given only in terms of estimates for the linearized problem. 
We emphasize that by this moment no information on the non-linearities are used. 

At last, to select bifurcation points among the characteristic values of the linearized 
problem found inside the intervals, one should apply the Galerkin numerical technique 
to the systems of branching equations related to the original problem, whereby the 
information on nonlinear terms is used implicitly. 

One should be aware of a considerable freedom in constructing the systems of 
branching equations. This refers first of all to the choice of the "model" operator 
L = {L, l} as a starting point for the Lyapunov- Schmidtreduction. Moreover, if the 
dimension of its kernel is more than one, then there are several possibilities to choose 
non-equivalent substitutions that naturally correspond to the parametrization of so-
lution branches. There is also an important freedom of the choice of the generalized 
inverse L (or, in other words, the generalized Green operator G) corresponding to 
the factorization of the original function space E 1 by ker L. This combined with the 
appropriate choice of an isomorphism between E1 and E x R'1 adapted to the problem 
under consideration leads to simple systems of branching equations and to estimates, 
which are usually not "rough".	 - 

At last one should mention that the price paid for the generality of the method is 
quite high: in general, it does not allow to localize all bifurcation points, but only points
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outside of some interval. Moreover, in the most frequent case when F. (0, A) is linear 
this method gives only the intervals containing "simple" characteristic values, which 
leads to analogies of the simple eigenvalue theorem. Its principal advantage is that it 
does not require much knowledge on the structure of the solution set of the linearized 
problem reducing the study to the search for simple estimates. In addition, it also works 
in some practically important situations when F(O, A 1 )x is homogeneous of order 1 but 
non-additive. 
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