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Abstract. This paper is concerned with the applicability of the finite section method to oper-
ators belonging to the closed subalgebra of £(L2 (R)) generated by operators of multiplication 
by piecewise continuous functions in R, convolution operators - also with piecewise continuous 
generating functions - and the flip operator (.Ji.L)(x) = u(—x). For this, a larger algebra of 
sequences is introduced, which contains the special sequences we are interested in. There is a 
direct relationship between the applicability of the finite section method for a given operator 
and the invertibility of the corresponding sequence in this algebra. Exploring this relationship, 
the methods of essentialization, localization and identification of the local algebras through 
construction of locally equivalent representations are used and so useful invertibility criteria 
are derived. Finally, examples are presented, including explicit conditions for the applicability 
of the finite section method to a Wiener-Hopf plus Hankel operator with piecewise continuous 
symbols, and some relations between the approximation operators and the limit operator are 
discussed. 
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1. Introduction 
The study of canonical diffraction problems can be frequently reduced to a system of 
equations in L2 (R), whose associated operator is of the form Wiener-Hopf plus Hankel 
operator, with piecewise continuous symbols (see, for instance, [12, 13, 20]). It is then 
of importance to be able to solve these systems of equations numerically (cf. [14]). 
However, it is known that the invertibility of the associated operator is not sufficient to 
guarantee convergence of the approximation methods normally used [8, 151. To identify 
the extra necessary conditions, and to obtain a set of sufficient conditions, the most 
effective method is to £algebraize the applicability of the approximation method (i.e. 
to reformulate the problem as one of invertibility in a Banach algebra), following an 
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idea by Kozak 1101 . In [21] one of the authors managed for the first time to obtain 
necessary and sufficient conditions for the applicability of the finite section method to 
one-dimensional Toeplitz operators with piecewise continuous coefficients through the 
choice of a suitable algebra. In 1983 Boettcher and one of the authors [3] advanced the 
idea in the case of Toeplitz matrices of associating these extra conditions to a symbol. 
It happens that this idea is applicable to a great variety of cases (see, for instance, the 
books [4, 9, 15] and the literature cited there). It should also be mentioned the earlier 
monograph of Gohberg and Feldman [8], which encouraged many people to work in this 
field of research. 

In this paper we are concerned with the applicability of the finite section method 
to operators belonging to the closed subalgebra of £(L2 (R)) generated by operators of 
multiplication by piecewise continuous functions in R, convolution operators - also with 
piecewise continuous generating functions - and the flip operator (Ju)(x) = u(—x). 
The algebraization is made by introducing a larger algebra of sequences which contains 
the special sequences we are interested in. There is a direct relationship between the 
applicability of the finite section method for a given operator and the invertibility of 
the corresponding sequence in this algebra. Exploring this relationship, the methods 
of essentialization, localization and identification of local algebras through construction 
of locally equivalent representations are used, and so useful invertibility criteria are 
derived. 

There exists the forerunner [16] to this paper written by one of the authors. In it, 
the case without the flip is treated for operators in LP (R), 1 < p < oo. But as that 
work is not readily available, and the sequence algebra introduced here is a little more 
general even in the case without the flip, we opted for a complete treatment of the 
case p = 2 (with and without flip), also because it is now possible to add some results 
regarding spectral properties of the approximation sequences, which were not covered 
in the earlier work. 

The present paper is organized as follows: Section 1 is the introduction which 
contains some definitions and relations that will be necessary. The main part is Section 
2, where criteria for the applicability of the finite section method are derived. In Section 
3 some examples are presented, and finally, in Section 4 some relations between the 
approximation and limit operators are remarked. 

In order not to burden the notation, we made the choice, when the meaning is clear, 
to represent by the same symbol a scalar operator and its generalization to the matrix 
case as a diagonal operator matrix, and a homomorphism defined on an algebra and the 
respective quotient homomorphisms defined on the quotient algebras (when they exist). 

As usual, we let L 2 (R) represent the Hilbert space of Lebesgue integrable complex- 
2	1 i valued functions u defined in R such that the norm (f_00 Iu(x)I dx)2 s finite. The 

set of continuous functions defined on R - the one-point compactification of R - is 
represented by C(R), and the set of piecewise functions on R, that is, functions with 
well defined one-sided limits at all points of R, by PC(IR). Both these function sets are 
considered as subalgebras of L00(IR).
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Denote by F the Fourier transform defined from L2 (R) onto itself: 

(Fu)(y) =Je1u(x)dx, 

and by F — ' its inverse:
+00 

I• 
(F'v)(x) = 1 — / ev(y)dy.


27r J 

For a E PC(R) define in L2 (IR) the multiplication operator 
(alu)(t) = a(t)u(t) 

and the convolution operator	 -	- 
W(a) = F'aF. 

By x+ and x- there is represented the operator of multiplication by the characteristic 
function of the set R = (0, +) and R = (-, 0), respectively, and by J the flip 
operator

(Ju)(t) = u(—t). 

Let r be a positive real number, I represent the identity operator and define the following 
operators acting on L2(R):

U(t) if hi < (Pr	
r 

u)(t) = 
0	if Itl > T 

Qr=IPr 

u(r — t) ifO<t<r 
(Rru)(t) = u(-T - t) if -T <t < 0 

o ifiti>r 

1 0 ifhti<r 
(Vu)(i)= u(t — r) if 	>r 

t u ( t + T ) ift< —r 

fu(i+r) ift>O 
(V_ru)(i) = S u(t — r) ,ft<0. 

The properties described in the next lemma of the above defined operators are very 
important and easily demonstrable. 

Lemma 1.1.	The following relations hold: 

• RrPrPrRrRr, PrR, 11R11=1. 
• VrV_r = Qr, VrVr = I, (Vi )	= V_r, hi"rII = hiV-hi = 1. 
•JV,. =VJ, JR = RrJ. 

• P -	I, V	- 0 strongly and R,. - 0, 1",. - 0 weakly as 7 -9 00.
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2. Finite section in algebras generated by a shift, 
multiplication and convolution operators 

2.1 The finite section method. Consider the approximation method 

(PT APT + Q,-)u,- = V	 (1)


to solve the equation

Au=v	(AEr(L2(R)); u,vEL2(IR)) 

with u,. E L2 (lR). This method is called the finite section method. 

Definition 2.1. We say that the finite section method (1) applies to the operator 
A E 'C(2 (R)) if 

a) there exists a positive constant r0 such that, for any r > T0 and any v in L2(IR), 
there exists a unique solution u,- of the equation (PT AP,- + Q)u = v; 

b) the sequence (u,-) converges to a solution of the equation Au = v. 

2.2 Algebraization. Let £ be the set formed by all the sequences (A,-),-ER+ of op-
erators A,. : L2 (l) - L2 (R) such that sup,- JA,. hIc(L 2 ) < oo. This set with the oper-
ations (A,.) + (Br) = (Ar + B,-) and (A,.)(B,.) = (A,.B,.), with the norm II( A )hl = 
SUP,. IA T II C(L 2 ) and involution (A ,- )* = (A t,.) is a unital C'-algebra. Note that the 
constant sequences (A) are included in E for any A E £(L2). 

Let 9 be the closed two-sided ideal in £ of all sequences (A,.) for which we have 
lim_ II A ,.hI = 0. 

Definition 2.2. We say that the sequence (A,-) E £ is stable if there exists a 
positive constant r0 such that, for any r > To, Ar is invertible and sup,->,.0 IL41 11 < 00. 

The next result is then well known, but for the readers convenience we include a 
proof here. 

Theorem 2.1. The following propositions are equivalent for A,. = PT APT +Q T (A 
E £(L2(R))) 

a) The approximation method (1) applies to A. 

b) (Ar) is stable and A is invertible. 

c) A is invertible, and the coset (Ar) + 9 is invertible in the quotient algebra £/ç. 

Proof. a b: Property a) implies that there exists a positive constant TO such 
that, for any T > ro, Ar is invertible and A'v converges for any v E L2 . By the 
Banach-Steinhaus theorem, sup,->,-0 hI A ' < no. To prove that A is invertible note 
that

lu - AAull	hl A 'lhhl Au - Auhl
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the first factor of the right-hand side being uniformly bounded and the second going to 
zero as T increases. So if u E ker A, we have immediately that lI u 11 = 0, and this means 
that u = 0. So kerA = {0}, and as Im{A} = L2 (by property a)), A is invertible. 

b = c: Put B,. = A;' for r > r0 and Br = I in the other cases. Then it is not 
dificult to see that

(B)(A7) = (A)(B) E ( I) + g. 
= a: Let (Br) + 9 be the inverse of (Ar) + Q. Then BA = I + Cr and 

A,-B,- = I + D,-, with C,., Dr e g . Choose 7-0 such that ll C ll < 1 and ll D Il < 1 for 
T > To. Then I+Cr and I+D,. are invertible for 7- > T0 and sup, >,,, ll(I+C,-) 'Il <2. 
The operators Ar are thus two-sided invertible and this permits us to write 

Au = V	 BrA rur = Br?)	U,- = (I+ Cr)'Brv. 

We only have to prove now that 11 U — u ,-11L 2 —+ 0 with u = A'v. This follows from 

lu Ur = lu — (1+ Cr) 1 BrAulI :5 ll(' + C)'BIl ll 4rt — AulI, 

the last term going to zero because of the strong convergence lim A,. = A, and the 
uniform boundedness of B,. U 

2.3 Essentialization. Let F C E be the set of all sequences (Ar) for which there exist 
operators A and A 2 (z,j = 1,2) such that the following strong limits as -r — oo exist 
(note that the arrow "—"between a sequence of operators and an operator will in this 
paper indicate strong convergence as -r goes to infinity): 

• Ar —* A and A — A. 

• RrArRr + All and (RT AT RT ) — A1. 
• RrArVr Al2 and (RT A T Vr )* + A2. 

• V_ T A ,-R,- — A21 and (V_rArRr)' A,. 

• V_rArVr _ A22 and (V_ r A r Vr)* A2. 

It should be remarked that the operators (i,j = 1,2) do not depend in principle 
only on the operator A, but more on the sequence (Ar). Using the fact that I = 
RrRr + V,.V_ and Lemma 1.1, one can see that this set is actually a closed C* 
subalgebra of E which contains g. 

Now let K C £(L2 (R)) denote the ideal of compact operators and define Jo and 31 
to be the sets

Jo ={(K)+(G)KAC and (G) €c} 

and

J1 = { RTKIRT + RrK2 V_r + VrK3 Rr + VrK4 V_r) + (G,-) K,. 
E

(Gr) E Q 

Proposition 2.2. Jo is a closed two-sided ideal of F.
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Proof. It is clear that Jo is a linear subspace of F. To prove that it is a left ideal 
it is enough to see that the sequences (Ar)(K) are in Jo . Writing 

(A)(K) (AK) — ((A - Ar)K) 

one can see that the first term of the right-hand side is obviously in Jo, and the second 
is even in g because A —i A strongly as r -+ oo. To prove that J0 is a right ideal note 
that

(K)(A) = (KA) - (K(A — Ar)) 

and A*, - A. To prove that it is closed, remember first that if (j.) = (K + G), then 
as J, converges to K in the norm, we have IIKII = limr_.oc, Il K + G rlI . Then consider 
a Cauchy sequence in Jo, (jr)(1C)(K(k) + G, ), and because of the above result 
the sequence K(k) is also a Cauchy sequence, which means that there exists a compact 
operator K such that Il K — K (k)	 (k) - 0. But then (G ) is also a Cauchy sequence, 

(k) - and there exists (Gr) such that Il G r - Gr	- 0. We conclude that the sequence 
(jr) = ( K + G 7 ) is the limit of (j )( and this ends the proof I 

Proposition 2.3. J1 is a closed two-sided ideal of F. 

Proof. We will only prove that J1 is a left ideal. The proof that it is a right ideal 
is similar. For (Ar) E F, 

Ar RrKi Rr = RrRrArRrK 1 Rr + V,V-rArRrKiRr 

= Rr Aii Ki Rr + Rr(RrArRr - Aii)KiR 

+ VrA21 K1 Rr + V( V_ T AT RI. - A21)K1R, 

the sequence corresponding to the second and fourth terms being in the ideal G due to 
the strong limits and the presence of the compact operator K1 . In a similar way we 
have

ArRrK2V_r = RA 1 K2 V- 7 + VrA21 K2 V.r + 

Ar VrK3 Rr = RrA l2 K3 Rr + VrA22 K3 Rr + 

Ar VrK4 V_r = RrA l2 K4 V_r + VrA22 K4 V_r + 

with (G (k) ) E 9, and this proves that J is a left ideal. The closedness proof is as in 
Proposition 2.2, taking into account the existence of the strong limits of the algebra 
definition, in order to apply the Banach-Steinhaus theorem I 

We can now define the following *homomorphisms in F: 

W° : F - £(L2 ),	W°((Ar)) = A	 (2)


and
] W 1 : F	C(L2 )2 ' 2 ,	Wi((A)) = All Al2 

 A22 ] (3) 
IA21
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It is not dificult to see that W & (g) = 0 (i E {0, 1}), that

W°((K)) = K 

W°((RK 1 R +RK2 V +VrK3 Rr +VK4 V)) = 0 

and
W'((K)) =0 

IK3
K1 K2 ] 

W'((RK1 R,. + RK2 V_ + VrK3 Rr + VrK4V.r)) = 
	K4] 

for every K, K,. E AC. 
The sets { jo + G : jo E Jo) and {j ' + 9 :  j E Ji } in T/9 are naturally closed two-

sided ideals and so let J denote the smallest closed two-sided ideal in F/9 containing 
both.

We are now in the conditions to apply the lifting theorem [9: Theorem 1.81 and 
obtain the following result. 

Theorem 2.4. The coset (Ar) + Q is invertible in the quotient algebra T/9 if and 
only if the operators W°((A)) and W 1 ((A)) are invertible in £(L2 ) and C(L2)2x2, 

respectively, and the coset (Ar) + J is invertible in .F 1 : 

If the sequence (Ar) is of the form (PrAPr + QT), then W' (A) =A,, 0
] and so 

Theorem 2.4 gives 
Corollary 2.5. The method (1) applies to A if and only if A and A 11 are invertible, 

and (Ar) + 3 is invertible in .T. 

Due to this last result and the fact that in the previous literature the strong limit 
A 11 is usually represented by A, we will use in the future A instead of A11. 

Having the above results regarding the algebra 2, it must now be verified that this 
algebra actually contains the sequences that interest us. For that we have the next 
propositions. Their proofs are either immediate or very similar to one another. We 
decided to present only the proofs that need some new idea. Also, without reference 
there will be made extensive use of the properties and relations described in Lemma 
1.1.

Proposition 2.6. The following relations hold: 

RrPrRrI	RrPrVrO	V..rPrRrO	V1P1V10 

RJR+J	RJV0	V_rJRrO	V_rJVrJ	
(4) 

Proof. The proof of these results is immediate U 
Proposition 2.7. The following relations hold for c E PC(k): 

C Rr -* c(—oo)x_ + c(+oo) +	 (5) 

RrcVrO	 (6) 

V_rCRrO	 (7) 

V_ C Vr - c(—oo)x + c(+oo) + .	 (8)
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Proof. We have

if O<x<T 
(Rr cRu)(x) = c(—i — x)u(x) if — T < x <0 

lo	 ifxI>r. 

For a more simple notation suppose that supp(c) C R+ . We must then prove that 
I(Rr cRr —c(+)x+)uII —* 0 for any fixed u EL 2 . Let m= max Ic(x)— c(+)I. For 
any > 0 there exists r1 such that

I IC() — c(+)I <e 
T>T1 =	+ 00 

I fr	Iu(x)1 2 dx < e. 

If 70 = 27-1, then we have for T 

I(Rr Rr — c(+)x+)uI2 

= 
/ 1 (C( - x) - c(+oo))u(x)I 2 dx + 

I IC(+O,)U(,)12 dX 

r — 

= 0 
I (c(r — x) - c(+))u(x)I2dx 

+f I (C( 7_ — x) — c(+))u(x)I 2 dx + I IC(+O,)U(,)12 dX 

r—ri 

<e2 
/ I

u( x ) I 2dx + (m 2 + c(+)2)e 

which ends the proof of the first assertion. The second and third assertions are imme-
diate. For the last one we have only to note that 

fc(x+T)u(x) ifx>0 
(V_r C Vru)(x) = cx — T)u(x) 

if x <0 

and to use a reasoning similar to the one above U 

For a function a e PC(R) let ã(x) = a(—x). Define also the operator R', as 

if 0<x<i-

(R'r u)(x) = u(-27 — x) if — T < x <0	 (9) 

10	iflxl>T. 

It is not difficult to see that II R II = 1 and R. —40.
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Proposition 2.8. The following relations hold for a E PC(k): 

=	 (10) 

Rrx W( a)x R = Px*(a)xP	 (11) 

Rr + *(a)_R . 0	 (12) 

Rr_W(a)x+ R	0.	 (13) 

Proof. The first two assertions are easily proved by writing the operators explicitly. 
The third and fourth assertions are similar, and we will only prove the third. If x <0 
or x > r, the function Rr + W(a)_Ru gives the value 0. For 0< x <r we have 

	

(Rx, 0/(a)x-RU)(x) =	Je_	ea()J eu(—r - y) dyd 

	

=	Je_i(_(2T_z _a()f e''u(y') dy'de 

and this means
R7+W(a)R = R'JxW(a)xP 

which converges strongly to zero I 
The proofs of the following propositions are now similar to the above one. 
Proposition 2.9.	The following relations hold for a E PC(R): 

Rr + W(a) + Vr	Prx+ JW(a) + (14) 

RxVV(a)X - VT =	rX_ JgT(a) (15) 

0 (16) 

RgT(a)+V	0. (17) 

Proposition 2.10. The following relations hold for a E PC(R) 

V_rx+*(a)+Rr = x + W(a)J + Pr (18) 

V_r.W(a).Rr =	W(a)Jx_Pr (19) 

V_+1'i'(a)_R,.	.. 0 (20) 

V__*(a)+R,. - 0. (21) 

Proposition 2.11. The following relations hold for a E PC(it): 

V_TX+W(a)X+V,. =	+ W(a) + (22) 

V_ tx. 1iT(a)X	V,. = x	I'i'(a)_ (23) 

V_r+ W(a)x. Vr - 0 (24) 

V_X_*(a)X+V,. - 0. (25)



584	S. Roch, P. A. Santos and B. Silbermann 

Now we are able to define subalgebras of F that contain the sequences we are 
interested in. Let A be the C*subalgebra of F generated by the constant sequences 
(ci) and (W(a)), with a,c E PC(R), and by the sequence (Pr). Denote by Al the 
quotient algebra

A A + J	 26 
AflJ	J 

Let A' be the C-subalgebra of F generated by the constant sequences (ci) and (i'iT(a)), 
with a, c E PC(IR), by (J), and by the sequence (Pr). Denote by A'3 the quotient 
algebra

A'	A' +J	 27 
A'flJ	. 

Note that ..4' C A13 

We will start by studying the simpler algebra A3 . This algebra has a rich center, 
and we will make use of it through localization in order to obtain invertibility criteria 
for its elements. It will be used the local principle of Allan, which is a generalization 
of the Celfand theory to non-commutative Banach algebras, but that are close to the 
commutative ones by having a rich center. We will only briefly describe the principle, 
applied to our C*case. For more detailed information we recommend the reader to [9: 
Chapter 1]. Let X be a unital C'-algebra and ) be a closed unital C*subalgebra of 
the center of X. Then )2 is a commutative algebra and we denote its maximal ideal 
space by M(Y). To each element x of M(Y) we associate the smallest closed two-sided 
ideal I of X which contains x. By 4 we denote the canonical homomorphism from 
X onto the quotient algebra X/i. Then Allan's local principle affirms that an element 
a E X is invertible if and only if the cosets cI(a) are invertible in the quotient (= local) 
algebras X/I for every x e M(Y), and that the mapping M(Y) - R, x 111z(a)II 
is upper semi-continuous for each a e A. 

2.4 The algebra with multiplication and convolution operators. As said above, 
the use of local principles is very important for the understanding of the structure of 
the algebra A3. 

2.4.1 First localization and identification. We will start by finding a central 
subalgebra of A3. 

Proposition 2.12. The coset3 (fi)+J with f E C(R) belong to the center of A3. 

Proof. As we have immediatly that Prfi = I Pr and cf I = fcI, we are only 
left with the commutator involving the convolution operators W(a). As, e.g. in [17: 
Proposition 12.61 it can be proved that I W(a) - W(a)f I is a compact operator and the 
result follows U 

The result of Proposition 2.12 means that we can apply Allan's local principle (see 
above or, for instance, [9: Theorem 1.5]) and localize 43 over the central subalgebra 
C generated by the set of cosets {(f I) + 7 : I e C(R)}. The maximal ideal space 
of this subalgebra is isomorphic to R, with a maximal ideal consisting of the cosets 
{(f I) + 3 : .f E C(R), f(x) = 01 (these ideals are indeed not trivial, as one can
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see using the homomorphisms X t defined below). Let I denote the smallest closed 
two-sided ideal in A containing the ideal x of C. The result of this localization is that 
the invertibility problem in A' is transferred to an invertibility problem in each of the 
local algebras A3 : A3/I. Let I denote the (canonical) homomorphism from A to 

Lemma 2.13. If c E PC(R) is continuous at x and c(x) = 0, then	cI) = 0. 
Proof. For x 54 cc let fe e C(R) such that 0 < fe < 1 except at x, where fe(x) = 1, 

and let the support of f be contained in the interval [x—e, x+e]. We have that c(fI) 
is the identity and then 

II'(cI)II = II	T (cI)(I(fe I)II = II'(Cfe 1)II :^- IIdfelk. 

The last norm can be as small as desired by choosing e small enough. For x = cc the 
proof is similar, with the support of f contained in {y E R: II > 

Proposition 2.14. Let (Ar ) E A. For x 54 cc we have '(Ar) = 
Proof. The assertion for the constant sequences cI'(A) is obvious. For cL(P), 

let y be greater then lxi and define f to be a continuous function supported in the 
interval (—y,y) and such that f(x) = 1. Then as 4(fI) is the identity in the local 
algebra we have

erJ,n \ - F .7 (t T\.f. J (i \ - z	- z Jz I z 'TI - z 

As IIfQTli -4 0, we conclude that	Qr) = 0, which means that '(P) =	- 
^DJ(Q') 

Note that the above result means that the projection Pr does not appear explicitely 
in the local algebras, and we can treat local sequences as constant ones. For example, 
we have

(P7 ABP7 CP7 ) = (P7)(AB)(P7)(C)(P7)	(ABC). 

For a description of the Fredholm properties of the elements of this and other algebras 
see [6, 17]. It is possible now to obtain invertibility criteria for all local algebras A' 
with x finite. 

Corollary 2.15. If W°((A 7 )) is a Fredholrn operator, then cI 7 (A7 ) is invertible in 
A for all x E R. 

Proof. If A = W°((A7 )) is a Fredhoim operator, there exist an operator B (with 
(B) € A) and compact operators K1 and K2 such that AB = I+K1 and BA = 1+ K2. 
But then (B) = 4(I + K1 ) = I. Also (B)(A7 ) = I, and we proved 
that 4I(A7 ) is invertible U 

24.2 Second localization. In the case z = cc, the algebra A' is still too large for a 
positive identification. But as this algebra still has a rich center, we can localize again. 

1) In order not to burden the notation, for (A 7 ) E A we write 4'(A 7 ) instead of $((A7)).
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Proposition 2.16. The cosets '1)V(f)) with f e C(k) are in the center of A, 

Proof. We have that, for any c E PC(R), W(f)cI - cW(f) is compact by, e.g. [6] 
or [17: Proposition 12.6]. We will prove now that the commutator W(f) Pr - PTV(f) 
is in J. Write

- PrW(f) = QrW(f)Pr - Pr*(f)Qr. 

As Q,. - 0 and the operators x W(f)x are compact, we have that QrX W(f)X and 
xj T4'(f)x Q converge to zero uniformly, and so the corresponding sequences belong 
to c. We are only left with the sequences (QrX± W(f)X± Pr) and (Prx±W(f)x±Qr). 
For them we can write 

Qr ±*(f)X±Pr = VV_x±T'v(f)x±RR, 

and by the use of Proposition 2.10 these last operators are equal to Vr±W(f)J±PrRr 
with x±W(f)Jx± compact, and so the sequences are in J. Equally, the sequences 
(Px±W(f)x±Q) by the use of Proposition 2.9 can be seen to be in Ji, which finishes 
the proof I 

This last result means that we can localize AJ over the maximal ideal space of 
the subalgebra C' generated by the cosets	(W(f)) with f E C(R). This maximal 

co ideal space is formed by the cosets cI(W(f)) with f(x) = 0 and x E R, and it is 
isomorphic to R (that these maximal ideals are indeed not trivial can be verified by the 
homomorphisms W8 defined below). 

In order to apply the local principle of Allan, let I ,, (x E R) be the smallest closed 
two-sided ideal of A, which contains the ideal x of C'. We call c	the homomorphism 
which is the composition of the canonical homomorphism from A to	: =

0000

with 4 0 . The following lemma corresponds to Lemma 2.13. 

Lemma 2.17. If a E PC(k) is continuou., at x and a(x) = 0, then 4,(*(a)) = 
0.

Proof. For x	oo let f E C(A) be such that 0	f < 1 except at x, where 

fe(X) = 1, and let the support of f be contained in the interval [x - e, x + e]. We have 
that	,1 (W(f)) is the identity and then 

114,3 (W(a))II - 114,3 (*(a)	(W(fe))II - 114,3 (l'V(af4)II 5 Il afIIL°° . II	,z	- II Co,z	 /	 ,z	- II oo, 

The last norm can be as small as desired by choosing e small enough. For x = 00 the 
proof is the same, but the support of f, is contained in {y E R: Iyl> }I 

2.4.3 Identification of the local algebras - the needed homomorphisms. Our 
objective now is to obtain enough information about the local algebras	so that 

Co 

invertibility criteria can be derived for their elements. For this we will construct symbol
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homomorphisms that give us locally equivalent representations (see [91). For our objec-
tive of constructing symbol homomorphisms for the local algebras, we need to use the 
following operators, defined in L2(IR): 

I' (Zu)(x) = UI 
x-	with Z' = Z,-i and IIZII =	(r > 0) 'TI 

(U,u)(x) = e x iu(x) with U = U_, and II U II = 1 (s E R). 
Given now a sequence (Ar) E A, we can define a transformation War such that to the 
operator A associates the operator 

W3 (A) = Z'U_ S AT U,ZT	(s E R).	 (28)

Note that W., r is multiplicative, i.e. W3 (AB) Wi,(A)W3(B), and 

I VST(AT)11z(L 2 ) < IIArIIci. 
Defining now if it exists the strong limit 

W3 (A) = s-1irnW3 (A),	 (29)
r co 

we obtain the next lemma, where a(x) =	a(y). 
Lemma 2.18. If (A,) E A, then the limit W3 (A) exists. In particular: 

a) W3(P)=P1. 

b) W3 (cI) c(—)_ + c(+oo) + for c E PC(IR). 

c) W9 (W(a)) = a(s)W(_) + a(s)W( + ) for a E PC(R). 

d) If() E Jo or (jr) E J1, then W3 (j) = 0. 

Proof. Assertion a) can be proved by a simple calculation. Assertions b) and c) 
are proved in [17: Proposition 13.1]. To prove the last one note that, for G r e 
II uT3(G7)II	- 0. Also, W,(K) = 0 for K E K, becausetends weakly 
to zero, U_ S KUS is compact and /Z' is uniformly bounded. Writing W3(R) 
and T'V3 (V_) explicitely we obtain W5(R) = eis(2T1_sgn(x)r)Ri and W3(V_) 
e 3sg ) T V_ i, which have no strong limit. But the fact that *RTUSZT , *v_1:1,z 
tend weakly to zero and that /FZ' U—,R and FZ,'U_ 3 V are uniformly bounded 
permit us again to conclude the assertion I 

Define also the unitary operator VT acting on V by 
(Vu)(x) = u(x - T),	with 1/,T' = V—r and II VrII = 1 (T E R).	(31) 

With this operator, in a similar way to the one used above, we can define the transfor-
mations W that associate to an operator Ar the operator 

W (A) = V T AT V± T	 (32) 
and the strong limit

WI(A) = s— lim	 (33) 

if it exists. We would like now to prove a result similar to Lemma 2.18. But for this we 
must first prove a very simple auxiliary result from general operator theory in Hubert 
spaces.
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Lemma 2.19. Let (A r ) be a sequence that tends weakly to an operator A, such that 
(A) tends strongly to A. Then if (Br) is a sequence that tends strongly to an operator 
B, we have that (A7 B) and (ArBr) tend weakly to AB. 

Proof. If () denotes the duality product, we have for any u, v E L2 

(v,ABu) - (v,ABu) 

(v, ArBr) = (Av, Bra) - (Av, Bu) = (v, ABu) 

and the assertion is proved U 

Now we are in the conditions to prove 

Lemma 2.20. The strong limits W,(A T ) exist for all (Ar) e A. In particular, 

a) W.' (P^) =x, and W,(Qr) = xj. 
b) WjcI) = c(±00)I. 

c) W.:1 (91(a)) = W(a). 

d) If(j )E Afl J, then W,,(jr)EK. 

Proof. Assertion a) can be proved by a simple calculation. To prove assertion b) 
note that (W,,r(cI)U)(x) = c(x ± r)u(x), and assertion c) follows from W.+ (W(a)) = 
W(a). To prove the last assertion note again that, for G,. E 9, I' r(Gr)Il IGr II 0. 
For (j,.) E Jo, note that V,. and V_ r tend weakly to zero as r - co. In relation to 
(jT) E J, we have the strong limits RrVj,. - x J , V..,.V,. - x and the weak limits 
VrRr -	VTrVr -* x when 7-4 +00. By Lemma 2.19 this means that 
tends weakly to a compact operator K E K. But as (jr) also belongs to A and for this 
algebra by assertions a) - c) the strong limit is well defined, we conclude that W,(j) 
tends strongly to KU 

We are now in the position to identify the local algebras. 

2.4.4 The local algebra A,,8 (s	R). By Lemma 2.18 the strong limit W5 is 
an algebra homomorphism between the algebras A and B := alg(I, Pi , x+) W(+)). 
Define now the application 

W: B - A 3 ,	W(A) = 003 ( US ZAZ 1 U 3 ).	 (34) 

This application is also an algebra homomorphism (note that (U,ZAZ' U_ S)rEj+ E A 
for any A E B as one can see by the generators of B), and so the following result holds. 

	

Proposition 2.21. The local algebra A	is isomorphic to the algebra 13, and the 

isomorphism is given by W. 

Proof. We must first see that W3 is well defined in A 3. Having already the 
results from Lemma 2.18, we have only to prove that W,(Ar) = 0 for the sequences 
(Ar) in the ideal I , ,. This follows also from Lemma 2.18/c), where we can see that
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W3 (W(a)) = 0 for a E C(R) such that a(s) = 0. And so it makes sense to define the 
quotient homomorphism

W3: A,3-13 
which for simplicity is represented by the same symbol. 

We are left with proving that the homomorphism W, is really an isomorphism. If 
, 3 (A) is invertible, it is easy to see that W3 ( , ,3 (A)) is also invertible, because 

W3 is a unital homomorphism. For the reverse direction we have that W is also a unital 
homomorphism, and if we can prove that 

	

(Ar)) -	(Ar),	 (35) 00 - 00,3 

our proof is finished. As W, W3 and	are all homomorphisms, it is sufficient to Co 
prove (35) for the cosets generating the algebra. But for these cosets the result is a 
direct consequence of the homomorphisms definitions and Lemmas 2.13 and 2.17 I 

2.4.5 The local algebra	By the use of Lemmas 2.13 and 2.17 it is easy to see 
that this algebra is generated by the three projections (P- 7 00 ( + ), 1,00(W(x+)) and


This algebra still has a non-trivial center, as we can see next. 

Proposition 2.22. The projectionI 00 (x + ) belongs to the center of 

Proof. As P, commutes with x+, the only relation that needs to be proved, is 

= 
For this consider the function x, continuous, and taking the value 0 at —oo and 1 at 
+. By Lemmas 2.13 and 2.17, 

	

=4 co 0000(x.)	and	00(W(x+)) = 
This together with the fact that	)x. = X+ 	+ K for some compact operator 

K (see [6: Proposition 1.3] or [17: Proposition 12.6/b),(iii)]) ends the proof I 

Localizing over the maximal ideal space of the central suba.lgebra generated by 
the identity and ,00(x + ), let denote the smallest closed two-sided ideal in 
Al ,. containing the maximal ideal (of the central subalgebra) CF 00(), and put 

= A 00/I00,00 with	00± the canonical homomorphism from A into 00
These two local algebras are generated each by two idempotents 2), and so we can apply 
the two projections theorem (see, for instance, [9: Theorem 1.10]). This theorem gives 
us symbol mappings N± to a space of matrix functions: 

11 0 
N(,00±(x±)) = e' : x '- 10 ii	

(36) 00

11 01 
=p : x	

[	o]	
(37) 

	

I	x	/x(1—x) 
N 3	((x+ )) = P2 . X	

x(1 -X)	1— x ]	
(38) 00,00± 

2) For example, A,co + is generated by 4o,00+(1'r) and
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with
x E 045 

if only
{0, l} C	(4J	(PI4'(x,)P)) \ 00,00± 

and these are not isolated points of the spectrum. So we are left with finding these local 
spectra. 

To find the local spectra, we will use the strong limits W, which will be seen 
to be well defined homomorphisms acting on the local algebras We start by 
remarking that, by Lemma 2.20, Wm' (A fl j) c IC and W.:' (r.) = 0. Then W are 
well defined from A, into the Calkin algebra .A1', with JV generated by the convolution 
operators W(a) with a e PC(R) and the operator of multiplication by x If I E C(lR), 
then W(f) is in the center of this algebra, and we can localize via the local principle of 
Allan. The maximal ideal space of this central subalgebra is isomorphic to R, and to 
a point x of R it corresponds the maximal ideal of all operators W(f) with f(x) = 0. 
Let I denote the smallest closed two-sided ideal in .AI lr containing the ideal x. The set 
W(I00,00 ) is then included into I, and so the homomorphisms W are well defined 
from the local algebra A 00 into .iV, := J%f 7n 1100 . Finally, as W(I00,00 ) = 0, W is 
well defined in the algebra respectively. 

The above result means that, for any element A,. in A, 

COA,(,OO±(Ar)) D	 (W.' (A,)).	 (39) 

Applying . this to our particular case we obtain, noting that W(P,.W(+)P,.)) = 

	

[0,1] C aAJ 00±(Pr 7(X + )Pr)).	 (40) 

To prove that the inclusion is really an equality, it is only necessary to remark that 

ii 

	

'(I 00,00± (P,.W(x+)P,.)II :^ II Pr W(x + )PrII	1 

(which means that the points of the spectrum must have module less or equal to 
1) and that the element	00±(P,.1'V(x+)P,.) is the image of the positive sequence 
(P,.W(+)P,.) (which means that the spectrum is contained in the positive half-axis). 
So define the homomorphism

Mk =	 (41)


We just proved the following result. 

Proposition 2.23. The local algebras are isomorphic to the unztal C- 
subalgebra of the algebra of (2 x 2)-matrix functions defined on [0, 1), which are diagonal 
at 10, 11 (and which is generated by e',p'1 and p'2), and these isomorphisms are given
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by N. The cosei	(A,) is invertible in the local algebra A 3	if and only if
co 
M(A) are invertible. In particular, 

I 
M±(cI): X-4 I c(±oo)	0

[ 0	c(±oo)j 

1 
M(P7 ): x— [ 1 01

[	1—x	 -,/-X—( 1—x)1 M(1'iT(a)): x - a(—oo) I  
[-_./x0 —x)	x	j 

+a(+) ___ 
\/x(1—x)1 

[
/x(1— x)	1—x j 

So we have solved the problem of identification of the local algebras for the algebra 
A, and now we can turn our attention to the larger algebra that contains the flip, i.e. 
the algebra A'. 

2.5 The algebra with a flip, multiplication and convolution operators. It will 
be again necessary to use localization principles in order to obtain invertibility criteria 
for the cosets in A'3. 

2.5.1 First localization and identification. This first part is very similar to the case 
of the algebra without the flip. Let C(IR) represent the subspace of C(R) constituted 
by the even functions. 

Proposition 2.24. The cosets (fI)+J with  E C(R) belong to the center of A'3. 

Proof. As we have that PrfI = fPr, cf I = fcl and f  = Jf I, the only thing 
that is left are the convolution operators W(a). As [17: Proposition 12.6] shows that 
I W(a) - W(a)f I is a compact operator, the result follows U 

So we can also apply here the local principle of Allan, and localize A'3 over the 
central subalgebra C generated by the set of cosets {(f I) + .7 : I e C(R)}. The 
maximal ideal space of this subalgebra is isomorphic to [0, oo], with a maximal ideal 
consisting of the cosets {(fI) + .7 : f3; E C(R) and f(±x) = 01. Let I,': denote 
the smallest closed two-sided ideal in A'3 containing the ideal x of C. Define the 
local algebras A'3;3 = A'-'1 1,,',and let I' (instead of cI', for simplicity) denote the 
(canonical) homomorphism from A' to A'33. 

We can now obtain Lemma 2.13 (with the modification that the function must be 
continuous and take the value 0 at the points {—x,x}), Proposition 2.14 and Corol-
lary 2.15 in a very similar way to the case without the flip, so we will not repeat the 
arguments. These three results give the invertibility conditions we need for all the lo-
cal algebras except the local algebra at infinity. But for the sake of completeness, we 
proceed here with the identification. For this purpose we will use the homomorphisra 

X(A) = rl!Z_t'°(T/'21	 (42)
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which is well defined in the algebra A3 (without the flip), because W°(J1) = {O} 
and WO (Jo) C AC with lim_ 00 ZV_KV1 Z' = 0 for all K E AC, because V_ 1 KV is 
compact, *Z, is uniformly bounded and /Z' tends weakly to zero. In the case 

= 0, X1 is even defined in A'3 which, together with the next proposition, will permit 
'3 us to identify A0 

Proposition 2.25. For any t E R and a E PC(R), we have 

=	(a(—,7 (a( 	+a(+)V(+)). 

Proof. Let f E C(R) such that f(±t) = 1 and f(±) = 0. Then '(f I) is the 
identity in the local algebra and we can write putting a' = a(—oo)_ + a(+)+ 

=	(fl'iT (a)) = '(fW(a')) +	(fW(a - a')). 

As f(+oo) = (a - a')(±cx) = 0, 1 W(a - a') is compact (see [6: Proposition 1.2] or [17: 
Proposition 12.6]) and the result follows U 

2.5.2 The local algebra .4 7 . Now it is possible to identify the local algebra A3. 

Proposition 2.26. The homomorphism X0 is well defined in A'03 . Moreover, the 
local algebra A 3 is isomorphic to the closed algebra alg(I, x+ W( + ), J), and the iso-
morphism is given by Xo. In particular, 

Xo(*(a)) = a(—c)*() + a(+)*(,) 

Xo(cI) = c(0)_ + c(0) + , Xo(J) = J, Xo(P,.) = I. 

Proof. Regarding the particular values of Xo for the generators of A 3 , it is only 
necessary to remember the proposition correspondent to Proposition 2.14 (for I'(P)) 
and to remark that (ZcZ)(x) = c(), ZW(a)Z = W(ar) with a() = a(r), 
and ZJZ 1 = J. This gives immediatly that X0 (I) = {0}, and so Xo is well defined 
in A'03 . Now the proof that X0 is an isomorphism is very similar to that of Proposition 
2.21, with the inverse being defined as X(A) ' 3 (A) I 

2.5.3 The local algebras A	(t E 1R). To identify these local algebras we will 
eliminate the flip by doubling the dimension (see [18: Scheme 3.3]). 

Lemma 2.27. Let X be a C*algebra with identity e whose center contains a self -
adjoint projection p. Let Y be generated by X and a selfadjoint flip j with the properties 
jxj c X and, in particular, jpj e - p. Then any element a of)) can be written 
uniquely as sum a 1 + a2j with ai,a2 E X, and the mapping L : )) - f [pXp] 212 defined 
by

paip pa2p 
a	 - 

pa2p paip 

with a = jaj is an isometric *-isomorphism.
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Proof. in [18: Scheme 3.31 it was already shown that L is an isometric continuous 
homomorphic embedding. We have only to prove that it is onto. Let a (i = 1,. . . , 4) 
be any four elements of X. If we define 

a = pa 1 p + pa2j(e - p) + (e - p)ja3 p + (e - p)64 (e - 

then a E Y, and it easy to see that L(a) = '] which proves that L is onto U 

So let fi be a continuous function with support in R such that ft (t) = 1, and put 
p = 7 (fj), j = 1 (J) and e =	We have that p2 = p, p commutes with all the 
algebra generators except j, and jpj = e - p. Any element a E can be written (due 
to the properties of J) as a = a 1 + a2j, where a 1 and a2 belongs to the algebra without 
the flip. It is then possible to apply Lemma 2.27. 

Define now the homomorphism 

- [alg(I, x., W(x+))] 
2x2 , 

X = XL (43) 

where Xj represents now the canonical (diagonal) extension for matrix operators of the 
strong limit defined in (42). We have then the following 

Proposition 2.28. The local algebra	(t E R) is isomorphic to 

[alg(I, x+,	
2x2

 

and the isomorphism is given by X. In particular, 

Il 01 
= I 

t. 0	Ij 

= 

1a(—oo)W(X-) + -(+oo)W(X+)	 0	 1	(45) 
0	 a(+c)W() + 

[c(t)x_ + c(t)X +	 0	 I (46) kt((cI)) 
=	0	c(—t)X + c(—t)X+  

10 Il 
= I	I. 

LI oJ 

Proof. To prove the specific values of X, use Lemma 2.27 together with the propo-
sition corresponding to Proposition 2.14 (for Pr)), and note that ZV_jW(a)VgZ' 
= W(ar) with ar() = a(r), and that (ZV_ t cVt Z')(z) = c( + t). These values 
imply that X j (I) = {0}, and so X t is well defined in	We have only to prove now 

that invertibility in Im(X) is equivalent to invertibility in .A 3 . As X t is a unital homo-
morphism, if CI(A r ) is invertible in	it easy to see that X 1 ( 7 (A)) is invertible, 

(44)

(47)
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and due to the inverse closedness, the inverse must belong to [alg(I, x+, 
To prove the converse define the application 

•, 
X: [alg(I, x+, W(x+)]2x2  

IrA 11 Al2 1\	- f[(Ai /_ t ) p(VAl2c/_)1\	
(48) 

xH \1 A21 A22]) 
= L	

p(A2i) 

This application is a unital homomorphism, and in a way similar to the proof of Propo-
sition 2.21 it can be shown that

= 

and so invertibility in Im(X t ) implies invertibility in	I 

2.5.4 Second localization. As before, the local algebra at the point infinity is still 
too complex to identify but possesses a non trivial center. 

Proposition 2.29. The cosets (D-'(W(f)) with f E C(R) are in the center of A'. 

Proof. It is almost immediate that W(f)J = JW(f). The other results have the 
same proof as those in Proposition 2.16 I 

This last result means that we can again localize A over the maximal ideal space 
of the subalgebra C' generated by these cosets. This maximal ideal space is now formed 
by the cosets 4-' (W(f, )) with f(x) = f1 (—x) = 0 and x  [0,], and it is isomorphic CO 

to [0, 00]. 

	

In order to apply the local principle of Allan, let I 	(x E [0, ]) be the small-
est closed two-sided ideal of A which contains the ideal x of C'. We call cI	the
00
homomorphism which is the composition of the canonical homomorphism from A to 

:= A'/I ,1 , with cT, ,. We have again a lemma that identifies some elements of 
and whose proof, due to being almost the same as that of Lemma 2.17, we omit. 

Lemma 2.30. If a E PC(R) is continuous at ±x and a(±x) = 0, then CI x (W(a)) CO 

= 0. 

2.5.5 Identification of the local algebras. Here, we will use again the strong limits 
W3 defined in (29), but the only algebra in which we can apply the homomorphism 
directly is A 01 because only WO is well defined (i.e. the strong limit exists) when 
applied to the flip J. 

2.5.6 The local algebra A ,0 . If we define the algebra B' as alg(I, Pi , x.. ,.*(x + ) ) J), 
the strong limit W0 is an algebra homomorphism between the algebras .4' and 13' and 
the following theorem, with a proof equal to the case without the flip (Proposition 2.21) 
assures that W0 is also an isomorphism.
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Proposition 2.31. The local algebra A 0 is isomorphic to the algebra 13', and the 
isomorphism is given by Wo. 

2.5.7 The local algebra A' a (s E W). We will here again apply Lemma 2.27 
to eliminate the flip by doubling the dimension. So let f3 be a continuous function 
with support in 1R such that f,(s) = 1, and put p = t,,(*(f)), j =	and 
e = 4(I). We have that p2 = p, p commutes with all the algebra generators except 
J, and jpj e - p. Any element a E A, can be written (due to the properties of 
J) as a = a 1 + a2j, where a 1 and a2 belong to the algebra without the flip. It is then 
possible to apply Lemma 2.27. Define the homomorphism 

W,: A ,3 - [alg(I, x + W(x+), p1)]2X2,	W, = W3 L	(49) 
where W3 represents the canonical extension for matrix operators of the strong limit 
defined in (29). We have then the following	 - 

Proposition 2.32. The algebra A', (s E R) is isomorphic to 

[alg(I, Pi , x+) W(x+ )]2 x21 

and the isomorphism is given by W 5 . In particular, 

= [:1 
Pi	

(50) 

= 

1a(s-)VI(X-) + a(s)*( + )	 0	 1	(51) 
0	 a(—s)T'I7(_) + a(-s)W(+)] 

c( —oo)_ + c(+oo) +	0	
I	

(52) 
=

	

	 )_ + c(—)+ 

10 Il 

= 1.1 0] 
Proof. First we must see that W 5 is well defined in Az,,. Having already the 

results from Lemma 2.18 one can easily see that W3 (I,) and W3(I) are {0}. The 
computation of the formulas (50) - (53) is easy by the use of the results in Lemma 
2.18. We shall only prove now that invertibility in Im(W,) is equivalent to invertibility 
in A , ,. As W3 is a unital homomorphism, if 00 ,j (Ar) is invertible in A,, then 
W3 ( 3 (Ar)) is invertible. To prove the converse define the application 

[alg(I, Pi , x+, *(x + )1 2x2 . 
• '

 

Q

4 11 Al21\

2	A22])	 (54) 

QP(D-7,.,,ZrA21Zr-'U-,)
P,sWsZr4ii Zr'U_,) p,,5(U3ZAl2z'u_3)i \L'	

(U 	p3(U3ZA22Z'U_8)])

(53)
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This application is a unital homorphism, and in a similar way to the proof of Proposition 
2.21 it can be shown that

•1

(Ar))) —  —	oo,s', 7• 

and so invertibility in lm(W 3 ) implies invertibility in A', I 

2.5.8 The local algebra A,,,,. For this local algebra we have no locally equivalent 
representation given by strong limits, and so the algebra must be studied by properties 
of its generators. 

Proposition 2.33. The local algebra A'J is generated by the elements too,00 

e = 

	

Pi =	 p2 =	 P3 =	00(x+) 

	

j =	00(J). 

Proof. We have that 

	

' . cI) = ,,(c(—cx)	+ c(+oo)+) 
— J  

OO, (— (c — c(—oo)	— c(+oo)+)I), \ 

and as c — c(—oo)x_ — c(+) + is a function continuous at infinity and taking the 
value 0 there, by Lemma 2.13,

— c(—)_ — c(+ x )X+) I) = 0. 

Using the same reasoning,

=	,,(a(—oo)T'i7() + c(+)W(+)). 
For the other generators, the result is obvious I 

We have then an algebra generated by the identity and four idempotents. The non-
trivial relations between these generators are given in the next proposition. The only 
relation that does not come directly from the already known relations in the algebra .4 


	

is P2P3 = P3P2, or	 =	 The proof in this case is the 
00	

00 

same as in Proposition 2.22. 

Proposition 2.34. The following relations hold: 

• jPi j = p' and p ip = P3P1• 

• jP23 = e - P2 and P2P3 = P3 P2 

• .7P33 = e - p3. 

As the projection p3 commutes with pi and P2, and 3p33 = e — p3 , we are in the 
position again to apply Lemma 2.27 and to eliminate the flip by doubling the dimension.
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This means, we have an isomorphism L: A,,,	V22 , with V = alg(p3 , PI P3, p2p3), 
whose image for the generators of	are 

L(e)=['3 
0] 

0 

[P1P3	0 1	-
 

1P2P3	0	
I
	Ip 

0 001 
L(p i ) =	 , L(p2 ) -	 , L(p3) = [

	]	
( 55) 0	PIP3 1	 0	(e - P2)P3  

[ 
10	J3l 

L()=	
0]' 

and we can see, because p3 is the identity for V, that we are in the situation of an 
algebra generated by the identity and two idempotents. As before, the two projections 
theorem gives us a symbol mapping N, to a space of matrix functions: 

	

N(p3 ): x — [
	

0 1	 (56) 

1 
N(p i p3 ): x — [ 1 

0 1
 

o  

N(p2 p3 ) : x	I _______	x (1—x)1 I	 (58) 
LV

x___

1 - x	1—x j 
with x E v(p1p3p2p3p1), if only 

10, 11 C 7D(plp3p2p01) = UD(4 00 ( PrX+ 1''(x+ )x + Pr)). 
So we only need to find this local spectrum. 

Proposition 2.35. We have av( I ( PrX+ 1i (X+)X+ Pr)) = 10, 11. 00
Proof. By the same arguments as in the case of the algebra without the flip, one 

can see that
C 10 , 1 1	 (59) 

To prove the other inclusion suppose that ) E (0, 1) and 

- Prx+ W ( X 

	

00 (AX,

is invertible in V. Then it is not difficult to see that	- P + W( + ) + Pr) i s 
invertible in Now define the function X , continuous on R, with x( —oo ) = 0 
and x(+) = 1, and such that the imaginary part of x+ (x) is greater than zero for 
x E R. We have that, for A,. = .\I - 

00 (A IPx+W(x+)x+P,.) =	,A,.),	 (60) 

and W, (A,) (s E R) as well as Wo(A,.) are invertible. As also W°((A,.)) is a Fredholm 
operator (see [6] or [17: Section 15]) we have that A,. + J is invertible in A'3 . But this 
is -a contradiction since, by Proposition 2.23, A,. + J is not invertible in A3 and A3 is 
a *subalgebra of A'3 . So we proved that the open interval (0, 1) must be contained in 
the spectrum, and as the spectrum must be closed the result follows I

(57)



ri 0 0 01 

0 1 0 
10 0 1 01 
Lo 0 0 1] 

ri 0 0 01 

I 10 
I

0 0 01 
I p 1 :x—i 

10.0 1 01 
I 

- 0 0 0 0] 

[ x Jx(1—x) 

x(1— x) 1—x 
P2 : x -+ I 10 0 

[0 0 

11 0 0 01 

I 10 
I

1 0 DI 
I p3: X 0 0 01 
I 

L

10 

o 0 0 

10 0 1 01 
0 0 0 ii 

:-4I j'	x Il 0
. 

0 01 
I. 

[0 1 0 0]

(61) 

(62) 

(64) 

(65) 

0	0 
0	0 

1—x	 -,/-X-(l——x) 
—/x(1—x)	x

(63) 
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To synthesize our results, let W = NL and M = Let 2 be the closed 
subalgebra of the (4 x 4)- matrix functions defined in the interval [0, 1] generated by the 
elements

We proved the following proposition. 

Proposition 2.36. The local algebra	is isometrically isomorphic to the al-




00 
gebra 2, and the isomorphism is given by M'. The coset	(Ar) is invert

i
ble in the 

local algebra	if and only if M(A T ) is invertible in Z. In particular, we have: 

• M(CI) = c(—)(e' - p'1) + c(+oo)p. 

• M(W(a)) = a(—oo)(e' - p2) + a(+)p2. 

• M(J) = j'. 

• M(Pr) = p'i. 

2.6 The main theorem. Having identified all the local algebras, we can now state 
the main result. The detailed proof of this result is written above (it is the subject of 
this whole section), and so below we just give a sketch of the proof. 
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Theorem 2.37. Let A be any operator from the subalgebra of £(L2 (R)) generated 
by the operators ci and W(a), with a, c E PC(R), and by the flip operator J, defined by 
(Ju)(x) = u(—x). Then the approximation method 

(PT APT + Qr)ur = I 
can be used to get an approximate solution to the equation 

Au = f 
(i.e. the method applies to A) if and only if A, A, Wo(A), M(Ar) and W,(Ar) (s E 
R) are invertible, with A = PI. APr + Qr. 

Proof. By Theorems 2.1 and 2.4, the applicability of the approximation method 
is equivalent to the invertibility of the operators A and A, and the invertibility of the 
coset (A , ) +J in A'3 . The cosets (fI)+J with f E C(R) are in the center of A'3 , and 
applying the local principle of Allan, instead of an invertibility problem in A'3 , we have 
now invertibility problems in each of the (simpler) local algebras A 3 (t E [0, +oo]). 
All the local algebras except the local algebra at infinity are identificable, and if A is a 
Fredhoim operator, then the cosets I(A) (i E R) are invertible (see Propositions 
2.26 and 2.28). Regarding the local algebra A, it has the cosets (D

m
-7 (W(f)) (Jr E 

C(R)) in its center. Applying again the local principle of Allan, we are able to identify 
all the local algebras through the isomorphisms W0 (for the local algebra at the point 
0 see Proposition 2.31), M (for the local algebra at the point infinity see Proposition 
2.36), and W 3 (for the local algebras corresponding to the points s e	see Proposition

2.32), obtaining in this way the aimed result I 

2.7 The system case. Formaly, we proved Theorem 2.37 for the scalar case only. 
But if we consider a or c in [PC(R)]'', the proofs remain the same. This covers 
the operators related with systems of singular integral equations or systems of Wiener-
Hopf operators. Obviously, the operators that result from the homomorphisms have 
then matrix coefficients, and it can be difficult in the general case to find invertibility 
conditions for these operators. For a non-scalar version of the two projections theorem 
see [7]. 

3. Examples 
We will continue our exposition on the finite section method by presenting two examples 
of application of Theorem 2.37. The first is about singular integral operators, where the 
results concerning the finite section method are already known (see, for example, [91), 
and the other one is the application to an operator of Wiener-Hopf plus Hankel type, 
which appears here for the first time. In what follows the symbols P1 and Qi can also 
represent the matrix operators with P1 and Qi in the main diagonal and zero elsewhere, 
when needed. 

3.1 Singular integral operators. Consider the operator 

A = c i W(_) + c2 T( + )	 (66)
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with c 1 , c2 € PC(R). It is usually called a paired singular integral operator, as it can be 
written in the form

 Ci +C2 1 cl—c2
2 SR,	(SRu)(i)= 71 JR s — i 

Applying Theorem 2.37 to A we obtain the following result. 
Corollary 3.1. The approximation method (1) applies to the operator A in (66) 

if and only if the operator A is invertible and the point 0 is not contained in the area 
limited by the triangle defined by the points 1,	and 

Proof. The direct use of Theorem 2.37 leads to the following operators (resp. op-
erator functions) that must be invertible, in order to guarantee the applicability of the 
approximation method: 

a) A = c i W(_) + c2W(+). 

b) A = (ci(—oo)X + ci(+oo)X + ) W( + ) + (c2( —c)X + c2(+oo)+)W(). 

c) Wo(A) = Pi ((ci(—cc)x c + ci(+oo)+)W() 

+(c2(—oc)x. + C2(+OO)X)T(X))Pl + Q. 

(c2(—oo)x + C2(+ OO )X+)	 0 
d) Ws(Ar)=Pi	 Pi+Qi. 

0	 (c1 (+)x_ + cl(—)X+) 

	

c i (+oo)(i - x) + c2(+oo)x 0	 0	 0 

e) M(A) : x	
o	 1	 0	 0 
o	 o c i (—)x + c2 (-00)(1 - x) 0 
o	 0	 0	 1


for x € [0, 1]. 

The fact that A must be invertible implies immediatly the invertibility of A and 
that c i,2 (±oo) are different from zero, which also means that W3 (A) are invertible. It 
is also not difficult to see that the invertibility of W0 (Ar) implies the invertibility of 
M(A) Finally writing W0 (Ar) as the operator

{c'(+oo) 

ifO<x<i c2(+oo) 
\=	cj(—oo) if-1<x<0 + *(x+),	with a X)	

C2(—) 
1	iflxl>i 

and applying usual invertibility conditions for singular integral operators (see (li]) it 
is obtained that the point 0 must not be contained in the area limited by the triangle 
defined by the points 1 CI LOO and cl(+oo? . 

c2 — 00	c2(-4-00) 

We can consider also a more complex type of paired operator. Let A be the operator 

A = W(a)x, + W(b)x- (67) 

with a, b € PC(II). The following result is then obtained.
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Corollary 3.2. The approximation method (1) applies to the operator A in (67) if 
and only if the following conditions are satisfied: 

a) The operator A is invertible. 

b) The operator + W(a) + + x_ W(b)x - is invertible. 

c) For any s e R, the point 0 is not contained in the area limited by the triangle 
defined by the points 1,and 

Proof. As the operator A belongs to the algebra without the flip we can apply the 
k 

more simple homomorphisms W, instead of W 3 . A necessary and sufficient condition 
for the applicability of the finite section method is the invertibility of the following 
operators (resp. operator functions): 

(1) A = W(a)X + + W(b)x-. 

(ii) A = x, W(a)x, + x - W(b)x-

(iii) W,(A) = Pi (W(x )(a(s) + +b(s) ) +T(x+)(a(s)x+ +b(s) )) P1 +Qi 
for s E R.

a(—oo)(1 — x) + a(+oo)x 0	 0	 0 

(iv) M(Ar): x '—*	
o	 1	 0	 0

 for 
o	 o b(—co)z + b(+oo)(i — x) 0 
o	 0	 0	 1 

x 	[0 1 11. 
The conditions a) and b) come directly from (i) and (ii). Condition c) is seen to be 

equivalent to (iii) by writing Ws(Ar) as the operator 

( a(s) if0<x<i 
W(x_)a ' +W( + ),	with a'(x)=  

b(,+) if —1 < X <o 
1	iflxl>i 

and applying usual invertibility conditions for singular integral operators (see [ii]). 
Finally, the invertibility of A implies the invertibility of M(Ar) I 

3.2 Wiener-Hopf plus Hankel operators. Now let A be the operator 

A = + *(a) + + + *(b)J + +x	 (68)


with a, b E PC(R). Before giving the result, we must first introduce some notation. 

For any pair of complex numbers e and 77 define the set i) in the following way. 
Let r and r,1 denote the half-lines starting at the origin and passing through the points 
—i and —i j , respectively. If these two half-lines coincide, then( , ) is the whole 
complex plane except the part of rt whose points have module greater or equal than
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2/j f. If they do not coincide, then consider the branch of hyperbola with r and r 
as asymptotes and that passes through the point —i( + ii). This branch divides the 
complex plane into two components, and 1l(, 17) is the open component that contains 
the origin. The applicability of the finite section method for the operator A is expressed 
in the following result. 

Corollary 3.3. The approximation method (1) applies to the operator A in (68) if 
and only if the following conditions are satisfied: 

a) The operator A is invertible. 

b) The operator x + TV(a)x + + x_ is invertible. 

c) b(0) - b(0) e 

d) For any s E R, the roots of the polynomial 

2 (a(s+)+
	+ 
a(—s)	b(s) - b(s) b(—s) - b(—s-)) + a(s)a(—s) 

	

- a(s) a(—s)	a(s)	a(—s)	a(s)a(—sj 

satisfy the inequality

a(s+)	a(_s+) 
arg ( _ ) + arg ( _ ) - arg <ir. 

Proof. The direct use of Theorem 2.37 leads to the following operators (resp. op-
erator functions) that must be invertible to apply the approximation method: 

(i) A = + W(a) + + + *(b)J + + x 

(ii) A = x + 14'(a)x + +	. 

(iii) Wo(Ar) = P1 (X+ (a(O *(x) + 

+x (b(0)W() + b(0)W(+))J+ + x -
 ) PI + Qi. 

I S21 1(iv) W	
S11 Si

8(A) = P1 	 I P1 + Qi, with 
 522] 

511 = + (a(s)*() + a(s)W(x+))+ + x-

512 = x + (b(s)W(_) + b(s)W(+))_ 

521 = x_ (b(—s)W(_) + b(—s)W(x)abig)x 

522 x_ (a(—s)W(_) + a(—s)W(+))_ + x+ 

Ia(—co)(1 - x) + a(+c)x 0 0 01 
1 (v) M(A7 ): x :__.	 0	 1 0 0 

[	

I for x E [0, 1]. 
0	 0 1 01 
0	 0 0 ii
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So conditions a) and b) come directly from (i) and (ii), and (v) is also easily seen to be 
satisfied if A is invertible (condition (ii) again). Regarding (iii) and (iv), in the general 
setting, conditions for the invertibility of these type of operators that are both exact 
and easy to verify are still not known. But in the scalar case, which we are dealing 
here with, there can be applied the conditions obtained in [23: Theorem 4], which give 
directly the result stated in the corollary I 

4. Relations between A. and A: some notes 
4.1 Introduction. In this section we will consider (A,.) E .4' as a sequence of approx-
imation operators for the operator A and try to obtain relations between the operators 
A,. with T large and the strong limit operator A. We will use mainly the definitions 
and results presented in [19]. In that reference it is presented a general idea of how to 
deal with problems which are of the nature of the one presented in this paper. Thus the 
following material can be viewed as a further concrete example where such ideias can 
be applied. Because of size considerations, we opted to give the results only, without 
proofs or comments. So the reader is advised to look at the above mentioned reference 
in order to fully understand this section. 

Let T denote the index set of elements f-2,-11 U [O,). Define now the *-
homomorphisms smb (t E T) defined for (A,.) E A' as 

W°((A,.)) if t = —2 
W'((A,.)) if t = —1 

	

smbj((A,.)) = Wo(A,.)	if t = 0	 (69) 

	

W3 (A,.)	iftER 

	

M(A,.))	ift=oo 

and the algebra S as the algebra of functions defined on T and with values at t in 
Im{smbj}. Then we can define the homomorphism smb from A'/ to S by smb(A,.) = 
smbt((A,.)). This homomorphism is a symbol in the usual sense of the word and the 
building homomorphisms are fractal. By fractal we mean the following: Suppose that 

is a sequence in A and W is a homomorphism. We say that W is fractal if 
for any infinite and unbounded index sequence {rk}kEN we have for the corresponding 
operator sequence (belonging now to an algebra of sequences indexed in the natural 
numbers) W(A,.k ) = W(A,.). 

For each t E T we will associate the ideal I, with I_ 2 = Jon A', I_ i = Ji fl A', and 
It = {0} for t E [0,+oo]. Then we have smb,(It,) 0 for t i 54 t 2 and that smb t are 
lifting homomorphisms (i.e. smb t (Ij ) are closed two-sided *.ideals and smb t restricted 
to It are isomorphisms between Ij and smbt(Ij)). 

The two above facts, plus the realization that if the cosets smbg((A,.)) + smbg(Tt) 
are invertible for all t E T, then (A,.) +.T is invertible in A'/I, where I is the smallest 
closed two-sided ideal of A1 containing the idealsIj , permit us to be in the conditions 
of Part 3 of the lifting theorem proved in [19], and so we obtain the following results 
almost immediately.
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4.2 Norms and condition numbers. Applying [19: Theorem 6] we obtain 
Theorem 4.1. Let (Ar) E A'. Then Iimr_. I[ A II exists and 

lim II A rII = sup Il smb i(Ar)II. r—.3	jET 

Moreover, if (Ar) is stable, then the sequence of the condition numbers IL4rII IIA- 1 11 is 
convergent and

urn II A II II A ' = sup Il smb t(A r)II sup Ilsmbg(A r )_' II 
jET	 iET 

4.3 Moore-Penrose invertibility. We recall that an element b of a C-algebra 13 is 
Moore-Penrose invertible if there is is an element bt in B such that bbtb = b, btbbt = bt, 
(bbt)* = bbt and (b t b) btb. An ideal of B is called a Moore-Penrose ideal if the 
invertibility of an element b E 13 module the ideal implies always its Moore-Penrose 
invertibility. Note that smbo(I°) = K and smb i (I') C )2X2 and so smbj(Ij ) are 
Moore-Penrose ideals. Applying [19: Theorem 7 and Proposition 8] we obtain 

Theorem 4.2. If the cosets smbj((A))+smbj(I t ) are invertible for alit E T, then 
(Ar) + G is Moore-Penrose invertible in (A + with inverse (B r ) + G. Moreover, 
any sequence in the coset (Br) + G converges strongly to the Moore-Penrose inverse of 
A = W°((Ar)). 

4.4 Limiting sets of eigenvalues. Define the partial limiting set limr...00 ,- of a 
sequence of subsets il r of the complex plane as the collection of all complex numbers 
that for each one there exists a sequence of points Zr e ,. of which they are a partial 
limit (sublimit). Define the uniform limiting set	 of a sequence of subsets Q 
of the complex plane as the collection of all complex numbers that for each one there 
exists a sequence of points Zr E Q, of which they are the limit. Then, by [19: Theorems 
8 and 9), we have 

Theorem 4.3. If (A r ) E A' is a sequence of self-adoint operators, then 

lim a(A) = Limr-..a(Ar) = U a(smbj(Ar)). 
r co—

jET 

4.5 Limiting sets of s-numbers. Define the set s(A) of the s-numbers of an operator 
A by s(A) = o((AA)4 ), where (A*A)4 is the non-negative square root of AA. Then 
[19: Theorem 10] gives us for (Ar) e A' the following result. 

Theorem 4.4. We have limr_ s(A) = Lim..s(A) = UiET s(smbj(Ar)). 

4.6 Limiting sets of the E-pseudospectra. For e > 0, the e-pseudospectrum of the 
operator A is the set 

= {z E C: ZI — A is not invertible or lI Z1 - All ^! }.
	(70)


Then if we apply [19: Theorem 11] (see also [1]), we obtain the following result.
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Theorem 4.5. We have limr_.x,cic(Ar) = Limr_ae(Ar) = UIETOe(smbt(Ar)). 
Acknowledgment. The authors wish to acknowledge the help of Prof. F.S. Teix-
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