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Abstract. A boundary value problem of the form x' f(t,x),x E S is considered where f is 
a Carathéodory function and S is a suitable boundary constraint. A related integral equation 
with an exact number of solutions is studied, in order to show the existence of solutions of the 
boundary value problem through a fixed point theorem for w-maps in the Darbo sense. 
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1. Introduction 
In many papers the question of determining the exact number of solutions of a differ-
ential problem is considered (see, for istance, [1, 10, 13] and the references therein). In 
this paper such an argument is used in order to get an existence result for a general 
boundary value problem of the type 

x'=f(i,x) fora.e. tEI=[ab]cRxEIIr}	
(BV) 

x  S (Sc AC(I,R')). 

To that purpose the boundary value problem (By), where f is a Carathéodory function, 
will, in some sense, be connected to an integral equation which is known to have an 
exact number of solutions. 
• The technique we are going to employ consists essentially in the use of the solution 
set of some (hopefully easier) related differential or integral equation in order to obtain 
the assumptions needed to apply a suitable fixed point theorem. Such an approach 
worked as well in [4, 51. 
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2. Preliminaries 

Let X and Y be metric spaces. Br(xo) will denote an r-ball (in the space X), i.e. the 
set {x E X : d(x,xo) < r} where x 0 is any point in X and d is a metric on X. If 
A and B are non-empty closed subsets of X and we define dx(b, A) = iflfaEA dx(b, a), 
where dX is a semi-distance defining a topology on X, then it is possible to define 
a semi-distance between A and B by 6(A,B) = supbEB dx(b,A). If A and B are 
compact subsets of the space X, we define the Hausdorff metric Dx in X by putting 
D(A,B) = max (öx(A,B),Sx(B,A)). 

Definition 1. A multi-valued mapping G: X -i Y is said to be upper semi con-
tinuous at the point x 0 E X if, for any open set V D G(xo), there exists a neighborhood 
U of x0 such that G(x) C V for any x E U. 

If, for every x E X, C is upper semicontinuous at x and G(x) is a compact set, then 
C is said to be upper semicontinuous on X. If an upper semicontinuous mapping C 
sends bounded sets into relatively compact sets, then it is said to be compact. Actually, 
an operator C : X - Y is a compact one if G(B) lies in a compact set of Y for any 
bounded subset B C X. So if the set-valued function G has compact values, we can say 
that G is upper semicontinuous at the point x 0 if and only if for every E > 0 there is a 
neighborhood U of x0 such that, for every x E U, 6x (C(x), C(xo)) <E. 

We want also to recall that G : X —p Y is called a closed graph operator if from 
- xo in X and y - yo in Y with y, E C(x) it follows Yo E C(xo). If C(x) 

is a closed set for all x E X and G(X) is a relatively compact set, then G is upper 
semicontinuous if and only if C is a closed graph operator. 

Definition 2 (see [151). A function (t, x, y) - f(t, x, y) is said to be a Caraihéodory 
function (and we shall write f E Car(I x R  x R'1 ,l") where I is a real interval), if the 
following properties hold: 

a) t - f(t, x, y) is a measurable function for all (x, y) E R n x R'. 

b) (x, y) - f(t,x,y) is a continuous function for a.a. t E I. 

c) For every M > 0 there is a function hM e L 1 (I, R+) such that, for a.a. t E I 
and for every (x, y) with I(x, y )I <M, we have If(t,x, y ) I	h(t), where the R" vector 
norm	is simply denoted by I 

Definition 3 (see [8, 11, 12, 20]). A multi-valued upper semicontinuous map 
C : X —p Y is called a weighted carrier (for short:- a w-carrier in the Darbo sense, 
with weights in a commutative ring K), if to each x and y E C(x) and any open subset 
V C Y with OV fl G(x) = 0 an integer number mv(y, G(x)) belonging to K and called 
multiplicity or weight is assigned in such a way that the following properties hold: 

(1) rnv(y, G(x)) is a locally constant function of x. 

(ii) mv(y, C(x)) = 0 if ÔV fl G(x) = 0. 

(iii) m v,uv2 (y, C(x)) = mv,(y, G(x))+rnv2 (y, G( x )) —m v1 nv2 (y, G(x)) for any open 
subsets V1 , V2 C Y.
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When the w-carrier maps any point of X into a-finite number of points of the range 
space Y, it is called a weighted map (for short: a w-map in the Darbo sense [111). In 
this case the property (i) above can be stated as 

mv(y,G(x)) =	rnv(y',G(x')) 
yEG(z)flV	 y'EG(z')flV 

whenever x' is close enough to x. 
Remark. If, given an upper semicontinuous map G : X -* Y, the set G(x) is 

connected for any x E X, then G becames a w-carrier by assigning multiplicity 1 e K 
to F(x). In particular, any continuous single-valued map is a w-carrier. 

The number
i(G(x),V)=	mv(y,G(x))


yEG(z)flV 

is called the index of the set G(x) in V. When V is a connected set, the number 
i(G(x), V)) does not depend on x E X. In this case that number will be called the 
index of G and it will be denoted by i(G). Other properties and results concerning 
w-maps are widely considered in [8, 11, 12, 20]. In particular, in [8: Section 3] and in 
[11] there is also a number of examples of w-carriers. 

A set X which is the homeomorphic image of a geometric polyhedron (i.e. the union 
of a finite number of geometric simplexes) will be shortly called a polyhedron. We say 
that X is an acyclic set if it is acyclic in positive dimension, in the sense of the Cech 
homology with coefficients in a ring K (i.e. the n-homology group H(X) is trivial for 
n > 0). We refer to [6] for a detailed introduction of the needed algebraic topological 
tools. 

Finally, the following fixed point result will be crucial in the sequel. 

Proposition 1 (see [201). Let X be any acyclic polyhedron over a ring K. Then 
any w-carrier G: X -i X for which i(G) 0 0 has a fixed point. 

Remark. When the domain of the function C is an acyclic polyhedron, then the 
index i(G) introduced above is essentially the Lefschetz number of the function G, widely 
considered in the literature (see, for istance, [8, 12, 201 and the references therein). 

Definition 4 (see [19: Chapter 3]). An integral equation of the form 

Px(t) = j k (t, s, x(s)) ds 

-where I C R is an interval and x R - IR is a measurable function, is the simplest 
and most important nonlinear integral equation. It is usually called Urysohn integral 
equation. 

A particular case of an Urysohn integral equation is the Hammerstein integral equa-
tion

Ax(t) = I k(t, s)f (s, x(s)) ds,
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where the function (t, x) - f(t, x) defined for t C I is continuous with respect to x for 
a.a. t E I and measurable with respect tot for a.a. x, and the kernel (t, s) - k(t,$) is 
measurable with respect to (t, S). 

In the next result which will be very useful in the proof of our main Theorem 1 
other properties of an Hammerstein integral equation will be introduced. 

Proposition 2 (see [21: Chapter 7]). The boundary value problem 

= g(t,x,q) a.e tEl = [a, b] C R	
(BV)q 

	

xESi,	 J 

where g C Car(I x W' x ll,R'2 ) and Si C AC(I,R) is a suitable bounded and closed 
subset, is equivalent to an integral equation like 

= A q (x) A(x,q)	 (TE)


for all q E Q C AC(I,R'), where (x, q) —i A(x,q) is a compact operator for all q E Q. 
As a matter of fact we know (see [21: p. 159]) that a boundary value problem 

(with either homdgeneous or non-homogeneous boundary conditions) could be written 
in operator form as Lx = g where L is a linear ordinary differential operator whose 
domain is the set of all absolutely continuous (with respect to x) and measurable (with 
respet to t) functions which are in S1 . Then, in conformity with the above discussion, it 
is possible to see that the differential operator (together with its domain or, equivalently, 
together with the associated boundary conditions) has an inverse in the form of an 
integral operator. So we can consider the Hammerstein integral equation 

X(t) - f k(t, s)g(s, x(s);q(s))ds = 0 

where (i, s) —i k(t, s) is the so-called Green function of the differential operator. (The 
Green function of a differential operator is an everywhere continuous function whose 
derivative has a jump discontinuity for t = s and it is the kernel of an integral operator 
which inverts the differential operator L.) So, if we write the previous Hammerstein 
integral equation as

Aqx(t) 
= j
 k(t, s)g (s, x(s), q(s)) ds 

or, shortly,	 - 
Agx=k(x) 

where u(t) = f1 k(t, s)u(s) ds is a linear integral operator and (t) = g(t, x(t), q(t)) 
a nonlinear superposition operator, then the equivalence between the given boundary 
value problem (BV) q and the integral equation (IE) can be positively established. 

The integral operator A will be supposed to be compact - as we shall see in the 
application this is not a strong assumption. As a matter of fact, if the function x belongs 
to a Lebesgue space L q (I) and p is a real number such that + 1 = 1, then by writing 

	

the Hammerstein equation as x	(x) with x E L(I), it is known that, for p> 1, 
k is a linear compact operator (see [22: Chapter 21 or [19: Chapter 1]), because of 
the continuity of the Green function. Now suitable conditions on the function g (e.g., 
growth conditions) allows to say that also A. = kTq is a compact operator. 

Finally, in the next definition we want to recall the concept of topological degree.
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Definition 5 (see [13: Chapter 11 or [22: p. 291]). Let 11 C R' be a bounded and 
open set and f:	- IR" a continuous function. Then if y e IR" \ 1(011), there is only

one function

deg: {(f,1l,y)}—+Z 

with the following properties: 

1) deg(id,Q,y) = 1, where id(y) = y for ally e Q. 

2) deg(f,11,y) deg(f,11 i ,y)+deg(f,11 2 ,y)whenever11 1 ,112 C 11 are disjoint open 
subsets such that y f(i \ f2 l U 112). 

3) deg(h(t,. ), 11, y(t)) is independent of t E [0, 1] whenever h: [0, 1] x n - R and 
y: [0,1] — R' are continuous and y(t)	h(t,01l) for all t E [0,1]. 

The number deg(f, 11,.) is called the topological degree of f with respect to Q. 

3. Results 

In the statement of the main theorem we want to consider the boundary value problems 
(BV) and (BV) q under the following assuptions: 

1) 1 E Car(I x R", R") and g E Car(I x R" x R", R") are such that f(t, c) = g(t, c, c) 
for almost all c E R". 

ii) Q C AC(I, R) is a bounded, closed and convex set and S i C Q fl S is a closed 
set.

Let us recall that in Proposition 2 the equivalence between a boundary value problem 
and an integral equation was introduced. 

Theorem 1. Let us assume that the sets Q and S1 of ii) are given in such a way that 
the boundary value problem (BV), is equivalent to some integral equation of the form 
(IE) where (x, q) —* A(x, q) : Il x Q — S1 C AC(I, W'), A(x, q) is a compact operator 
for each q E Q and it is such that deg(I — A q ,11,0) 0 for some (and hence for all) 
q E Q and some open and convex subset 11 C AC(I,R'). Further, let E : Q — 2 Q be 
the multi-valued operator which maps each q E Q into the set of solutions of the integral 
equation ( JE). 

Then if the set E(q) is discrete for each q E Q, the boundary value problem (BV) 
has at least one solution. 

Proof. Let E: Q —* 2s, be the given multi-valued operator. In order to apply the 
Darbo fixed point theorem (see [11: p. 393]), we need to show that E is 

- upper semicontinuous 
- compact 
- a w-map in the Darbo sense. 

To the first purpose let us consider a sequence qn E Qi = Si (i.e. the convex closure 
of the bounded set Si) such that lime qn = qo, and a sequence x,, E E(Q i ) such that 
limn X = x 0 . Now it will be enough to show that x0 E E(qo) in order to apply the
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closed graph property and to get both the upper semicontinuity of the operator E and 
the compactness of the set E(qo). 

Let us consider the sequence of Hammerstein integral equations 

= j k(t,$)g(s,x(s),q(s))ds. 

We observe that, by the continuity with respect to the second and third variable of the 
function g, it is possible to apply the Lebesgue dominated convergence theorem to get 

X 0 (t) = lirn x 

= iirnjk(t,$)g(S,Xn(s),qn(s))ds  

= j 
urn k(t, s)g(s, X(s), q(s))ds 

= fk(t,$)g(s,xo(s),qo(s))ds 

by using also the continuity of the kernel operator (t, .$) - k(t, s). The latter equal-
ity means that t - x 0 (t) is a solution of the Hammerstein equation x = Aqo (x) or, 
equivalently, that x 0 E E(qo). 

For the second purpose let us firstly observe that a function i -* ( t) belongs to the 
set E() for some 4 E Q if and only if the equality T = A() holds. Then, in order to 
get the compactness of the operator E we need to show that, for any bounded subset 
B C Q, E(B) is a subset of some compact set of 2. By hypothesis we know that Aq 
is a compact operator for each q E Q . On the other hand, this statement is equivalent 
to say that A q (B) lies in a compact subset of 2 Q for any bounded subset B C Q . So it 
is enough to take the bounded set Qi = ( S 1 ) in order to get the compactness of the 
operator Aq. 

Now it is enough to show that x 0 E E(qo) inasmuch as the closed graph property 
allows us to say that E is an upper semicontinuous operator and that E(q°) is a compact 
set. We have only to prove that E is a w-map. Let q E Q be fixed and take any 
x E E(q). By hypothesis we know that, for each q E Q, the integral operator Aq 
is compact: since x is an isolated solution of the integral equation it will be possible 
to have an open neighborhood Q, C AC(I,R) such that Q, fl E(q) = {x}. Let us 
define m 111 (x,E(q)) = deg(I - Aq,I i3 O). To show that this integer number is the 
weight rn, (x, E(q)) we need to say that E shares the properties of a w-map. We 
can say that this number does not depend on the choice of the set Q, because of the 
third property of the topological degree. Let now W be an open subset of AC(I, IR'2) 
such that E(q) fl 0W 54 0. The upper semicontinuity of E implies the existence of 
some ball Br(q) such that E(q') fl OW $ 0 for all q' E Br(q). Then a homotopy 
h : Wx[O,1] - AC(I,R") can be defined as h(x,t) = A(x,tq+(1_t)q') for q' E Br(q). 
We have iq+(1 —t)q' E Br (q) for all t E [0, 11. Thus the given homotopy is an admissible
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one between A. \ W and A \ W. The latter result and the second property of the 
topological degree imply 

mç,(x,E(q)) = deg(A q ,W,O) = deg(A,W,O) =	mc,(y,(q'))_ 
zEE(q)flW	 zEE(q')flW 

So E has the properties of a w-map where z() deg(I - A q , ci, 0). This allows us to 
use the fixed point theorem quoted in Proposition 1 and to get the required result I 

4. Applications 

Let us consider the two-point boundary value problem 

—u" = g(i,u) + h(t)u	(i e [0, 7r), x E R)

u(0) = u(7r). 

The following assumptions on the function g: [0, ir) x R — IR are here considered: 

i) (t, x) —* g(t, x) is a Carathéodory function (i.e. measurable with respect to t for 
each u and continuous with respect to u for a.a. t E (0, ir)) such that 

g(t, x)	 g(t, x) lim	= g(+)	and	lim	= g(—) z—.+ oo X	 X__00 X 

for a.a. i E (O,ir) and the closed interval (g(+),g(—)) or ((g(—),g(+)) contains the 
first (simple) eigenvalue of the problem 

— V '1 = 

v(0) =v(ir)
	 (PO) 

and v(t) > 0 for all t E (0, ir). 

sup1fi  IP.LJ is an (essentially) bounded function. 

u —i g(-, u) is a strictly convex and increasing function. 

Let Q denote the subset of L2 (0, 7r) defined as 

	

Q = { U E L2 (0,7r): hull + hI u 'hI	? and u(0) = u(7r) = o.} 

It is easily seen that Q is a closed and convex set. Afterwards, if 0 is an eigenvalue of 
the second order differential problem considered in i), i.e. AO = AO and IIII = 1, let us 
denote by - the orthogonal complement of 0 in L2 (0, ir). The above assumptions on 
the function g allow us to state the following result.

(P)
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Theorem 2 (see (14: Section 1.2]). Let us assume that the conditions i) - iii) are 
true. Then, for a.a. t E (0, 7r), for each h0 E and for each function h E L2(O,ir) 
such that hq = h 0 + rç (r E R, q E Q) there exists a E R such that the differential 
problem

—u"	g(t, u) + h(t)q(t) 1 
u(0) = u()	 5	

(P)q


has exactly one solution if r = a and exactly two solutions if r < a. 

Now we want to study the properties of the operator 

(q,q',q") -* 

which associates toevery function in Q C L2 (0, ir) the solution set of the problem (P)g. 
Let (t, s) -+ G(t, s ) denote the Green function of the homogeneous problem 

VII 
=0 

v(0) = v(ir). 
Then it is known (see [21: Chapter 7]) that the boundary value problem (P) g is equiv- 
alent to the problem of finding u E C(O, 7r) such that 

u(t) = / G(t, s)(g(s, u(s)) + h(s)q(s))ds. 

So, if we define the operator 

Ag (u) = JG(i	g(s,u(s)) + h(s)q(s))ds 

we are able to write the previous integral equation as 
u ( t ) = Aq(u)(t). 

In order to apply our main theorem we need to show that deg(I - Ag , B(0), 0) 54 0 for 
some (and hence for all) q E Q, where the ball B(0) plays the role of the set Q. To that 
aim let us consider the homotopy Hg (A,u) = u AAg (u) (A e [0,1]). This homotopy 
is an admissible one. To prove this statement it will be enough to show that u Aq(u) 
for all u such that 1jull = p and A € (0, 1). That means that the integral equation 

u(t) = A / G(t, s)(g(s, u(s)) + h(s)q(s))ds 

has no solutions belonging to the boundary of the ball B(0). The conditions we put 
on the function g allow us to to say that llg(,u)ll Allull for some A > 0. Afterward, 
since li holl + Irl IIII = lI holl + In, for all q E Q we can write 

	

Il g (, u) + hqll	A II u II + ( ll holl + l n l)M = A ll u ll + B 

where we put B = (li holl + I n I)M. Then, by a well-known result (see [16: p. 30])we are 
< allowed to say that there exists M0 > 0 such that h u ll Mo for any solution u of the 

A-integral equation. So any real number p > M0 will be a good choice for the radius of 
B(0). Finally, the above Theorem 2 (due to [14]) and the suitable definition of the set 
Q allow to claim the existence of a solution of the problem (P)
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