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Nonlinear Geometric Optics for Shock Waves 
Part I: Scalar Case 

Ya-Guang Wang 

Abstract. In this paper we study the nonlinear geometric optics of the shock wave for a scalar 
conservation law in one space variable. The existence of the oscillatory shock wave and its 
leading terms are obtained. Meanwhile, we rigorously justify the asymptotic properties of the 
shock wave as well as the shock front. 
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1. Introduction 
The study of small amplitude, rapidly oscillatory waves for nonlinear hyperbolic equa-
tions is widespread and very important in the field of applied mathematics. There is a 
rich literature devoted to the formal analysis and rigorous justification of weakly non-
linear geometric optics for rapidly oscillatory waves. Most of the rigorous justification 
is given in the setting of smooth solutions. See articles of J. L. Joly, G. Métivier and 
J. Rauch [8, 9] and references therein for Cauchy problems, and those of J. Chikhi [2] 
and M. Williams [16, 171 for mixed value problems with fixed boundaries. The asymp-
totic analysis of nonlinear hyperbolic problems together with applications had also been 
investigated by Y. He and T. B. Moodie in [7]. 

With the publication of the important work of R. DiPerna and A. Majda [5] which 
contains the first rigorous result in the setting of bounded variation solutions, much 
attention has been paid to the rigorous study of the formal analysis beyond the formation 
of shocks in recent years. In this aspect, we mention the interesting work of C. Cheverry 
[1], S. Schochet [14] for the initial value problem, and that of M. Sablé-Tougeron [13] 
for the boundary value problem. To my knowledge, all of these rigorous justifications 
for weak solutions are developed in the setting of bounded variation solutions, in which 
some shock waves might appear, but it does not contain any detailed information on 
the propagation of wave fronts. 

The present paper is the first attempt to rigorously justify the nonlinear geometric 
optics of shock waves when a shock wave is perturbed by rapidly oscillatory initial data, 
which was considered by A. Majda and M. Artola in [12] for the formal analysis. We 
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study the simpliest case, the scalar conservation law in one space variable. When the 
piecewise constant initial data, which produces a plane shock, is perturbed by small 
amplitude, high frequency oscillatory data, both of the rapidly oscillatory shock wave 
and the asymptotic principal term satisfy free boundary value problems, in which the 
unknown state function and shock front are nonlinearily coupled. As A. Majda in [11], 
we transform this free boundary into a fixed one by using a transformation depending 
on the unknown shock front. 

For the scalar conservation law, this coupled problem can be decoupled into two 
problems for the state function and shock front respectively, which makes us possible to 
use the theory of J. L. Joly et al. in [8] to study our problems. In the case of systems, 
it is impossible to make the problem decoupled. This case will be discussed in the 
forthcoming Part II. 

The remainder of this paper is arranged as follows. In Section 2, we deduce the 
problems of the oscillatory shock wave and leading profiles by using the method of 
multiple scales, and state the main results. The problems of the oscillatory shock wave 
as well as the leading profiles are studied in Sections 3 and 4. Finally, Section 5 is 
devoted to the proof of the asymptotic property of the shock wave, which gives the 
nonlinear geometric optics. 

2. Statement of problems and main results 

For the scalar conservation law in one space variable 

5u + 5f (u ) = 0	 (2.1) 

we assume that the piecewise constant state 

I t4 for x > at	
(2.2) U0 =

1u	for x<tit 

is a shock wave with the speed a e (—cc, cc), and the smooth flux function f is genuinely 
nonlinear when

lu - uol <ii 

for a fixed small constant r > 0, i.e. f"(uo) 54 0. 

In the following discussion, we will always use u+ and u to denote the right and 
left values of u, respectively, on both sides of the shock front, and denote by 

u] = u - u 

the jump of u across the front. From the well known Rankine- Hugoniot and Lax's 
entropy conditions, we know that the plane shock (2.2) satisfies 

OU01 = [ f(uo)]	 (2.3)
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and
f'(u) <a <f'(u).	 (2.4) 

Let us study the following Cauchy problem of (2.1) with the initial data being a 
small perturbation of the piecewise constant (2.2): 

aUe+a1f(Ue)=O	(i>O,xER) 
U e (O , x)	f 

u + -u ,0 (x) for x > 0	 (2.5)
for x<0 J 

where e > 0 is small enough, and u 0 E C' 

As A. Corli and M. Sablé-Tougeron in [4), the initial value problem (2.5) determines 
• shock locally around-the origin for any fixed small ee (0,e]. - 

Before giving assumptions on the problem (2.5), we introduce some notations. Given 
• small closed neighborhood w C {t = 01 of the origin, suppose Q is the closure of a 
determinacy domain of w for the Cauchy problem (2.5) when I UC - uoI <ij. Set 

=ffl{x>0}	 w=wfl{x>0}
and 

c=cln{t<T}	 w=wfl{x<0}. 

The space C k (1l) is the usual one of functions whose derivatives of order less or equal 
k are continuous in ft Equip this space with the family of norms 

II U IIc,k,cI = 12	113 uIIL0o(). 
IaI<k 

	

A family {ue}€ cC'() is bounded in C(l) if the norms	are bounded, and
q is bounded in C([0,T]) if O E E Ck[0,T] and I diIIe,k_I[O,l'l are bounded for k > 1. 

Set T' = R/27rZ, and let C(R x T') be the space of continuous functions u = u(r, 9) 
periodic in 9 E T 1 and almost periodic in r E R. Denote by 

R x T') = C°(l : C(R x Ti)) 

the space of continuous functions from Q into C(R x T 1 ). For k E N, define the space 
C'(cl: RxT') of those functions U E C°(l : RxT') whose derivatives 5 Z . T O) U belong 
toC°(cl:RXT') for any II <k. Let C k(: T l ) be the set ofuEC k (c :RxT') 
independent of (t, T). 

For the problem (2.5), we assume that there are U(x,8) E C'(w : T') such that 

u ,0 (x) - U0' (- ' 14""', = o(1)	 (2.6) 

when e - 0, which immediately implies the boundedness of u 0 in C(w± ) , where we 
have used the notation "±" to mean two cases according to the upper and lower signs, 
and it will be used in this whole paper.
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The aim of this paper is to study the local existence of the shock wave Ut for the 
problem (2.5), and asymptotic expansions of Ut and its shock front {x = 'I(t)} with 
respect to E. 

Now, let us simplify the problem (2.5), and deduce the problem of leading terms of 
U t and the shock curve {x = 'P(t)}. Let 

U, (t, x) = f	+ Eu(t, x) for x > at + et(t)	
(2.7)

u + Eu e (t, x) for x <at + Et(t) 

he the shock wave solution of the problem (2.5), i.e. (u, t) satisfy 

Ot (t4 + eu) + Of(u + u) = 0	for x > at + et(t) 

0t(U + cu') + O f(u + 6u) = 0	for x < at + ejt(i) 

which is equivalent to 

	

3j u +f'(t4+ cu ) 0u . =0	for x >at+t(t)l	
(28) 

	

+ f'(u + euc)az uc = 0	for x <at + e t (t) J
and satisfy the Rankine- Hugoniotcondition 

( 
or 

	dçbt\ 
+	(E[ut] + [un]) = [f(uo + EUt)]	 (2.9) 

dt  

on {x = at + E(t)}. 

At this stage, both of functions u and are unknown, hence (2.8) - (2.9) is a 
free boundary value problem. In order to transform this problem into a fixed boundary 
problem, we perform the tranformation 

=  
x = x - at —Et(t) }	

(2.10) 

in (2.8), and obtain that u(1,) = t4(t,x) satisfies

=0 for >0
(2.11) 

o1ue + (f'(u + eue ) - (a + Ed cb t ) ) O± ue = 0 for i <0. 
J 

By using the transformation
t=i 

x = -
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in the second line of (2.11), we know that (u, q) satisfy the following coupled problem 
with the fixed boundary {x = 

	

ôgu ± (f' (u + eu ) - (a +ed))ou = 0	(t,x >0) 

	

(a + edt)(e[ue] + [uoj) = [f(uo + cue)]	(x = 0)	
(2.12) 

u(0,x) = u 0 (x) 

where we have dropped the tilde and bar of notations for simplicity. 

Suppose that the solutions (u, ) of the problem (2.12) have the forms 

u(t,x) = U(t,x; , ) + eV(i,x; , ) + 0(e2) }

	
(2.13) 

= (i, CD + e(t, ) + O(c2) 

where U(t,x;r,9),V(i,x;r,9),çb(t,r) and ço(t,r) are almost periodic in T e Rand 
periodic in 9 E T' (in fact, we will see that they are also periodic in r with a different 
period). Let us formally deduce the problem of ( Ui , q) from (2.12). 

Set T = 1 and 9 = . Plugging the formal expressions (2.13) into the equation of 
(2.12), expanding f'(u + cu) by Taylor's formula and grouping each power of e, it 
follows that the term of	is 

au	
(f,(, 0±)	

a\au 
----±	 _a_) -- =0	 (2.14) 

and the term of "e°" is 

au av aq\ faU	5V\ 

± (f"(U±)U±
	

fôc	ô\\ ij±	 (2.15)
0. 

Similarly, the boundary condition of (2.12) implies that on {x = 9 = 01 we have 

/
9 

I a + — ao 
r) 

1 (uo] = If (U0)] (2.16) \  

and

(U - U- ) - f'(t4)U + f'(u)U = 0.	(2.17) 
\	ÔTJ	(	ar ( - --+— J [uol+ a+ )  

Employing the Rankine-Hugoniot condition (2.3) and the obvious fact [u0] 54 0 for 
(2.16), it follows  

ao
= 0,	 (2.18) aT
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i.e. the leading term 0 of (t) is independent of r = , which means that 0 has not 
any oscillation. 

To simplify the problem of U, for any continuous function u(t, x; T, 9) periodic in 
9 e T 1 and almost periodic in r E R, define the mean value operator E by 

P 

	

Ej u(t,x;r,9) = urn - [u(t,x;T + s,9 ± (f'(u) - ci)s)ds	(2.19) p- 2p j 
-p 

and let

(mu)(t, x, 9) = lirn	u(t, x; r, 0) d7	 (2.20) P 00 2p f 
be the mean value operator in the r-variable. Then, from the equations (2.14), (2.15) 
and (2.17), by using the result (2.18) and the assumption (2.6) we obtain that the 
leading profiles of (t4, ) satisfy the problem

E±U = 

iE (oi ui ± (f'(u) - o)ô1 U 1 ± (fhl(u)U - x)aeU) = 0
(2.21) 

x[uo] - [(f'(uo) - cr)U] = 0 (x = 9 = 0) 

U It=r=o = U(x,9) 

and
dtcb[uo) - mri(f'( uo) - oU] = 0 (x = 9 = 0)1	(2.22) 

J 
where X(t,T) = dtq5+ôp. 

Let us state the main result of this paper as follows. 
Theorem 2.1. Suppose-that the initial data u 0 E C'(w) satisfy the asymptotic 

property (2.6). 

(1) There are T > 0 and co > 0 such that the problem (2.12) has unique bounded 
solutions t4 E C(l) and Oe E C [0 , T1 for any e E (0,Eo]. 

(2) There are unique solutions U E C'(c4 : R x T'), x € C 1 ([0, T] R) and 
E C'[0, T] to the problems (2.21) and (2.22). 

(3) For the above solutions	we have the asymptotic properties 

	

t4(t, x) - U(t,x; f, )Ilei+ = 0(1)	 (2.23) 

and

	

ld01(t) - X(t, )Ie 1(0	= o(i) ) 

o(1)	
(2.24) 

	

e(t) - I(t)IIL..(o	= 	J 
when e - 0. 

Remark 2.1. From the results (2.24), it is easy to obtain the asymptotics of the 
shock front {x at + e(t)}.
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3. Existence of exact solutions 

This section is devoted to the proof of Theorem 2.11(1), which implies the existence 
and uniqueness of the exact solutions (u, ) to the problem (2.12). 

Set yE = (u, U 4 )T'

	

(f'(t4+eu.)	0 A(ev e ) =	
—f'(u +U)) 

and
B(evc) = If (U0+ CUE)] (-1 0 

[uo) + e[ue] \ 0 

Then, from (2.12) we obtain that when

- U 0- 1,	 (3.1) 

the problem (2.12) is equivalent to the systems 

5tVC + ( A(eve) + B(EvE))ÔZvE = 0	(t,x > 0)	) 

	

T	 (3.2) 
vc(0,z) = (u(x), Uco(X)) ) 

and
d	= e' [f (U0 + CU')] (Luol +	- ) 1	(3.3) 

J 
Obviously, the eigenvalues of A(cvc) + B(cvE ) are 

A 1 = f'(u + cu) - If 
(U0 + cue)] 

[uoj + clue]
(3.4) 

A2 = Ef(uo + cut)] —f'(u + cue). 
[uoj + c[ut] 

By simple computation and using the Rankine-Hugoniot condition (2.3), A 1 and A2 can 
be rewritten as 

A 1 = f'(u) -a + f"(u + 
TiCtz)(Cu) - c[(f'(uo + r2 cu t ) - a)0] 

	

[uo] + clue]	 (3.5) 

A 2 = —f'(u) + a - f"(u + T3 C U C )(cue ) + c[(f ' (uo + r2 cut ) - a)utj 
Euo] + c[u]	(3.6) 

with Tj E (0,1) (i = 1,2,3). 

Employing the Lax entropy condition (2.4) for (3.5) and (3.6), we obtain that there 
is 77 > 0 such that when

	

IH)lILc(cZ+)	17	 (3.7)



614	Ya-Guang Wang 

we have
A1, )'2 <0
	

(3.8) 

Hence, even though the problem (3.2) is defined in the quarter space {t,x > O}, it does 
not need any boundary condition on {x = 0) when (3.7) holds. The problem (2.12) is 
decoupled into problems (3.2) and (3.3). 

Though the term B(eve ) of the problem (3.2) depends only upon the value of ye 

on the boundary {x = 01, it is not difficult to see that the classical method of Cauchy 
problems for one space dimensional quasilinear hyperbolic systems is still valid. By 
applying the theory of P. Hartmen and A. Wintner in [61, and J. L. Joly et al. in [8: 
Subsection 6.2] in the problem (3.2), we immediately obtain the following 

Theorem 3.1. There are T > 0 and 6 > 0 such that, for any e E (0,eol, the 
iteration scheme 

ôjV 1 + (A(ev) + B(Ev))a1 v 1 = 0 (t,x >0)
(3.9) v(0,x) = (u ,o(x), u,o(x)) f  

with v(t, x) 0 defines a sequence {v} C C'(TZ) such that: 

(1) There is M > 0 such that, for all n and e E (0,co], we have 

M	and	E ll V IlLc(t+)	11	 (3.10) 

with ?I given in (3.7). 

(2) For each fixed e e (0,c], the sequence (v' I converges in C'(-.) to the solution 
v C of the problem (3.2). 

(3) Moreover, as n - no,	- v C II L(n + ) - 0 uniformly in c E (0,E0]. 

By using Taylor's formula for f(uo + Eu c ) , the problem (3.3) can be reformulated as 

1 

djO' = ([u o] + e[udl)_l (f [f'(uo + r &uc )u e ]dr - a[ud]) } 

C (0) = 0. 

With the function v C = (u ê , ue )T E C(14) determined by Theorem 3. 1, we can easily 
solve the problem (3.11), and obtain the following 

Theorem 3.2. There is a unique solution O e E C2 [0, T] to the problem (3.11) with 
bounded in C[0,T].
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4. Existence of profiles 

In this section, we study the problems (2.21) and (2.22) of leading profiles, and obtain 
the proof of Theorem 2.1/(2). 

From the definition (2.19) of iE, we know that IE U =	means that U± (t, x; r, 8)
can be regarded as a function of (t,x;8 T (f '(u') - oar). Denote 

X; r, 8) = U (i, x; 8 T (f'(u) - a)r) 

T V(t,x;9) = (u+(t,x;8),u(t,x;8)). 

Then from (2.21) and (2.22), we know that (V, x, q) satisfy the following systems: 

aV + AÔZ V + VTB5OV + CO8 V = 0 (t,x > 0)}	
(4.1)

V(0,x;9) = (U(x,8),U(x,8))T 

X(i,r) = ij.{(f'u+_ ci)U+(t,0;( - f'(t4))r)	
(4.2)

- (f'(ufl - c)U (t, 0; (f'(u&) - i)r) } 

and

	

dt qfi = [(f'( uo)	- )moU] [uo]	

}	
(4.3) 

(0 ) = 0 

where

	

A (f'(u)_	0 

0 

t4 ) 
 (f"(

) 0 

	

0	—f"(u)

= [(f'(uo)—a)meJ (_1 0 

	

[uO]	 \0 

and rnq is the mean value operator in 8-variable 

1 r (mou)(t,x) = - / u(t,x;8)dO 2ir j 
-7r 

for any u(t,x;O) periodic in 8€ V. 

As in Section 3, the eigenvalues of A are 

	

)i=f'(z4)—o<O	and	A2=ci—f(u0)<0
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which implies that the equation in (4.1) does not need any boundary condition on 
{x = 0). Thus, the problem (2.21) is decoupled into problems (4.1) and (4.2). 

By taking the mean value operator me in (4.1), we obtain that (moV)(t, x) satisfies 

(t + AO,)m9V = 0 (t,x >0) 
(moV)(0,x) = (moU,moU)T 

which immediately gives rise to 

meV(t,x) = (moU(x - (f'(t4) - a)i),m9U(x + (f'(u) - a)t))	(44) 

From the problem (4.1), we know that two elements of V satisfy two decoupled scalar 
quasilinear equations with

[(f'(uo)—o)moU] f —i 0\ 
= ( C	 [uo]	 ) 

being determined by (4.4), which can be easily studied by classical methods (cf. J. L. 
Joly et al. [8: Subsection 6.3]). Hence, we have the following 

Theorem 4.1. 

(1) Given, the initial data U E C'(	: T 1 ), periodic in GET' with w = cfl{x > 
01. There is T > 0 such that the iteration scheme 

OV+ 1 + AaV+ 1 + V" B . 59V,. 1 + C 8 V,,.,. = 0 (t, x > 0))
(4.5) 

Vn+ i (0,x;8) = (U(x,9),U(x,O))T 

with Vo(t,x,8) 0 defines a sequence {V} C C'(4. : T 1 ) periodic in 0, such that the 
limit V of V,, in C'(c4. : T') is the unique solution to the problem (4.1). 

(2) There are unique solutions x E C 1 ([0, T] : R) and 0 E C 2 [0,T] to the problems 
(4.2) and (4.3) with (T,0) E Q. 

Remark 4.1. From Theorem 4.1 and the definition of V, we know that the solution 

U(t,x;r,9) =	(t,x;o T (f'(u) - cr)r) 

of the problem (2.21) is periodic in r with the period being 27r(f'(u) -
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5. Asymptotic properties 
This section is devoted to the study of the asymptotic property of exact solutions 
(t4,) to the problem (2.12), which completes the proof of Theorem 2.1. 

As it is discussed in Section 3, even though the problem (3.2) is defined in the 
quarter space {t,x > O}, intrinsically, it is an initial value problem when (3.7) holds. 
Under the assumption (2.6) for the initial data, by using the result of J. L. Joly et al. [8: 
Theorem 2.9.11, we have that the solution vC to the problem (3.2) obtained by Theorem 
3.1 has the asymptotic property

(fl(u + ) -	t4) - a)t x + (f'(u) - ) t 

	

ve ( t, x) - W t x;
) 

= o(i)	(5.1) (	 , 

in C'(cl), where 

I'V(t,x ) 9 1 ,82 ) = (W1(t,x,9i), W(t,x,82))T E C'(	: T' x T')

satisfy the problem 

(9 + (f'(t4) - a)ô)Wi + f"(u) Wi ôg1 Wi - a(t)ôo,Wi = 0 

(0, - (f'(u) - o)04 W2 - f"(u) W2 002 W2 + a(t)592 W2 = 0
2) 

Wi (0,x,Oi ) = U(x,Oi) 

W2 (0,x,92 ) = U(x,92) 

with

a(t) = [uol' ((f'(u) - o)(mo, Wi )(t, 0) - ( f'(u&) - a)(m82 W2 )(t, 0)). 

Obviously, the problem (5.2) is the same as (4.1). From the uniqueness of the problem 
(4.1), the conclusion (5.1) implies the following 

Theorem 5.1. Suppose ye E C'(), and 

V(t,x,9) = (U(t,x,8),	L_(t,x,8))T E C'(c14. : T') 

are the unique solutions of the problems (3.2) and (4.1), respectively. Then we have 

/ 
v e ( t, x) - (u + t, x;  

(
t, x +(f'(u&) a)t	T	 (5.3) 

-	)) 
=o(1) 

in C() when e - 0. 

As a simple consequence of Theorem 5.1, from problems (3.11) and (4.2), we imme-
diately obtain
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Corollary 5.1. Suppose that 0 E CO,T] and x E C'([O,T] : IR) are the unique 
solutions of the problems (3.11) and (4.2), respectively. Then we have 

	

d(t) - x(t,) = 0(1) in C[O,T]	when e - 0.	 (5.4) 

Before studying the relationship between	and its leading term 0, at first we give 
a result which can be obtained in the same way as in M. Slemrod [15: Section 6]: 

Lemma 5.1. For any continuous function f = f(9) almost periodic in 9 E R, we 
have

f()	m(f)	lirn
	

jf(0)d0	in	- weak*	(5.5) 

when c - 0, which means that, for any function p E L'(R) with compact support, 

= m(f)f(x)dx.	 (5.6) 

The result of q and 0 is stated as follows: 

Theorem 5.2. Suppose 0C E C[0,TJ and 0 e C 2 [0,T] are the unique solutions of 
the problems (3.3) and (4.3), respectively. Then we have 

q5 e ( t ) - (t) = o(1)	in L°°[0,T]	 (5.7) 

when E - 0. 

Proof. By comparing the problem (4.2) of x and (4.3) of 0, it follows 

P 

dt qf(t) = (mr)(t) = lim 1 - / X(t,T)dT	 (5.8) 
p-.	j 

-p 

which implies
X(t, ) - dç4(t)	in L°°[0,T] - weak *	 (5.9) 

when e - 0 by using Lemma 5.1. Hence, by combining (5.4) with (5.9) it gives rise to 
dt c6 e -p dçb in L°°[0,T] - weak* , which immediately implies Ic - IILoo [o,T] - 0 as 

Note in the proof. After the finish of this work together with the system case, the 
author was informed that a similar problem had been investigated by A. Corli in [3]. 
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