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Abstract. We prove some Liouville theorems for a degenerate elliptic operator whose principal 
part is given in divergence form with respect to the Heisenberg vector fields and lower terms 
satisfy Fuchsian-type conditions with respect to the intrinsic norm. 
Keywords: Asymptotic behaviour, positive solutions, degenerate elliptic operators, Fuchsian-

type operators, Heisenberg operators 
AMS subject classification: 35 B 05, 35 J 15, 35 J 20, 35 J 70, 43 A 85 

1. Introduction 
In this paper we study the asymptotic behavior of the local solutions of the equation 

Lu = 0
	

(1.1)

where the operator L is given by 

2n	 2n 
Lu = - 	x; (a j (x)Xu + dj (x)u) +	b(x)Xu + c(x)u	(1.2) 

i,j=I	 i=1 

and X, are the Heisenberg vector fields in X is the L2 -adjoint of X,. The 
operator L is assumed to be uniformly subelliptic and weakly Fuchsian with respect to 
the intrinsic dilations. More precisely we will assume the following: 

(A) a 3 are measurable functions on R2+1, and there exist positive constants p M 
such that

lI2	 (1.3) 

for all x E R21 and ER 2 
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(B) There exist q > 2n + 2, A > 0, 0 < a < 1 <b and a sequence Rk / +oo such that, 
for every k > 1, 

pbi E L(A), pd1 E L(A) (1	i	ii),	p2c E L(Ak )	(1.4) 

and
IIpbiIILe(Ak) <A I AkI, IIPdiIILQ(Ak) <AIAk I	(1	i <2n)

(1.5) 
IIPC II L	<	

2

(Ak) - 

where p is the norm defined in (2.3), intrinsically associated with the vector fields X3, 
Ak are the open annuli:

Ak = {X e	: aRk <p(x) <bRk} 

and IA k I denotes the Lebesgue measure of Ak. 

We will also assume that L satisfies the Maximum Principle (see Section 3). 

The topics include the following results. 

Proposition 4.4. For every two positive local solutions u and v of L in R 2 ' \BR, 
there exists

lim	 (1.6) 
p(x)—.+oo v(x) 

where BR denotes the intrinsic ball defined in (2.8). 

Theorem 4.5 (Liouvillc Theorem). There exists a unique, up to a constant, posi-
tive local solution of the equation (1.1) in R2"1. 

When L is a Fuchsian operator (see condition (4.11)), we can prove also the following 
statement. 

Theorem 4.7 (Liouville Property). Every bounded local solution of the equation 
(1.1) in R2 ' -1 is of constant sign. 

Our method to study the asymptotic behavior of the solutions is to show, as in [9, 
10, 14, 15], that the positive solutions satisfy a uniform Harnack inequality. The local 
Harnack inequality for the operator defined in (1.2) has been proved by M. Biroli and 
U. Mosco in [3], under the assumptions a 3 symmetric and b, di c 0, in the more 
general context of the Dirichlet forms. In (13] there is given a local Harnack inequality 
for the operator (1.2), where Xj are Hörmander vectorfields. 

In order to have a uniform Harnack inequality we need some control on the growth 
of the lower terms (see, for example, [1, 5, 14, 15]). In the classical case this control is 
given by Fuchsian assumptions, related to the homogeneity of the differential operators 

- with respect to the usual dilations. In our case the assumptions on the growth of the 
lower terms reflect the non-isotropic character of the fields X,. The Liouville theorems 
for the Heisenberg Laplacian has been proved by B. Gaveau [8). For the nonlinear case 
see also [2] and [7].
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The plan of the paper is the following. In Section 2 we recall the main properties of 
the Heisenberg group and of the associated Sobolev spaces. In Section 3 we recall some 
results about the operator L in bounded domains, we discuss the Maximum Principle 
and the existence and uniqueness for the Dirichlet problem, and we prove an existence 
theorem for the equation (1.1) in R 2 ''. In Section 4, by assuming L to be a weakly 
Fuchsian operator, we prove the existence of the limit (1.6) and Liouville's theorems. 

Finally we recall that all the previous results still hold for the operator 

Lu = Lu + g(x)Xou	 (1.7) 

where L, defined in (1.2), is assumed to satisfy assumptions (A) and (B) and, in addition, 
the following one: 

(C) X0 is a bounded smooth vector field in R 2 '" 2 , i.e. 

Xo =	ajX + a2+iT 

with bounded coefficients, i.e.

(O'i E C°°(R 2''), i = 1,... ,2n + 1) 

o, e L°°(R2'')	(i = 1.. . , 2n + 1)	 (1.8)

such that, for some 1 h n and every k > 1, 

	

pXh(0'2 fl+I) e L(A)	and	pXhfl(02fll) e V(A k )	(1.9)

with

	

IpXh2n+ 1 )II L q (A) <AIAkI	and	IIpXh + n (0'2n + 1 )II L q (A) <AIAkI. 

(D) g is a bounded measurable function such that 

pg e L(A),	pXhg e L(A),	pXh+g E L(A)	(1.10) 

with
IIpgIILq(A) <AIAkI 

II pXh g IIL e (Ak) < AIA,11, (1.11) 

IIpXh + n gII L q (A) <AIAkI.
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2. The Heisenberg group 

In this Section we recall the main properties of the Heisenberg group that we will use 
later. For more details see [17]. 

The space lR 2 + I , whose elements we denote by x = (x 1 .... , x,,, y) ... , y,,, 
equipped with the multiplication law

n 

	

XX = (1 +X, ... , X fl +X,yi	 +y,t+t' +(xyj -	(2.1) 
i= 1 

is a group whose identity is the origin and where the inverse is given by 

= (—x 1 , . . . , — xc, —yi) . . . , —y, —t). 

The space R2 ' with the structure (2.1) is the Heisenberg group, denoted by H". The 
non-isotropic dilations 

0 x=(Sx 1 ,&r n , 4 1 ,8yn , 2 i)	(bER,xEH")	 (2.2) 

are automorphisms of H". The non-negative function 

n 

P(X) = ((x + y)2 + t2)	 (2.3) 

is a norm for the Heisenberg group, in particular it is homogeneous of degree 1 with 
respect to the dilations (2.2), i.e.

X) = ll p ( x )	 (2.4) 

for every x E H" and p E lit Moreover, there exist positive constants c 1 and c2 such 
that

curl <p(x) <C2 IXI 2	 (2.5) 

for every x E H", where lxi denotes the Euclidean norm in R2"'. 

By (2.4) and (2.5) it follows that the function d defined by 

d(x,x') = p(x '	. x)	 (2.6) 

is a distance in H", topologically equivalent to the Euclidean one and left invariant with 
respect to the law (2.1). By using the distance d we define the intrinsic balls, spheres 
and neighborhoods of infinity 

BR(x) = {x ' E H" d(x,x') < R} 

S(x) = {x ' E H" d(x,x 1 ) = R} 

D R( X ) = R2" \ B(x).
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In the following, for brevity, we will set 

BR = BR (0),	SR = SR(0),	DR = D R(0) .	 (2.8) 

	

The Lebesgue measure dx = dx 1 . dx, . dy,	dy, di is invariant with respect to
the translations (2.1), so that for any x E H" and R> 0 we have 

IBR(x)I = I BRI .	 (2.9)

Since the Jacobian of the dilations (2.2) is given by 

	

j6 = 2n+2	 (2.10)

from (2.9) and (2.10) it follows that for every x E H" and R > 0 

IBR (x)I =R2 " 2 IB i I.	 (2.11) 

In our context it is convenient to look for a basis of vector fields invariant with 
respect to the translations (2.1). Such a basis is given by 

I

-+2y	for i=1,...,ri

+ 2x j_ni fori=n+1,...,2n	 (2.12) 
T 

a 

For the vector fields (2.12) we have the commutative law 

[X 1 ,X1 +] = —4T	for every i = 1,.. . ,n	 (2.13) 

while the other commutators vanish. We recall that a commutator of two vector fields 
V1 and V2 is the new vector field given by 

[V1 ,V2 ] = VI V2 - V2 V1 .	 (2.14) 

Therefore, X 1 ,.. . , X2 ,, are a basis for the Lie algebra of the vector fields invariant 
with respect to (2.1). Moreover, they are homogeneous of degree 1 with respect to the 
dilations (2.2), whereas, by (2.13), T is homogeneous of degree 2, i.e. 

	

X1 (u(8 o x)) = 8((X1 u)(8 ox))	(i = 1... , 2n)	 (2.15)

and
T(u(6 o x)) = 82 ((Tu)(6 o x)).	 (2.16) 

Given an open set Q c R 2"', we denote by S 2 (Q) the Sobolev-type space of 
the functions u e L2 (), such that the distribution derivatives X1 u E L2 (1) for i = 

2ri. The norm in S 2 () is given by 

II lull 1 2 = f (1u12 +
	

lXi u1 2) dx.	 (2.17) 

The closure of C09() in the above norm is denoted by 52(e). By. S(Q) we mean the 
set of functions u E S 2 (cr) for every Q' cc Q. 

We recall the following properties of the above Sobolev spaces.
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Poincaré Inequality (see Eli)). For every BR( x ) c R2 "' and u E 2(BR(x)) we 
have

fBn u12dx cR2J	IXuI2dx.	 (2.18)
(z)	 BR(z) j=1

Sobolev Inequality (see [12]). There exists S > 0 such that for every u e 
S2 ( R2 ') we have

2n 

(L2+12+l 
1u1 2 )	sj 2+, 1: I xj u I 2dx	 (219) 

where 2 = 

Compact Embedding (see [61). For every bounded domain 11 the Sobolcv space 
2(Q) is compactly embedded into LP (11), for every p < 2. 

3. Dirichiet problems and maximum principles 
Let 11 be an open subset of R2 "'. We consider the differential operator 

In	 In 
Lu = -	 (aij 	+ dj (x)u) +	b(x)Xu + c(x)u	(3.1) 

i,j=1	 1=1 

whose associated bilinear form is given by 

a(u,v) = 
j (F- (a

ij x i uXj v + b(Xu)v + djuXjv) + cuv)cix	(3.2)
ij 

for u E S( 11 ) and v E 2(cl) 

Let f3 E L2 (1l) (j = 1,... ,2n) and f E L2 (Il). 

Definition 3.1. We say that the function u E S(11 ) is a local solution of the 
equation

In 

	

Lu=_>x;fj+f	 (3.3)

in Il, if for every W e '2(11) we have 

a(uco)=j(>fiXico+fco)dx.	 (3.4) 

When u E 52(11) or u E 52(11)), we say that u is a solution or a solution vanishing on 
the boundary, respectively, of the equation (3.3). For brevity, when f f 0 (i = 
1,... ,2n), we say that u is a local solution or a solution, respectively, of (the operator) 
L.

We start recalling some results concerning the operator L when Il is a bounded 
domain in R2 "4 '. In the following we will assume that L satisfies condition (A) on 11, 
bi E L(1l) and d1 E L(1l) (i = 1,...,2n), c  L(11) with q > 2n.+2.
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Proposition 3.2. Let T be a linear bounded operator on S2 (ci), ci C JR and c0 E R. 
Then, whenever 00 is sufficiently large or diamci is sufficiently small, the equation 

Lu+aou=T	 (3.5) 

admits exactly one solution uao ,r E 2(cl). In particular this holds for the equation 

Lu+aou=—Xf+f	 (3.6) 

where fi E L2 (ci) (j = 1,... ,2n) and f E L2 *' (Q). Furthermore,the map	: T '-ao 
U, 0 ,T is continuous. 

Proof. See [16] U 

Proposition 3.3 (Caccioppoli Inequality). Let ci' CC Q. Then there exists a 
positive constant k such that, for every local solution or non-negative subsolution u of 
L in ci, we have

IIXuII' !^	 (3.7)

Proof. See [16: Lemma 5.2] or [13: Lemma 4.4] I 

Proposition 3.4 (Local Harnack Inequality). For any compact K C ci there exists 
a positive constant C = C(M,i,K,ci, II b iIIL q , II diIIL q , II c II L ) such that, for any positive 
local solution u of L in ci,

Cu(x) <u(y)	 (3.8)

holds for every x, y E K. 

Proof. For every BR(x ) C ci with R sufficiently small, we can prove the following: 
Step 1: For every p> 0 there exists a positive constant c, such that 

(B21R(z) 

IuV'dx) sup u $ C1,
BR(z) 

(see [13: Theorem 4.2]). 

Step 2: From Step 1 it follows that for every q < 0 there exists a positive constant 
Cq such that

inf U > Cq 1	-1 luI'dx BR(z)	 J 
\B2R(x) 

(see [13: Proposition 4.8)).
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Step 3: There exist 6 E (0,1) and A > 1 such that 

u6dx J l u L 6dx < A 
B 2 (z)	B2R(z) 

(see [13: Proposition 5.2]). 

The proof follows from Steps 1-3 and from compactness arguments I 

Remark 3.5. We can prove that Step 1 still holds for non-negative solutions and 
positive subsolutions and Step 3 for positive supersolutions (see [16: Section 81). 

Proposition 3.6 (Holder continuity). For any compact K C ci there exist positive 
constants 6, c, c' and 0 < A < 1 such that, for any local solution u of L in ci, 

Iu(x) - U(Y)1	01uIl L2 d(x,y) A	C[U[.2X	y l	 (3.9) 

holds for every x,y E K with d(x,y) < 6. 

Proof. See [13: Theorem 5.611 

Remark 3.7. The previous results still hold under the weaker assumption bi E 
L22 (ci) (i = 1,... , 2n), but in this case the constants involved in the inequalities 
depend on b1 and not only on Il billL,. In the next section, in order to prove a uniform 
local Harnack inequality, we need the constant C of inequality (3.8) to depend only on 
1b1 IILQ, therefore we assume bi E L q from now on. 

Following [10: Theorem 8.3], we will prove the existence for the Dirichiet problem 
via the Maximum Principle. In order to formulate it we need the following notion of 
supremum on the boundary for a function u E S(ci): 

supu=inf{kER: uk} 
an 

x where by u < k on aci and u> k on aQ we mean (u - k) E S2 (ci) and (u - k) E 
§2 (Q), respectively. If u k and u > k on aQ, we say that u = k on ôci. 

Weak Maximum Principle. Let u be a local solution of L in a bounded domain 
Q. Then	 /	 / 

	

sup  <max (0 supu	and	min(0,infu I <infu 
-	\ an I	 \ acJ_1 

where infaci u = - sup8(—u). 

In the following we will need also the 

Strong Maximum Principle. Let u be a non-negative local solution of L on a 
domain Q. Then either u 0 or u > 0 on Q. 

From now on we will assume that the operator L satisfies the Weak Maximum 
Principle.
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Proposition 3.8. Let u E 52(11) be a solution of L. Then u 0. 

From Proposition 3.8 and the Fredholm alternative there follows an existence and 
uniqueness theorem for the Dirichlet problem in bounded domains, analogous to [10: 
Theorem 8.3]. We give here the simplified version that we will use later. 

Proposition 3.9 (Existence Theorem). For every constant k there exists exactly 
one solution u e 52(11) of

Lu=0 on Il)
(3.10) 

u = k on 

Proof. The problem (3.10) is equivalent to the problem 

Lw = k ( Xd -	(w E 2(11))	 (3.11) 

where w = u - k. Let 00 be sufficiently large so that the equation 

Lv +ov= k (x;di_c)	 (3.12) 

admits exactly one solution v E 52(11). Then the equation (3.11) is equivalent to the 
equations

(Lw + aow) - ow = k ( Xd - c)	 (3.13) 

w—aoL'Iw=kL' (x;di_c)	 (3.14) 

where I is the compact embedding of .'2(1l) into L2 (cl) and L'a0 is the map defined 
in Proposition 3.2. By the Compact Embedding Property of Sobolev spaces and Propo-
sition 3.2, aoL;01 1 is a compact operator from 52(11) into itself so that, by Proposition 
3.8 and the Fredholm alternative, there exists exactly one solution of (3.14) and so of 
(3.10)1 

Theorem 3.10. Let L satisfy assumption (A) in R2Th+l, b1 E L ( R2'') and 
d E L ,(R2'') (i = 1,... ,2n), c L(R 2Th+I ) with q > 2n + 2. Let us assume 
that L satisfies also the Strong Maximum Principle. Then there exists at least a positive 
local solution u E S2 (R2 "-) of L. 

Proof. Let Rk / +00. By Proposition (3.9) there exists a sequence {vk } of positive 
solutions of the problems

Lvk = 0 on BR, 
Vk l on I3BRk.
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Let us consider the sequence of solutions Uk =	Fixed N > 1, the sequence {uk} 

converges in BIN to a continuous positive function u E S2 (RN ) . Actually, by the 
local Harnack inequality, there exists CN > 0 such that for every k> N 

CNUk(X) <u,(0) = 1.	 (3.15) 

Hence

	

IIUkIlL(RN)IBRNI2 <	 (3.16) 
CN 

By (3.16) and (3.9) the sequence {uk} is bounded in C(RN) and uniformly equicon-
tinuous. So by Ascoli's Theorem it converges (up to a subsequence) to a continuous 
function u, that is a positive local solution of L in R2 ' 2 . Actually, by the Caccioppoli 
inequality and (3.16), the sequence {IIXiukUL2(BRN)} is bounded, so {uk} converges in 
every RR, to u also in the norm (2.17) U 

We give now two sufficient conditions for the Maximum Principles to hold. 
2n	* Proposition 3.11. Let - ij=i Xd3 + c be positive in the sense of distzbutzons 

on Q, i.e.

j(	
dX +	dx > 0	for every 0	e 2().	(3.17) 

Then the Weak Maximum Principle holds. 

Proof. For sake of completeness we give the proof, that is analogous to that of [10: 
Theorem 8.11. Let u be a local solution of L. Let us suppose that there exist constants 
k such that

	

max(o , sup u <k < sup u.	 (3.18) 
ac ) 

Set vk = (u - k)+ . Since Vk E 2 (cl) we have 

0 = a(u,vk) 

= 
j (y, (a,jXuXjvk + (b 1 - d)(Xu)vk + diXI(uvk)) + cuvk) dx.	

(3.19) 

From (3.17), (3.19) and uvk > 0 it follows 

j
aX1 uX,v, dx < 

j	
(d - b)(Xju)vk dx.	 (3.20)
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Hence, from the assumptions on the coefficients of L and from the Sobolev inequality, 
it follows 

iz ll XjvklI2 ^ I >ajjXlvkXjvkdx 
Jr1 j	 g,3 

= j aXuX3 v, dx 
ij 

<j	(d, - b l )(Xu)vkdx	 (3.21) 

= L	- b,)(XIvk)vk dx 

-2

n —2 
< K > lsuppXivkl q(2,2) i lb1 - dill L' IIit'kll 

g	 i I 

Therefore for every k that satisfies (3.18) we have

g(2n-f 2) 

g(2n+2) 
IsuppXjvkl	

(	
ll b1 - diIIL) 

q-2-2	

(3.22) 

So u attains its supremum on a set of positive measure where X 1 u 54 0. This contradicts 
the existence of k satisfying (3.18)1 

Proposition 3.12. Let L satisfy assumption (3.17). Then the Strong Maximum 
Principle hold,. 

Proof. Let u be a non-negative local solution of L. By assumption (3.17), (u + e) 
is a positive local supersolution of L and (u + e) (q < 0) a positive local subsolution 
of L where 

Z = - 
2n	 2n 

	

 x;(a(x)xu + qdj (x)u) +	(b1 (x) + (q - 1)dj (x))X1 u +qc(x)u 
i,j=1	 1=1 

so that Steps 2 and 3 of Proposition 3.4 still hold for (u + e). By the monotone con-
vergence theorem they also hold for u. Therefore, by inequality (3.8) applied to u, it 
follows that either u 0 or u > 0 I 

Proposition 3.13. Let there exists a positive local solution w of L in ci, positive 
on ôci and such that Xw E L(f2) with q> 2n + 2, for every i = I,—, . , 2n . Then L 
satisfies the Weak and Strong Maximum Principles. 

Proof. Let u be a local solution of L non-negative on ôft Set v = . For every 
E 2(cl) we have 

0 = a(u,ç) = a(vw,o) = a(w,vp) +ã(v,ço) = a(v,p)
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where 

à(v, ) 
j (	

wa,X1 vX,cp + ((wb i - wd1 ) -	auiXiw)(X1v)c)dx. 

By the assumptions on w, the coefficients of a satisfy the assumptions of Proposition 
3.11. Therefore from v	0 on oci it follows that v, and so u, are non-negative on 
and also that they are either positive or identically equal to zero I 

For a thorough discussion of the Maximum Principle see also [4] and the included 
references. 

4. Liouville Theorems 

In this section we prove Liouville's theorems assuming L to be a Fuchsian-type operator. 

Definition 4.1. We say that the operator defined in (1.2) is a Fuchsian operator 
in the weak sense, if there exist 0 < a < 1 < b and Rk / +00 such that L satisfies 
assumptions (A) and (B). 

From now on we will assume that L is a Fuchsian operator in the weak sense. 

Proposition 4.2 (Uniform local Harnack inequality). There exists a positive con-
stant C depending on z, M, A, a, b, a' and b' such that, for every k > 1 and every 
positive solution u of L in Ak, we have 

Cu(x)<u(y)	for all x , y. E A'k	 (4.1) 

where A'k is the annulus 

A'k = {x E	a'Rk <p(x) <b'Rk}	 (4.2) 

and a < a' <1 < b' <b. 

Proof. Let u be a positive solution of L in Ak. Let us define in the annulus 

A={e1R2 " 1 : a<p()<b} 

the function

W( C ) = Wk() = u(Rk 0 

By the homogeneity of X, with respect to the dilations (2.2) and by (2.10), we have for
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every W E §2 (A,) 

= JA,. ( Ej 
(a ij (x)X i u(x)Xj (x) + b(x)(Xu(x))(x) 

+ di (x)u(x)Xj (x)) + c(x)U(x)(x)) dx 

= JA (	o e)Xw(e)X) 

	

 k	 (43) 

+	o )(XW(e))TI(e) +	° 

+ c(Rk o e)w((e)) R2de 

2n	k JA ( (ajXiwXj +	+ dwX) + ckw) d 

where a 1 () = a 2 ( Rk o ), b() = Rk bI(Rk o ), d ,k (e) = Rk d1 (Rk o ) (i = 1.. . , 2n), 
ck() = Rc(Rk o ) and '(e) =	o ). Since for every 0 E . 2 (A) we have 

= (p(Rk o ) where E S2 (A k ) is given by (x) = 7I(-- ox), from (4.3) it follows Rk 
that w is a positive solution of L k in A, where 

	

2n	 2n 
Lk W = -	 + Eb)Xiw+c)w.	(4.4) 

	

i,j=1	 i=1 

By the homogeneity of p with respect to the dilations (2.2), by (2.10), (1.5) and (2.11) 
it follows for every i = 1,. . . , 2ri that 

(bik 	
= f Rb 1 (R, o	

= IA	b(R, o e)) d 

'q IA (pRk o e)b(Rk o ))9de = q2n+2 JA1 (P(x)bi(x)) Q dx	(4.5) 

1 A	b2h142 - a2 "42 k	
A"IBiI.aq - aq	- 

In the same way we can prove for every k > 1 and every j = 1 .... 2n that 
b22 - a2t+2 

IkIIq ( A ) <	
AB1 1	 (4.6) 

and
- 2n+2 IkIIj(A) <	Z	

A I B iI .	 (4.7) 

Let x,y € A,,. Then e = ox and r = o  belong to A'. By the local Harnack 
inequality (3.8) there exists C, depending only on a, b, a', b' and on p, M, A, but not 
on k, such that 

-	 Cwk() <Wk(T1) .	 (4.8) 
By the definition of w, from (4.8) it follows (4.1)1
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Corollary 4.3. Let u and v be two positive local solutions of L in Ak. Then we 
have

	

C2 UGO <	for all x,y E A	 (4.9) 
V(x)	v(y) 

where C is the same constant appearing in the inequality (4.1). 

Proof. From Cu(x) <u(y) and Cv(y) <v(x) it follows (4.9)1 

From now on we will assume that L satisfies the Weak and Strong Maximum Prin-
ciples. 

Proposition 4.4. Let u and v be two positive local solutions of L in Di for some 
R> 0. Then there exists

urn U(X )	 (4.10) 
p(z)—.-3-c.o v(x) 

Proof. Let a = minsRk and bk = maxSRk	Set a = min(ak.. l , ak+1)
and 13k = max(bk _ 1 , bk+I) . The functions u - ajv and flk v - u are solutions of L in 

	

Gk = IX ER	 : Rk_ 1 <p(x) <Rk+1}, 

non-negative on ôGk. Hence by the Maximum Principles they are positive in Gk or they 
are identically equal to zero. Therefore either u(x) = akv(x) on SR, for some Rk and 
soon DR, or the sequence {a k } is definitively strictly monotone. Actually, if a k 5 aI4, 
by the Strong Maximum Principle saying that a > ak, it follows ak+1 < ak . In the 
same way we can prove that either bk is constant or it is definitively monotone. 

Let a = liMk —+ oo ak and b = limr_+oo bk . Since a <bk if a = +00 we are done. If 
a < +oo, by the Harnack inequality it still follows that a = b. Actually, let x k, Yk E SR, 
be such that	= bk - 6 k and	= 1k + 77k with 6 k \ 0 and 77k \ 0. Then by 

Yk 

inequality (4.9) applied to the positive solutions u -	and v it follows 

C 2 (bk - 6k - ak) :^ (a, + 77k - ak). 

By passing to the limit we have 0 C 2 (b - a)	0. Since a	 holds for
every x e Gk, the existence of the limit (4.10) follows from a = b  

As a by-product of this limit theorem we obtain a Liouville theorem for the operator 
L.

Theorem 4.5 (Liouville Theorem). There exists a unique, up to a constant, posi-
tive local solution of L in R2+,. 

Proof. The existence of at least one local solution is given by Theorem 3.10. To 
prove the uniqueness it is sufficient to observe that if the solutions u and v in Proposition 
4.4 are defined in R2 '', then by the Weak Maximum Principle the sequences {ak} and 
{ bk} must be non-increasing and non-decreasing, respectively. This, toghether with 
a = b, yields u(x) av(x) on R2'' I



Liouville Theorems for Fuchsian-Type Operators	667 
\ 

From now on we will assume that L is a Fuchsian operator, i.e. that it is a Fuchsian 
operator in the weak sense and there exists R> 0 such that 

DR c
	

(4.11) 

Lemma 4.6. Let u be a positive local solution of L in R2'. Them infu >0. 
Proof. Let us assume that inf2fl+I u = 0. Then, by the Strong Maximum Prin-

ciple, a minimizing sequence {z,} must diverge, i.e. p(xi) -4 +oo. Let R1 = 
a = minsR , u and b 1 = maxSR . u. By (4.11), for every i there exists ki such that 
SR, C Ak.. Since {a 1 } converges to zero, by the uniform Harnack inequality {b1 } also 
converges to zero. Therefore, by the Weak Maximum Principle, for every k1 and every 
E > 0 we have supBR u <e, i.e. u 0 on R2'' • 

Theorem 4.7 (Liouville Property). Let v be a local solution bounded below of L 
in R2TH.. Them either v 0 or v is of constant sign. The same result holds if v is 
bounded above. 

Proof. Let v > k. If k > 0, we are done. If k <0, by Theorem 3.10 and Lemma 
4.6, there exists a positive local solution u > — k in R2 '. Then v + u is a positive 
local solution, too. Therefore, by the Liouville Theorem, there exists A > 0 such that 
v = (A - 1)u. The second part of the proposition follows by observing that if v < k, 
then — v is of constant sign U 

Remark 4.8. All the previous results still hold when we consider the operator 

Lu = Lu + g(x)Xou 

where L, X0 and g satisfy assumptions (A), (B), (C) and (D) of Section 1. Actually, by 
(2.13),

X0	aixi -	2n+1[Xh,Xh+I], 

so that

	

2n	 2n 
Lu = - > X((x)Xu + d(x)u) + >i( x )Xi u + c(x)u 

i=1 

were ii ij = a 3 , when (z, j) 0 (h, h + n), (h + n, h) while 

a
-	 -	 1 

h,h+fl = ah,h+fl - 1 go2nI	and	ah+flh = a h4,,h + 90`2.+1 

and b1 = b1 + ga1 , when i 5k h, h + n while 

bh = bh + g h - gXh+(a2 + l ) - 72n+1Xh+n9 

and
bh+n = bh+n + gahn +gXh(a2 fl +1) + 
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