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Differentiability Properties
of the Autonomous Composition Operator
in Sobolev Spaces

M. Lanza de Cristoforis

Abstract. In this paper, we study the autonomous composition operator, which takes a pair
of functions ( f,g) into its composite function fog. We assume that f and g belong to Sobolev
spaces defined on open subsets of R", and we concentrate on the case in which the space for g is
a Banach algebra. We give a sufficient condition in order that the composition maps bounded
sets to bounded sets, and we exploit the density of the polynomial functions in the space for f
in order to prove that for suitable Sobolev exponents of the spaces for f and ¢ , the composition
is continuous and differentiable with continuity up to order r, with » > 1. Then we show the
optimality of such conditions by means of theorems of ‘inverse’ type.
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1. Introduction

In this paper we study continuity and r-th order differentiability properties of the au-
tonomous composition operator defined by

(f,9) =— fog  (feW™T™P(Qy), g € (W™P(Q)") (1)

where @ and ; are open subsets of R"®, g(2) C ©,, and where W™ *+7P1(Q,) and
W™P(Q) denote Sobolev spaces of exponents m; +r, p; and m, p, respectively. We note
that, in general, the composition of an equivalence class of functions of W™i+rP1(Q,)
with an element of (W™?(Q))" which maps Q into ; does not make sense. Indeed,
the representatives of the elements of W™1*"P1(Q,) are defined only up to a set of
measure zero. Accordingly, we will be able to consider the composition in (1) only for
g’s such that the g-preimage of a set of measure zero has measure zero. Even by taking
r = 0, and by composing f € W™P1(Q,) with a smooth g, we cannot expect that, in
general, f o g could be more regular than a function of W™P1(Q). Thus, as a range
space, we choose W™1:P1(Q2). Similarly, in order to have f o g € W™1P1(Q), we must
require, in general, that g is at least as regular as f. Thus we choose m; < m and
p1 < p. To ensure that W™?(Q) is a Banach algebra, we assume mp > n. To ensure
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that fog € W™ P1(Q) when f € W™ (Q;) and g € (W™?(Q))", and that the set
of g’s we consider is open in (W™?(Q2))", we assume that (m — 1)p > n.

The main finding of this paper is that the composition operator in (1) is of class
CT from an appropriate subset of W™ *7P1(Q;) x (W™?(Q))" to W™ P1(Q). To prove
such statement, we exploit the abstract results of Lanza [16], which are in the wake of
those of Lanza [15] for Schauder spaces, and some estimates of the Sobolev norm of fog
of the type of those contained in Lanza [13]. Then we show, with the only exception
of the case (my,p1) = (0,1), that such statement is optimal, in the sense that if f is a
real-valued function defined on R™ and if g — f o ¢ were to be of class C" from the set
of g’s for which we have considered (1) to W™ ?1(Q), then f € W, *7P (R™).

The composition operator normally arises in problems of nonlinear analysis, and has
been studied by several authors. For extensive references, we refer to the monograph
of Appell and Zabrejko [3] and to that of Runst and Sickel [26]. In the Sobolev space
setting we mention, in particular, the papers of Marcus and Mizel {17 - 22], Adams
[1], Szigeti [28, 29], Valent {31 - 33], Gol'dshtein and Reshetnyak [11], Dribek and
Runst [10], Musina (23], Bourdaud and Meyer (7], Bourdaud {4, 5}, Bourdaud and
Kateb [6], and Sickel [27]. However, as far as considering the differentiability of the
composition operator when both the functions f and g belong to a Sobolev space, the
author is only aware of the paper of Brokate and Colonius [8], who have proved a first
order differentiability statement for the composition operator from a suitable subset of
W x WhHe° to LP, with a finite p and with f and g depending on a single real variable.

2. Preliminaries and notation

We denote the norm on a (real) normed space X’ by || - || x or, in case of no ambiguity,
more simply by || - ||. Let X and Y be normed spaces. We equip the product space
X x Y with the norm || - ||xxy = || - llx + || - |ly, while we use the Euclidean norm for
R"™. We say that X is imbedded into Y provided that there exists a continuous linear
-injective map of X into J. By L(X,)) we denote the normed space of the continuous
linear maps of X to Y equipped with the topology of uniform convergence on the unit
sphere of X. For any non-zero natural number s, £{(*)(X,)) denotes the normed space
of continuous s-linear maps of X'* to Y. For all standard definitions and theorems of
Calculus in normed spaces, we refer the reader to Cartan [9].

Further, N denotes the set of natural numbers including 0. Throughout the paper,
n is an element of N\ {0}. Let » € NU {oo} and let O be an open subset of X. Then
C7(0,Y) denotes the space of r-times continuously differentiable maps of O to Y. Let
f be a function. The f-preimage of a set D is denoted f*~(D). The inverse function of
an invertible function f is denoted f(~1) as opposed to the reciprocal of a real-valued
function g or the inverse of a matrix A, which are denoted g~! and A™1, respectively.
For all R > 0 and z € R", |z| denotes the Eucledian modulus of z in R, and B(z, R)
denotes the ball {y € R": |z —y| < R}. A dot ‘-’ denotes the inner product in R™ or
the matrix product.

Let 2 be an open subset of R™, diam [Q] its diameter and cl its closure. The
space of m-times continuously differentiable real-valued functions on § is denoted by
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C™(§2). We denote by C(f2) the vector space NmenC™(2) and by C2(R) the spacé
of functions in C*°(2) with compact support. Let f € (C™(2))". Then we denote by

Df the gradient matrix
Df = (3_f> .
azj ,)=1,...,n

Further, if 8:=(B1,...,0s) € N® and |B| := B, + ... + B, then we set

alﬂlf

Dffi= ——
f Oz ... 0zy"

The subspace of C™(2) of functions f such that f and its derivatives D f of order
|Bl < m can be extended with continuity to cIQ is denoted C™(clQ). Let Q be a
bounded open subset of R”. Then C™(cl Q) equipped with the norm

Ifllcm@ay == 3 S}lngﬂfl

[Bl1<m ©

is a Banach space. Let B C R®. We denote by xpg the characteristic function of B, i.e.
xB(§) =1if £ € B and xp(§) = 0if £ € R\ B. We say that a function ¥ of [0, +oo)
to itself is increasing, provided that ¥(p;) < ¥(p,) whenever 0 < p;, < ps.

Let 1 < p < +o0 and m € N. We denote by W™P(Q) the Sobolev space of the
(equivalence classes of) real-valued functions in LP(f2), which have all distributional
derivatives up to order m in LP(§2). We introduce in W™?(Q) its usual norm

lellwme@y = D IDPullsqay. @)
|8|<m, BEN"

Il = ([ 1o d£)¢

Further, W7?(2) denotes the space of the (equivalence classes of) functions finQ,
such that f € W™P(V), for all open and relatively compact subsets V of .

As usual,

We say that an open subset §2 of R™ has the cone property, if there exist 2 > 0 and
a > 0 such that, for all points £ € 0Q, there exists an opén cone of heigth A, opening
a and vertex £ contained in . We say that an open subset  of R" is of class C°!
(or that Q is bounded and has the strong Lipschitz property) if Q is bounded and if,
locally around each point of 952, 0Q2 is a graph of a Lipschitz function and § lies above
the graph. For further details, we refer to Adams [2: p. 66]. It is well-known that if Q
is of class C%!, then Q has the cone property (cf., e.g., Adams [2: p. 66]).

We collect in the following theorem three well-known results on Sobolev spaces (cf.,
-e.g., Adams [2: Theorem 5.4/p..97 and Theorem 5.23/p. '115], Valent [33: Theorem
2.2/p. 26] and Reshetnyak [24: Corollary 1/p. 28].) For a standard definition of Banach
algebra we refer, for example, to Lanza [16: Definition 2.1].
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Theorem 2.1. Let m,m; € N, 1 < p < 400, and mp > n. Then the following
statements hold:

(i) If Q is an open subset of R™ of class C%!, then (W"‘"’(Q),H . "Wmm(n)) 13
continuously imbedded into (C°(clQ), || - |lcoqany)-

(ii) If Q is an open subset of R™ with finite measure and with the cone property,
then W™P(Q) equipped with a suitable positive multiple of the norm || - |lwm.r(q) i3 a
commutative Banach algebra with unity. Furthermore, for all p; € [1,p] and 0 < m; <
m, the pointwise multiplication 1s bilinear and continuous from W™ P (Q) x W™P(Q)
into WM (Q).

(iii) Let Q be an open subset of R®. Each u € W,..P(Q) has a continuous represen-
tative @. The function @ is differentiable in the ordinary sense almost everywhere in Q
and the ordinary partial dertvative gT‘: of i 13 a representative of the D;-distributional

derivative Dju of u, for allj € {1,...,n}.

Remark 2.2. We note that in statement (i) the inclusion is to be understood
in the sense that each equivalence class of functions of W™P?({2) contains exactly one
representative which admits a continuous extension to cl Q. Concerning the first part of
statement (ii), we note that we have ||uv||wm.»(q) < cllullwm.»@)llv|lwm.»(q) for some
constant ¢ > 0 depending on 2, m and p, and that such constant may well be greater
than 1. However, we could obtain ¢ = 1 by simply replacing the norm || - ||wm.» () with
the equivalent norm || - ||y m.» ) = cll - [lwm.»(0)-

Remark 2.3. If in statement (i) we further assume that (m — 1)p > n, then
W™ P(Q) is imbedded into C!(cl ). If this is the case, we will identify an element of
W™P(§) with its representative of class C!(cl ).

We now note that the representatives of f are defined almost everywhere and that,
accordingly, the composition of f with an equivalence class of functions g of Q2 to €2,
may not make sense. Thus we introduce the following

Definition 2.4. Let Q and Q; be open subsets of R*. Let f € L} () and
g € (L},.(f2))". Assume that g(2) C ©,, i.e. for each fixed representative § of g, we
have §(¢) € Q; for almost all £ € . We say that the composition of the equivalence
classes f and g is well-defined, provided that for all representatives f;, f2 of f, and g,
g2 of g, we have '

fiog1 = fa0g2 ae in Q (3)

(note that any of the two hand-sides of equation (3) may be undefined on some subset
of measure zero of Q, i.e. whenever g;(£) ¢ Q; for £ € Q). In case the composition of f
and g is well-defined, we denote by f o g the equivalence class of those functions which
are almost everywhere equal to any of the composite functions in (3).

Concerning Definition 2.4, it is perhaps worth to note that if g € (Llloc(Q))n and
if g(€) € S, for almost all £ € Q, for at least one representative § of g, then the same
holds for all representatives of g, so that we can conclude that ¢(Q2) C ©,. Also, it is
not difficult to realize that the following holds (cf. Lanza [16: Lemma 3.23]).
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Lemma 2.5. Let Q and Q; be open subsets of R™. Let g € (L}, ()" and g(Q) C
Q. Then the following statements hold.

(i) The composition f o g is well-defined for all f € L}, () if and only if, for
all subsets N of R™ of measure zero, the pretmage §7(N) has measure zero for all
representatives § of g.

(ii) A representative § of g has the property that for all subsets N of R™ of measure
zero the preimage G (N) has measure zero, if and only if all the representatives of g
have the same property.

Thus, we will consider only g¢’s with the property of statement (ii) of Lemma 2.5.
If g€ (W™P(Q))" (mp > n), the formula of change of variables in multiple integrals
(cf. Marcus and Mizel [19: Corollary 2/p. 791 and Theorem 2/ p. 792]) implies that
if g is the continuous representative of g and if M := {¢ € Q : |detDg(¢)| = 0}, then
fg(M) dn < [y, |detDG(€)| d€. Thus we must consider g’s with |det DG(£)| # 0 for almost
all £ € R, otherwise § would not satisfy the property of statement (ii) of Lemma 2.5.
Now, in the specific case in which the continuous representative of ¢ is injective and
|detDg|~" € LY(Q), for some 0 < v < +00, it can be shown (cf. Lanza [13: Theorem
3.2]) that if f € W™P(Q,), and if g € (W™P(Q))", and if the the real number ¢t defined
by

t:={Pn{m[n—(m—1)p]+n+n7—1}—1 if (m —1)p < n,
p{1+771}" i (m—1)p > 7,

satisfies t > 1, then fog € W™*(Q). Here y~! := 0 if ¥ = +o0. Since, as announced
in the introduction, we require t = p when m = m; and p = p;, we take (m—1)p > n
and ¥ = +00. To satisfy condition v = +00, we assume the existence of some constant
¢ > 0 such that |detDg| > c a.e. in Q. Since we are interested in the differentiability of
the composition operator, we require that the set

{g € (W™P(Q))" : |detDg| > ¢ ae. in Q}

be open in the space (W™?(Q2))*. Such requirement suggests that we should assume
the map g — |detDg| to be continuous from (W™P?(Q))"* to L=(Q). To ensure such
continuity, we take (m — 1)p > n. Such considerations indicate that it is for us natural
to consider the composition of

(f,9) € W™ P () x {g € (W™P(Q))" : ¢() C R and |detDg| > 0 ae. in Q}

with (m—1)p > n. Then we have the following result, which is in the spirit of Lanza [13:
Theorem 3.2]. We note that related results can be found in Gol’dshtein and Reshetnyak
[11: Chapter 5).

Theorem 2.6. Let m,m; € N, 0<m; <m,1<p <p<+oo, pm —1) > n,
0<c< 400, and 0 < A < +o00. Let Q and @, be open subsets of R", ) with finite



636 M. Lanza de Cristoforis

measure and the cone property. Let

gm,p,c,/\(Q) Q])
g(2) C Qy, the unique representative
=< g e (W™P(Q)™| § € (CHQ)" of g satisfies |detDG(€)] > 0
VéEeER,and I'(§,n) < AVnpeR"

(4)

?

where ['(§,n) denotes the (possibly equal to +00) number of elements of the preimage

§—({n})

Then the following assertions hold:

(i) For all0 < c < 400 and 0 < A < +o0, the composition fog is well-defined for
all (f,g) € W™ P1(Q1) X G p,e, (82, 1) and belongs to W™:P1(Q),

(ii) For each fized value of (c, ) € (0,+00)?, there ezists an increasing function
of [0, +00) to itself such that

||f°9”wnu-n(n) < ”f”w'"l-ﬂ(91)¢(”9||(W'"'P(9))") (5)

' © for all (f,9) € W™ (1) X Gim p,e,x(2 ).

(iii) If my > 0 and j € {1,...,n}, then the j-th distributional derivative D;(f o g)
of fog coincides with 3 _,[(Dif) o g|D;gi, where g := (g1,-..,9n)-

Proof. With our assumptions on 2, m, p and n, the existence of a unique represen-
tative § € (C?(2))" of g is guaranteed by the Sobolev Imbedding Theorem (cf. Adams
[2: Theorem 5.4/p. 97]). By assumption |detD§| > 0 in £, g is a local diffeomorphism
of & onto §(§2), and thus §~(N) has measure zero whenever N is a subset of measure
zero of R™. Indeed, each compact subset of 2 can be covered by a finite number of
balls, say B, on which g is a diffeomorphism onto its image, _?]I‘E(N) has measure zero
and § is a countable union of compact subsets of . Thus, by Lemma 2.5/(i), the
composition is well-defined. Since each measurable set of R" is the union of a Borel
set and of a subset of measure zero of R", we can also assert that f o § is measurable,
for all representatives f of f. Then all representatives of f o g are measurable. It can
be easily shown that 1 as in the statement exists provided that the composition maps
bounded sequences of W™1P1(Q) X G p.c,A(£2, 1) to bounded sequences of W™1:P1(Q)
(cf. Lanza [16: Proposition 3.11]). Thus to prove the theorem, it suffices to fix m > 2
and to show by (finite) induction on m, € {0,...,m} that whenever (m — 1)p > n,
the composition maps bounded sequences of W™ P1(Q;) X G 5,c,2(R2, Q1) to bounded
sequences of W™1'P1(Q) and that the chain rule holds when m, > 0.

Let m; = 1. By the Sobolev Imbedding Theorem (cf. Adams [2: Theorem 5.4 /p.
97]), W™ ~1.P(Q) is imbedded into L=(£2). Then by using the Holder inequality and the
rule of change of variables in multiple integrals (cf. Marcus and Mizel [19: Theorem
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2/p. 792]), we deduce the validity of the inequalities

/ If o G(E)IP de < - / |f 0 §(€)[P*|det DG ()] de
1) c Ja

=1 / o FOP TG | (6)a

C
A
- P

< S0y

and

1o e stennsae de

IA

D0 meviay [ 1DL) 0 HOIP et D) de

[ -
D9 vrcay [ 1D TG m)
¢ 3(2)

A
= flI% s, (Ql)”g”?‘l&/"hp(ﬂ))"

()

IN

for some constant ¢’ > 0. Thus, to conclude the proof of the case m; = 1, it suffices
to show that the chain rule holds. Since § is a local diffeomorphism, for all P € 2,
there exists p > 0 such that cl B(P,p) C Q and §g(p,) i1s a diffeomorphism onto
its image. Since each f € W1P1(§;) can be approximated by a sequence {f,}sen in
WLPH() N C®() (cf., e.g., Adams [2: Theorem 3.16/p. 52]), the validity of the
chain rule in B(P, p) follows from the equalities

/ F(E(€)D;(€) de
B(P,p)

- slior-fl:loo 3(B(P.p)) fs(m) [(D1¢) ° §|3(pp)(77)] |(deth) ° 9|3(p,,)(77)|
= tim, [ RGODO o
= - Jim /B(P,p IZ; [(Difs) 0 9(€)) Dig1(€)e(€) dé

- 3 [(Dif) 0 o) Disr(€)66) e

(’pll

for all ¢ € CZ(B(P,p)), which hold by the rule of change of variables in multiple
integrals, by the validity of the chain rule when f, € C*(9,) (cf., e.g., Reshetnyak
[24: Theorem 2.8/p. 21]), by the condition |detDg|™! < ¢! in Q, by the membership
of Dig; in W™~1?(Q) (and thus, as remarked above, in L®(£)), by the membership
‘¢ € C®(B(P, p)), and by the Holder inequality. Since the chain rule holds in B(P, p),
a standard argument based on the partition of unity implies the validity of the chain
rule in Q.
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We now assume that the claim holds for 1 < m; < m and prove it for m; 4+ 1. Since
Wmi+hri(Q,) is imbedded into W™ P1(Q, ), then by inductive assumption the composi-
tion maps bounded sequences of W™1+1:P1(Q) ) x Gy 5 - (2,9, ) into bounded sequences
of W™1:P1((1) and the chain rule holds. By inductive assumption, the map (f,g) —
(Dif) o g maps bounded sequences of W™ *1:P1(Q) x G, 1, . A(€2, ) into bounded se-
quences of W™ P (). Since (m—1)p > n,m; <m—1land1 < p; < p, Theorem 2.1/(ii)
ensures that the pointwise multiplication is continuous from W™ () xWm=LP(Q) to
WP (1), and thus we conclude that the map (f,g) — [(Dif) o g] D¢ maps bounded
sequences of W™ +1P1(Q) x G 5 0 A(R,)) to bounded sequences of WmLP(Q) and
the proof of the case m; + 1 is complete. The case m; = 0 follows by the inequality

1
||fogl|1,m(n) < (%) 1 || fll 71 (n2,) proved for the case m; =11

We point out that our proof of the existence of ¢ as in (5) heavily relies on the
assumptions ¢ > 0 and A < +o00. Accordingly, one could not deduce from our proof the
existence of ¥ as in (5) for (f,g) € W™ P1(Q) X Gm p.0,4+00($, ).

We now state an abstract result that we need to prove our differentiability theorem
for the composition. The following includes the content of Lanza [16: Remark 2.5 and
Theorem 2.7).

Proposition 2.7. Let P(R™) be the space of polynomials in n real variables with
real coefficients and let || - ||y be a norm on P(R™). Let, for all € N, Y, be the
completion of (P(R"),|| - ly,), where || - ||y, is the norm on P(R") defined by

lelly, == > ID®plly. (8)

IB|<r, BEN"

(Sometimes, we write Y to denote the space Yy.) Let s,t € N and 8 € N with t—18] = s.
Then there ezists one and only one linear and continuous operator of YV, to Y, which
coincides with the ordinary partial derivation of multiindez 8 on the elements of P(R™).
By abuse of notation, we shall denote such operator by DP, just as the usual partial
derivative of multitndez B. We have

Dfy = lim Dﬂpj in Vs, whenever lim pj=y in Y. (9)
j—o0 j—oo

By analogy with the usual derivations, Dy denotes the matriz (Dry,. .., Dny).

We now note that the following assertion holds.

Proposition 2.8. Let m;,r € N and 1 < p; < 4+00. Let Q; be an open subset of
R" of class C%1. Let || - ||y :=|| - lwmisi(a,). Then W™HnPi(Q,) is a completion of
(P(R™), Il - ly,), with || - ||y, as in (8). Thus, up to a linear homeomorphism, the space
Wm™AnP(Q,) coincides with the space V. Furthermore, for all B € N® with |8]| < r,
the operator DP from WrmitnPi(Q,) into W™ +7=18Lr1(Q,) defined in Proposition 2.7
coincides with the distributional derivative of multiindez B

Proof. Since Q, is of class C°?, it is well-known (cf., e.g., Adams [2: p. 67 and
Theorem 3.18/p. 54]) that the set of restrictions of the functions of C(R™) to cl Q,
is dense in W™ +7p1(Q,). By the Weierstrass Approximation Theorem, the functions
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of C°(R") can be approximated, uniformly with their derivatives up to order m; + r
on compact subsets of R", with elements of P(R") (cf., e.g., Rohlin and Fuchs (25: p.
185]). Accordingly, W™+"P1(Q,) is a completion of (P(R™),|| - ll,)- Indeed, the norm
111y, with [ [ly := || - [wm1.91 (q,), is clearly equivalent to the norm || - [|ymi+r.r1 (qy)
on P(R™). Furthermore, if F € W™ *"P1(Q,) is the limit of a sequence {p,} of polyno-
mials in W™ *#rP1(Q,) and if 8 € N* with |8l < r, then clearly the sequence {D?p;}
converges to the DP-distributional derivative of F in Wmitr=I8lpy(Q,), and thus in
Yr—|g|- Accordingly, the operator D? introduced in Proposition 2.7 coincides with the
distributional derivative of multiindex 8 B

Finally, we need the following abstract result, which has been proved in Lanza
[16: Theorems 3.1 and 4.1, and Proposition 4.17). In order to write the formulas in a
coincige way, we put a ‘"’ symbol on a term which we wish to suppress. So, for example,

€1---&5--- & denotes I’I:::,.;.,. &. :

#i

Theorem 2.9. Let r € N. Let || - ||y be a norm on P(R"), and let Y, be the

completion of P(R") with respect to the norm || ||y, defined in (8). (As above, we write

Y to denote the space )} .) Let X be o real commutative Banach algebra with unity and

X a real Banach space. Assume that there ezists a continuous linear and injective map

J of X into X and let (-) * () be a continuous and bilinear map of X x X into X with
%’ satisfying the condition

T[z1] * 22 = J[z122] for all z,,z, € X. (10)

Let A be a subset of X™. Assume that there ezists an increasing function of [0, +o0)
to itself such that

”J[p(.’tl,. .- :‘T")] ",\" < ”P”y 1/)(”(11’ .o ’I")”X") (11)

for all (p,(z1,... 1Zn)) € P(R™) x A. Then there ezists a unique map A of YVx Ato X
such that the following two conditions hold:

Alp,z] = Jlp(z)]  for all (p,z) € P(R") x A, (12)

and

for all fized z := (z,,...,2,) € A,
the map y — fi[y,x] is continuous from Y into X.

(13)

Furthermore, the map A[-, z] of (13) is linear, and A is continuous from Y x A into X,
and if y € Y with y = lim;_.oo p;j in Y for p; € P(R") and z € A, then

fi[y’x] = ]llfgo Jpi(=)) in A?» (14)
and :
1ALy, zlll & < lylly $(llzll ). (15)

ff uk further assume that A is open, then A is of class C™ from Yr x A to /17,~for
allr > 1. Ifr 2 1 and s € {1,...,r}, then the differential d*°A of order s of A at
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(y*,z%#) € Y, x A, which can be identified with an element of LY, x X"’,f’), 13
delivered by the formula

d* Aly*, «*}((vpp wig)s -+ (V) wi)))

=Z Z fi[p,‘ ...5;...13,1,,“]’1#] # (e, B30, - wiy)
= Gode=1 ' (_16)

for all (v;p, wp;) = (Wit,-- W) € e X X™ (§ = 1,...,s), where the symbols
li,..., 1, denote summation indezes ranging from 1 to n. In particuler, if s = 1, we
have the map :

(v,w) A[v,x#]+zn:fi[D1y#,z#] * Wy (17)

=1

for all (v,w) := (v,(w1,...,wn)) € Yr x X*. (The symbol D; has been defined in

Proposition 2.7.)

3. Continuity and differentiability theorems for the
composition operator in Sobolev spaces

If Q and Q, are open subsets of R™ with Q2 of class C®!, 1 < p < +o0o and m € N with
(m — 1)p > n, then we introduce the notation

g(Q) C Q, the unique represen-
Gmp,c(2,Q1) ;=< g € (W™P(Q))" | tative § € (CHcl Q)" of ¢
satisfies |det DG(€)| > ¢ V€ € c1Q

As we have indicated in the discussion preceding Theorem 2.6, G p o(€2,§21) is a natural
set for our g’s. In order to study the composition on W™ P1{(Q;) x G 5 o(£2,021) with
0 <m < mand 1l < p; < p, and to apply Theorem 2.9, we need the existence
of a function ¥ as in (11) for (f,g) € W™ P () X G p,0(Q, 1), while Theorem
2.6 guarantees the existence of 1 only for (f,g) € W™ P (@) x G, , . 1(€,Q)), with
¢ > 0. To circumvent this difficulty, we need the following technical pro;;osition, which
is known at least in part.

Proposition 3.1. Let Q be a bounded open subset of R™. Then the following state-
ments hold.

(i) Let g € (CY(clQ))™ be such that detDg(€) # 0 for all £ € clQ. Assume
that there ezist R > 0 such that c1Q C B(0,R) and v € (C'(cl B(0,R)))" such that
Ycia = g- Then, for all g € R™, the number of elements I'(g,n) of the set g~ ({n}) 1s
finite and

C, := sup I'(g,7) < +oo. (19)
neR"
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(ii) Let the sequence {g:}ien converge to g in (C'(cIQ))" and let detDg(€) # 0 #
detDgi(€) for all € € cl and | € N. Assume that there ezist R > 0 such that cl§) C
B(0,R) and e sequence {11}ien converging to some v in (C'(cl B(0,R)))" such that
Ve = g and yyaq = g for alll € N. Then limsup,_ o, Cy, < C,.

(iii) Let Q2 have the C'-eztension property, i.e. there ezist R > 0 such that c1Q C
B(0, R) and a linear and continuous operator E of C'(clQ) into C'(cl B(0, R)) such that
(Ef)jaq = f for all f € C(cI). Then, for allg € (C'(cIN))" such that detDg(€) # 0
for all £ € c1QY, there ezists an open neighborhood W, in the Banach space (C'(clQ)),
with

W, C {h € (CH(AQ)" : detDh(€) £0 for all € € le},

such that
sup Cy < C,. (20)
heW,

In particular, the integer-valued map g — C, 13 upper semicontinuous on

{h € (CH Q)" : detDh(€) £ 0 for all € € le}.

Proof. Let n € g(clQ). By applying the Inverse Function Theorem to the map ~
around the points of ¢~ ({n}), we see that the set g""({n}) is discrete. Since ¢~ ({n})
is clearly compact, we conclude that I'(g,7) < 400 (which is a known fact).

To prove at once both statements (i) and (ii), it suffices to show the following
claim: If {gi1}ien and g are as in statement (ii), and if {n}ien is a sequence converging
to n € R™, then limsup,;_, . I'(g1,m) < I'(g,n). Indeed, if the claim were true, then by
taking g1 = g and vy, = vy, there could be no bounded sequence {n:};en with {'(g, ) }ien
converging to infinity, and since I'(g,) is zero outside of g(cl?), statement (i) would
follow. Similarly, there could exist no sequence {g:}ieN converging to g as in statement
(i1) with Cy, > Cy for all | € N, otherwise, we would have I'(g;,m1) > C,y + 1 for some
bounded sequence {n;}ien, and by taking a convergent subsequence of {Ul}leNa our claim
would yield a contradiction. Thus also statement (ii) would follow.

We now turn to prove our claim. If limsup,_,, I'(g:,m) > T'(g,7), then by possibly
selecting a subsequence, we can assume that for each { there exist at least t := I'(g,n)+1
distinct points &1,1,...,&, of c1Q such that g;~({m}) 2 {é1,1,...,&1,:}. Since (c1Q)' is

compact, there exists a subsequence {(£i,,1,- - -, €u,¢) }xen of {(€1,1, - -, €1,) hien converg-
ing to some (£,,...,&,) € (c1Q)". Then by the inequality
| ﬁ;) - 77l;¢| < |9(5; - g(Eu,z | + |g(€l»,1) glk(£‘k;])| (21)

and by taking the limit as k — oo, we obtain n = g(gj) for all j € {1,...,t}. Since
I'(g,7n) < t, at least two of the points E,‘ must coincide. There is no loss of generality in

assuming that £, = €, =: £&. By the Inverse Function Theorem, there exists p > 0 such
that ¢l B(£,p) € B(0,R) and that Va1 B(E,py D€ injective and satisfy detDy(£) # 0 for

all £ € cl B(€, p)- Since

Jm Y jab@Ee = Nap@n 0 (C(ABE )",
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there exists ko such that Yislel B(E,0) is injective for all & > k¢ (cf., e.g., Lanza [14:
Corollary 4.30]). Since

kEI_*I_looélk,I =£= kETw&‘“2’
we can assume that £, 1 € cl B(€,p) and £, 2 € cl B(€, p) for all k > ko. Since for all k
we have &1, 1 # &i,,2 and g1, (€1, 1) = 91, (1. ,2), then we have a contradiction.

Statement (ii1) is a trivial consequence of statement (ii) and of the continuity of the

map g — |detDg| from (C!(c1Q))" to C%c1 Q) N

As an application of Theorem 2.9, case r = 0, we now deduce the following fact, a
variant of which has already been proved in Lanza [13: Theorem 3.2]. Related continuity
results for the composition operator can be found in Marcus and Mizel [22], Valent {32,

33], Dréabek and Runst [10], Musina (23], Sickel [27], Runst and Sickel [26).

Theorem 3.2. Let mym; € Nwith 0 < m; <m, 1 < p < p < +o0, and
(m—1)p > n. Let Q and Q, be open subsets of R*. Let Q be of class of class C%!.
Then the following statements hold.

(i) The composition fog is well-defined for all (f,g) € W™ P (1) X G p,0o(82, 1)
and belongs to W™ PL(Q). For each value of ¢ > 0, there ezists an increasing function
¥ of [0, +00) to itself such that

I o gliwmier @) < Nfllwmisi ) ¥ (llgllwmsy)n), (22)

for all (f,g) € W™ P (1) X G p,o(2, §11).

(i) If the set of restrictions to Sy of the polynomials i3 dense in W™1:P1(Q,y), then
the composition is continuous from WmUP (1) X G po(2, 1) to WTmP1(Q).

Proof. The obvious inclusion Gm 5,0(2,21) € Gm p,0,400(2, 1) and Theorem 2.6
imply that the composition of (f,g) € W™P(Q) X G p,0(2, 1) is well-defined and
belongs to Wm1P1(Q). Let R > 0 be such that B(0,R) D cl. Since Q is of class
C°1, there exists a linear and continuous extension operator E of (Wm-P(Q))* into
(W”‘"’(B(O,R)))" (cf., e.g., Jones [12: Theorem A/p. 72]). Now let {(fi,9:)}ien be a
bounded sequence of W™ P(Q) X G 5,c(€2,82;), with ¢ > 0, and assume by contra-
diction that, by possibly selecting a subsequence, im;— 400 || fi © gillwm1 .1 (@) = +o0.
Since (m — 1)p > n, then W™P?(B(0, R)) is compactly imbedded into C!(cl B(0, R))
(cf., e.g., Adams [2: Theorem 5.4, Part II/p. 98] together with Lanza [15: Lemma 2.4]),
and thus there exists a subsequence {Egs, }xen of {Egi}ien and v € (CY (I B(0O,R)))"
such that limg—to0 Egi, = 7 in (C'(cl B(0,R)))". Obviously, |detDvy| > ¢ in cl€.
Let g1, be the representative of class C! of g;,. Then by Proposition 3.1 there exists
ko € N such that C§u < C’ncm < +o0 for all k > ky. Then by Theorem 2.6, we
have supy <ken || fix © giullwmisi(@) < 400, which is a contradiction. Since the com-
position maps bounded sequences of W™1P1(Q,) x G p (2,€1) to bounded sequences
of W™P1(Q), it can be easily seen that 3 as in statement (i) exists (cf. Lanza [16:
Proposition 3.11]). Clearly, ¢ may well depend on c¢. Since W™P(Q) is imbedded
into C'(c1?) and the map g — |detDg| is continuous from (C*(cIQ))" into C°(cl ),
then Gm p.o(2,€1) is open in Gm po(Q, Q) for all ¢ > 0, and Ucs0Gm p,o(2, 1) =
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Gm,p,0(€%,€). Then the continuity of the composition on WmEPH Q) X G opo($2, )
follows from that on W™ P1(Q) X G, (2, 91) for all ¢ > 0, which in turn follows
from statement (i) and Theorem 2.9, case r = 0 @

Now, we note that, in general, Gm ; (2, 2,) is not open in (W™P(Q))". Indeed, a
map g* may be close to some g € Gm,p,c(§2,91) in the norm of (W™?(Q))", but the
condition g*(2) C Q; may well be violated. Thus, in order to study differentiability

properties of the composition, we introduce a suitable open subset of Gm.p,c(2,8) by
means of the following statement.

Proposition 3.3. Let m € N\ {0} and 1 < p < 400, with (m — 1)p > n. Let Q

and 1, be open subsets of R". Let Q be of class C%'. Then, for all 0 < ¢ < 400, the
set

}Cm,p,C(Q’Ql) = {9 € gm,p,C(Qan)

the unique represeﬁta.tive gn (23)
(CH(clQ))" of g satisfies §(c1Q) C N,

s open in (W™P(Q))". Furthermore,

Kompo(Q ) = | Kmpo(Q,Q). (24)

c>0

Proof. Since in the proof of Theorem 3.2 we have already pointed out that

gm,p,O(Q, Ql) = U gm,p,c(ga Ql )s

c>0

equality (24) holds, and thus it suffices to show that the set Kom p(2,9;) is open.in
(W™P(Q))". Since (W™P(2))" is imbedded into (C!(cl2))", it suffices to show that

{g € (C(clQ))" : |detDg| > ¢ and ¢(clQ) C Q,}

is open in (C'(c1Q))". Now if g, g, € (C'(cIQ))" with g(clQ) C 9, and if sup, q |g—g1]
is smaller than the distance of g(clQ) to R™ \ ©y, then g,(clQ) C Q,. Since the map
g — |detDyg| is continuous from (C'(cIN))" to C°(clN), the proof is complete A

We now state our main differentiability theorem. We note that previous reults on
the differentiability of the composition operator in Sobolev spaces were given in Valent
(31, 33], who considered the first order differentiability in the variable (f,9), with f of
class C™*! and g € W™ in order to have f o g € W™'P and the differentiability of
order r > 1 of the map g — fog from W™? into W™ ? for a fixed f of the class cmitr,
and by Sickel [27], Runst and Sickel [26], who considered the infinite differentiability
of the map g — fog in W™P? with an f of class C*. A first order differentiability
theorem when both f and g belong to a Sobolev class was given, as mentioned in the
introduction, by Brokate and Colonius [8]. The methods and results of those authors
are different from those of this paper.
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Theorem 3.4. Let mym; € N with 0 < m; < m, 1 < p, € p < +oo with
(m—=1)p>n, and r € N. Let Q and Q; be open subsets of R™. Let Q be of class C°'.
Then the composition is well-defined and of class C" from the open subset

Wml+",Pl (Ql) X Km,p,O(Q) Ql) (25)

of WmitrpL(Q)) x (W™P(Q))™ to WmrP(Q). Ifr > 1 and s € {1,...,7}, then the
differential of order s of the composition at (f#,g%) € W™*"P1(Q)) x Km p.o(,21),
which can be identified with an s-linear function of LI (W™+rP(Q)) x (W™P(Q))",
Wm™Pi(Q)), 1s delivered by the map

((U[I]’w[l])) sy (v[s]a w[s]))

,_,Z Z [(Dz."'/Dz\p“Duvm)09#]ws,l.~~~uTj,T,~~~~w1,zl
=G =1 (26)

+ Z [(Dln."Dllf#)og#]ws,l,""U)]’I‘

{1,..,0,=1

for all (v[j],w[j] = (W, .- ,w,',n)) € Wmtnr(Q)) x (W™P(Q)* (G = 1,...,s),
where the symbols I,...,l, denote summation indezes ranging from 1 to n. In particu-
lar, if s = 1, we have the map

(v,w) — vog* +> [(Dif*)og*]w (27)
=1

for all (v,w = (wy, ..., wn)) € W™MHTPL{Q) x (W™P(Q))".
Proof. By equality (24), the set in (25) can be written as

Wm1+r,P1(Ql) % {U K;m,p'c(Q,Ql)} s (28)

c>0

and by Proposition 3.3, the set W™ +7P1(Q, ) x Ky (2, 1) is open in W™ 7P (Q; ) x
(W™P?(Q))". For the sake of brevity we understand that, for a given g € (W™P(Q))",
the inclusion g(c1©) € ©;, means that the unique representative § € (C'(c1Q))" of ¢
satisfies §(cl1Q) C Q. Now, let (f¥#,g%) € Wm™HnP1(Q)) X K p,c(€2,1). By Theorem
3.2/(i), the composition f# o g¥ is well-defined. Since g# has a unique continuous
representative in cl £, there exists an open and relatively compact subset V of ; such
that g#(clQ) CV CclV C Q. Let ¢ € CE(R™) be such that ¢ =1on clV and ¢ =0
on R\ Q;. Let R > 0 be such that the support of ¢ is contained in the ball B(0, R).
As it is well-known, ¢f € W™ tnP1(B(0, R)), for all f € W™ *7P(£;). Furthermore,
(¢f)og = fog for all (f,g) € W™HrP1(Q) X K p,e(2, V). By Proposition 3.3,
WmitnPi(Q) x K p,c(2, V) is an open neighborhood of (f#,g%) in WmrHnP1(Q)) x
(W™P(Q))" contained in W™+nP1(Q)) x K p,o(2, Q).
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Thus it suffices to show that the map

(fr9)— (¢f)og

is of class C” from W™ *7P1(Q)) x Kn p (2, V) to W™P1(Q). By writing the Leibnitz
rule for the derivatives of ¢f, it is immediate to recognize that the map f— ¢f islinear
and continuous from W™ +7P1(Q,) to W™ +rP1(B(0, R)). Then it suffices to show that
the composition is of class C” from W™ +"P(B(0, R)) X Ky p (R, V) to WmP1(Q).
Now, by Proposition 2.8, the space W™ *+"P1( B(0, R)) coincides with the completion of
(P(R"), 1l - lly, ), with |l [ly := |- lwm:.»1 (B(o,r)) and with ||-||y, as in (8). Furthermore,
by Theorem 3.2/(i), there exists an increasing function ¢ of [0, +00) to itself such that

~fogllwmiray < 1 fllwmierso,ry ¥ (llgll(wm.p(ay)n) - (29)

for all (f,g) € W™ P1(B(0, R)) X Km,p,(2,V), and by Theorem 2.1/(ii), W™P?(Q) is a
commutative Banach algebra with unity, and the pointwise product is bilinear and con-
tinuous from W™t-P1(Q) x W™P(Q) into W™ P (Q). Then by Theorem 2.9, A[f, g] coin-
cides with the composition fog, for all (f, g) as in (29), and by the same Theorem 2.9, we
can conclude that the composition is of class C™ on W™ *7P1(B(0, R)) X Kum p,o(, V).
Furthermore, if r > 1, then the differential of the composition at (¢ f#, g#) is delivered
by

(wyw) — uwog® + > [Di(6f*)o0g*]w (30)
=1

for all (u,w := (wy,...,ws)) € W™*nP(B(0,R)) x (Wm™P(Q))*. We note that
in Proposition 2.8 we have shown that D; in (30) actually coincides with the D;-
distributional derivative. Since Di(¢f#) o g# = (Dif#)o g# and (pv) o g# = vog#
for all v € W™ *nP1(Q,), we obtain the formula (27) by (30) and by the chain rule.
Formula (26) can be obtained similarly B

We observe that sometimes in applications the condition g(cl) C Q; may not
be satisfied, although ¢(2) C ©, and the composition f o g is well-defined. The
role of such condition was to ensure that the domain of the composition be open in
Wmitrri(Q) x (W™P(Q))". Indeed, in general W™ +mP1(Q;) x Gm,p,0(2,8) is not
open in W™ +nP1(Q,) x (W™P(Q))". Now that we have studied the case in which the
domain is open, we are ready to consider the case in which g € Gm ,,0(2,Q;).

Theorem 3.5. Letm,m; € Nwith0 < m; <m, 1< p; <p< +oco with (m-1)p >
n, and r € N. Let Q and Q, be open subsets of R®. Let be of class C%'. Let Q, have
the W™i1+rP1_eztension property, i.e. there ezists a linear and continuous operator E

from W™i+nP1(Q,) to W™i+nP1(R™) such that Efiq, = f for all f € W™¥nP1(Q)).

Then there ezists an open neighborhood W of W™ +TP (Q) x G 5.0(R2, Q1) in the
Banach space W™ 0P () x (W™P(Q))"* and an operator 8 of class C* from W to
W (Q) such that

fég=fog  forall (f,g) € W™*TPH(Q) X Gm po(R, ). (31)
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Ifr>1ands€ {1,...,r}, then the differential of order s of the operator 6 at (f#,g¥#) €
WmtnP1 Q) X Gm p,o(2, 1), which can be identified with an s-linear function of the
space L% (W"“+r”"(91) x (W™P(Q))", WmP1(Q)), is delivered by the map

((oppwpy)s - - - (Vg wi)))

— Y > [(OuDy D) 0 g*|weg, g e w
1=1 1;,“.,[/; ..... i,=1 (32)

+ > (D Di f#) o g* way, - wiy,

Lyeorly=1

for all (vjjp,wiz = (wjn,...,wjn)) € W™HTP(Qy) x (W™P(Q)" (§ = 1,...,9),

)
where the symbols ly,...,1, denote summation indezes ranging from 1 to n.

In particular, if s =1, we have the map

(v,w) — vog#* +Z [(le#)og#]w( (33)
=1

for all (v,w := (w1,...,wn)) € WM™HTP(Qy) x (W™P(Q))".

Proof. Let A : W™ *nP1(Q)) X G po(Q, Q1) — W™MHNPH(R™) X G 5 0(R, 1)
be defined by A[(f,9)] := (Ef,g). The operator A is clearly the restriction of the
operator A of W := W™+mP(Q)) x Ky p.o(82, R™) to W"“+"”‘(IR") X Km,p,o(22,R")
defined by A[(f,g)] := (Ef,g). Moreover, the domain of A contains the domain of A
and is open in the space Wmtnei(Q,) x (W™P(Q))", by Proposition 3.3. We define
fég = ToA[(f, g)] where we have denoted by T the composition of Theorem 3.4 in case
Q; = R™. Since A is linear and continuous, A is of class C* and thus the statement
follows by Theorem 3.4 8

As shown in Jones [12], extension operators as in the statement of Theorem 3.5
exist for a general class of domains. We now have the following ‘inverse’ result.

Theorem 3.6. Let ) be a non-empty open subset of R*. Letp,p; € [14+00), 7 € N
and m,m; € N with mp > n. Let f be a function of R" to R. Let A be a subset
of (W™P(Q))" containing the equivalence classes of the restrictions to ) of the affine
tnvertible functions of R™ into itself (a function G of R™ to itself is said to be affine
if there ezists an element ¢ € R™ such that G — c € L(R",R")). Then the following
statemnents hold.

(i) If g — fog maps A to W™:P1(Q), then f is a representative of an element of
u/l;"cx ’pl(IR"). )

(ii) Assume that if g € A, then for all subsets N of R™ of measure zero, the preimage
G~ (N) has measure zero in Q, for all representatives § of g. If A is open and if the map
g+— fogis of class C™ from A to W™P(Q), then f is a representative of an element
of Wiod "P(R™).
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Proof. We first prove statement (i). It clearly suffices to show that f is a represen-
tative of an element of W™P1(B(0, R)), for all R > 0. Let G be an affine and invertible
map of R" such that G(Q) 2 B(0,R). By assumption, G|q is the representative of an
element in A and thus f o G|q defines an element of W™ :P1(Q2) by the hypothesis of
statement (i). By the inclusion G(-(B(0, R)) C €, the function f o G\Gt-v(B(o,R))
defines an element of W™ P(G(-1)(B(0, R))). Since G(~V) is affine and invertible,
and maps B(0, R) onto G(-V(B(0,R)), and f o G|G(-v(B(o,r)) defines an element of
Wmp (G("l)(B(O, R))) , then a well known result on the change of variables by means
of smooth diffeomorphisms (cf., e.g., Adams [2: Section 3.34, Theorem 3.35/p. 63)),
implies that

(f © Ga-nm00,0) © (Glz0.m) = fiBeo.)
defines an element of W™ :»1(B(0, R)).

We now prove statement (ii) by induction on r € N. If r = 0, then we can conclude
by statement (i). Let statement (ii) hold for r € N and assume that the map ¢ — fog
is of class C™*! from A into W™P?(Q). Since g — f o g is of class C™*!, then the
same map is of class C° and accordingly f defines an element of W,7w?(R") by case
r = 0. By Theorem 2.1/(iii), the element of W, ?(R") defined by f admits a continuous
representative f, and f is differentiable in the ordinary sense outside of some subset S
of measure zero of R". Thus the ordinary partial derivatives % (1 e{1,...,n}) exist

in R"\ S. Since f = f a.e. in R" and since the g-preimage of sets of measure zero has
measure zero, for all representatives § of g € A, we have fog = fogforallge A In
particular, the map g — f o g is of class C™*! from A to W™?(Q).

Let T,'[g] := f og. We now compute dTi[g]. Let g be an arbitrary element of A,
him (hay .y ) € (WPP(R))" and

IBllwme@pn = D Nrillwmrca) # 0.

=1

Let §, h and h; be representatives of g, h and hy, repectively. By Theorem 2.1/(iii), f
is differentiable at §(¢) for all £ € 2\ §—(S). Since S has measure zero, the set §*(5)
has measure zero by our hypothesis on the elements of .A. Then we have

i LI HD =GO S0y mema,
=1

where F} denotes the function of R™ to R defined by Fi(n) = g’{%(n) ifneR™\ S and

Fi(n)=0if n € S. Since A is open, for any fixed element g € A we have g +th € A for
[t| sufficiently small. Since Ty is differentiable at g € A, we have

i £00) () — f(a())

t—s0 t

= dTjlgl(h) i W™P(Q). (35)

Now let {t‘,,} be an arbitrary sequence of non-zero real numbers converging to zero. Since
the limiting relation in (35) holds also in L?(Q2), the sequence {t;![f(G(-) + tnh(-)) —
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f (9(-))]} has a subsequence converging almost everywhere in Q to a representative of
de[Q](h)~ Then, by (34), we have

dT7(gl(h) = Y Fi(g(-)hu(). (36)
=1

We now show that @ must have finite measure. By assumption, the restriction to 2 of
the identity map in R" belongs to A C (W™P(Q))". Then the inequality

xa() < sup {X[—I,I]"(E),Xn(f)z |€1|”} VE:=(6,...,&n) €ERT, (37)
=1

implies that the measure of Q is finite. Now let 47 be the function of  to R™ with
the j-th component equal to 1, and with the remaining components equal to zero.
Since the measure of § is finite, 67 defines an element &/ of (W™?(Q))*. Since the
map va- is of class C"™*!, then dT7 1s a map of of class C” from A into the space
L((W™P(Q))",W™P(Q)). Since the ‘evaluation’ map 4 +— A[6’] (j = 1,...,n) is
linear and continuous from L((W™?(Q))", W™P(R)) into W™P(S), we conclude that
the map g — de[g](éf) = Fj(g) is of class C" from A into W™?(Q2). Then by induc-
tive assumption, Fj defines an element of W,"*"P(R"). By Theorem 2.1/(iii), Fj is a
representative of the Dj-distributional derivative of the element of W, .P(R") defined
by f (or by f). Thus we can conclude that f defines an element of W,™*"+1:P(R") &

loc

In part from Theorem 3.6, we deduce the following result.

Proposition 3.7. Let 2 be a non-empty open subset of R™ of class C%. Letr € N.
Let p,py € [1,+00) and m,m; € N with (m —1)p > n. Let f be a function of R to R.
Then the following statements hold:

(i) If g — fog maps Gmpo(R,R?) to WmePH(Q), then f is a representative of
an element in W7, P (R™).

(i) Let my > 0. If the map g — fog is of class C™ from Gmpo(Q,R™) to
W™ P (Q), then f is a representative of an element in Wy *7P1(R™).

(iii) Let my =0 and p; > 1. If the map g — fog is of class C” from G po(2, R™)
to W™P1(Q), then f is a representative of an element in W, ¥7P (R™).

Proof. By Proposition 3.3, the set Gm p,o(§2,R™), which equals K, 5,0(2, R?), is
open in (W™P?(Q))". Obviously, Gm p,0(2, R™) contains the elements of (W™P?(Q))" de-
fined by the restrictions to 2 of invertible affine maps. Furthermore, if g € G p,o(22, R™),
.and if § is the unique representative of class (C'(clQ))" of g, then g is a local diffeo-
morphism of 2 onto §(R2), and thus, as we have already pointed out at the beginning of
the proof of Theorem 2.6, §;q(V) has measure zero, whenever N is a subset of measure
zero of R™. Then we can conclude the proof of statement (i) by Lemma 2.5/(ii) and
Theorem 3.6.

We now turn to prove by induction statements (ii) and (iii) at one time. As in
the previous proof, we proceed by induction on r. If r = 0, then we can conclude
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by statement (i). Let the statement (ii) or (iii) hold for r € N and assume that the
map T[] defined by Ty[g] = f o g is of class C™*! from Gm,p o(2, R™) into W™1:P1(Q).
By case r = 0, f defines an element of W).!'"*(R"). In the case (ii), we have f €
Wil PH(R™) C WD P(R™). We now prove that f € W,,?'(R") holds also if m; = 0 and

p1 > 0. Let 87 € (W™P(Q))" be as in the proof of Theorem 3.6. By assumption, Ty is
differentiable at all invertible affine transformations G. Then

HOO +18) = FOW) _ g, (cs9)

lim
{—0

=0. (38)
LP1(R)

By changing the variable in the integral which defines the norm in the limiting relation
of (38) by means of the affine transformation G(~1) (cf., e.g., Adams [2: Section 3.34/p.
63]), we obtain

id t67) — f(id
lim flidgeay + t87) — f(idgay)

t—0 t

= {dTy[G)(8)} 0 G~V

in LP(G(Q)) (j = 1,...,n), where idg(q) denotes the identity map in G(€2). Since
Q # 0, for all open and relatively compact subset w of R", there exists G as above such
that G(2) 2 w. Then the well-known difference quotient method and the assumption
p1 > 1 imply that f € W,LP(R™) (cf, e.g., Troianiello (30: Theorem 1.21/p. 43]).
Thus, in both cases (ii) and (iii), we have f € W,.P*(R"). Now let g# € Ko 50(Q,R").
Assume that the ball B(0, Ry# ) contains §¥#(cl2), where §# is the representative of class
(CY(cIQ))" of g#. By Proposition 3.3, Km p,0(2, B(0, Ry#)) is an open neighborhood
of g*# contained in Km p,0(2, R"), and by Theorem 3.4 the map g+ fog is of class C*
from Km p,0(€, B(0, Ry#)) to L™ir{P-P1}(Q). Then the map g — fog is of class C* from
Km,p,0(22,R™), which coincides with Gm 50(Q,R"), to L™ir{PP1}(Q), with differential
delivered by (27), with v = 0. By inductive assumption, both in cases (ii) and (iii), Ty
is of class C! from Gm p0(2,R™) to W™ P1(Q), and thus to L™{P-P1}(Q). Then

dTy(g)(w) = Z[(le) o gl for all w:= (w,...,w,) € (W™P(Q)".

=1

By computing dTs[g] on 67 as in the proof of Theorem 3.6, we conclude that g —
(Djf)ogis of class C™ from G p,o(2,R™) to W™P1(Q), for all j € {1,...,n}. Then,
by inductive assumption, each of the representatives of D; f defines an element of class
W™ *"P(R"), and accordingly f € WM+ +1 P (Rny g

loc oc

Remark 3.8. Concerning Theorem 3.6/(i), we mention that Marcus and Mizel
(22], Bourdaud and Meyer [7], Bourdaud [4, 5|, Bourdaud and Kateb [6}, and Sickel
[27] have investigated the problem of characterizing the f’s of one real variable such
that ¢ — f o g maps W™P?(R") to itself. Their results cover large classes of values of
the exponents m and p and their approach is different from that of ours. If n = 1,

then the statement (i) of Theorem 3.6 becomes a variant of the corresponding results
of Bourdaud [4] and of Sickel [27].
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