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Abstract. We investigate extensions of the classical Marcinkiewicz-Zygmund inequality to 
non-uniform grids. Then we show how this inequality can be used to characterize Besov spaces 
on the torus by means of approximation by corresponding interpolatory polynomials. One of 
these characterizations can be applied to the construction of unconditional Schauder bases. 
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1. Introduction 

The goal of the paper consists in an extension of the Marcinkiewicz-Zygmund inequality 
to the case of non-uniform distributed knots. Based on this generalization we investigate 
the rate of convergence of corresponding trigonometric interpolation operators. In a cer-
tain sense these results may be understood as some sort of robustness of approximation 
by interpolatory trigonometric polynomials. Using an appropriate characterization of 
the periodic Besov spaces B q we construct unconditional bases for B based on these 
interpolation operators. These bases do not fit in the scheme of wavelet bases; however, 
they are in the wavelet-spirit. 

The paper is organized as follows. In Section 2 we deal with Marcinkiewicz-Zygmund 
type inequalities with respect to non-uniform grids. In the next Section 3 we describe 
consequences for approximation properties of corresponding sequences of interpolatory 
trigonometric polynomials. Section 4 is devoted to the construction of unconditional 
bases in Besov spaces. Here we use the fundamental functions of interpolation with 
respect to certain non-uniform grids. Finally, in Section 5 we investigate some examples. 
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2. Marcinkiewicz- Zygmund type inequalities for non-uniform 
grids 

Classically one deals with the set of equally distributed knots 

2irk 
Xnk =(k0,1,...,2n).	 ( 1) 2n + 1 

Then the Marcinkiewicz-Zygmund inequality may be stated as follows. Let 1 <p < co. 
Then there exist constants A,,, B > 0 such that

2n 
B,, (2
	1	ITn(xflk)I P)	 (7T(x)IPdx) <A,, (2n 1	I Tfl(x flk)I P)	( 2) 

holds for all trigonometric polynomials T of degree at most n and all non-negative 
integers n. Here we are asking for conditions on a matrix Y = { ynk}> o , where 

0< k< 2 
0 5 YnO <y,, < ... Yn2n <2ir holds for all n (but the knots Ynk need not be equally 
distributed), such that corresponding inequalities are valid without supposing (1). 

We start with some notations. For brevity we shall make use of 

/ 1	2n 

= 2n +1	If(Yflk)1P)	 if Y = {ynk}o. 

As usual, L,, denotes the set of all complex-valued Lebesgue- measurable functions which 
are p-th power integrable, equipped with the norm 

2,r 

If IL,,II = ( lf(x)l P dx
 )
	(1	p < oo). 

By C we mean the set of 2w-periodic continuous functions. Further, N denotes the set 
of natural numbers, No the set of natural numbers including zero, R is used for the 
real line, and C for the complex plane. The symbol [xj is used to denote the integer 
part of a real number x E R. 

There are various ways to attack an extension of (2). First we deal with the left 
part of (2); that means we are asking for the existence of some constant C,, such that 

(2L 1 

2n	 i 
 I Tn(vnk)I P )	CP (7IT (x )I Pdx)	(3) 

holds for all trigonometric polynomials of degree at most n and under certain conditions 
on the matrix Y.
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Theorem 1. Let 0 < p < oo. Let z be a non-decreasing function on JR satisfying 
i(x + 27r) -	const. We put 

w(S) = sup (p(y) - i(x))	(8 > 0).	 (4) 
O<y-z<6 

Then the estimate

.1.	 1 / 2r P	 p 

(I I T (1 )I Pdl(x)) <cp (--p ()) (1 
IT(x)I P dx)	 (5) 

holds true for all trigonometric polynomials Tn of degree at most n. Here C, is the 
constant which appears in the inequality 

/ 
2ir n-i I 	'ç-' 

I -	max IT(x)I P)	Cp II T I L II	 (6) 
k=O Ek 

where again T varies over the set of all trigonometric polynomials T of degree at most 
n and 'k =	

2r(k+I)] 

Proof. We have 

27r 

fT(x)dj (x) = 	Ilk 0	 k=O 

n-I 
1:< 	max T(x) I P I d(x) -	

rElk	 ilk 

n-I 

(

n	1	'c-2ir 
2	

k=0	
xEJk 

-	-	—maxIT(x)I' 

The estimate is finished by applying (6), which may be found in [16: Theorem 33.51 1 

Remark 1. We do not have exact values of the constant C,,, even we do not know, 
whether it depends on p (the proof of (6) in [16: Subsection 3.3.5 1 makes use of some 
maximal inequalities, which is probably not an appropriate way for selecting a "good" 
constant). Based on a particular identity for trigonometric polynomials (cf. [141), we 
only have a bound for C,,: it holds

2	17 
c^(_) (---+ log 3).	 (7) 

7r	4 

We are not interested in situations where more than two knots are coming close to 
each other.- So we require an additional regularity condition to the admissible matrices. 
We always assume that the matrix Y is a weakly disturbed version of the matrix X = 
{Xnk} (cf. (1)).
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Definition 1. Let Y = {Ynk}	be a matrix, where 0 Yno < Ynl < •. < 

!Jn2n <2ir holds for all ii.	- - 

(i) We call Y almost regular if 

	

270 -	 27r(k + ) 
2n + 1   - Ynk < 2n + 1	

(8) 

holds for all k and all n. 

(ii) Let 0 a	. We call Y almost regular of order a if 

270 - a) <	27r(k + a) 
2n + 1 - Ynk < 2n + 1	

(9) 

holds for all k and all n. 

Remark 2. If Y is almost regular, then 

	

1	
2n	

2 7r 

n'PII = 2n+ 1 If(Ynk)I = I lf(x)lldPn(X) 

and
2n (

n̂ ) - 2n+1 - 
Hence, for an almost regular matrix Y inequality (5) is true with the constant C,, 
appearing in (6). 

Theorem 2. Let 1 <p < oo . Let

(10) ap=AC.  

Here A,, and C,, are the constants taken from (2) and (6), respectively. Let Y be an 
almost regular matrix of order a < a,. Then 

IITIL,,II	C,,(a,,—a) II T l,PII = D,,IT I Y , p II	 (11) 

holds for all trigonometric polynomials of degree at most 

Proof. We shall apply (2). The set of equally distributed knots defined in (1) we 
denote by X. It follows that 

lI T I 1 ,,II < A,, lITP,pIl 

<A,,IITlY,pII+A,, 
{2n+1	

fl(xflk)_Tfl(Yflk)l 
k=o

} 

1	
2n 

<A,,II T I Y , p iI +
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for suitable chosen	= {nk}nk and E is also almost regular of order a. Applying first 
Theorem 1 and afterwards Stechkin's inequality, given by II T 'II,,	II T II,, (cf. [191),

we obtain

IITIL,,II	
27raA,,C,,n 

II T I L,,II A,, II T I Y , p II +	2n + 1 
By assumption iraA,,C,, < 1. Hence 

IITIL,,II 
<	A,,

T, I Y,, II - 1-7raA,,C,, 

which completes the proof I 

Remark 3. We continue with a comment to the constants A,,, and a. In partic-
ular, in case p = 2 it is known that

	

A2 =v'	 (12) 

(cf. [22: Volume II/p. 81) . Using (7) this gives a2 >	. Information about the

asymptotic behaviour of A,, for p tending to 1 or oo is available in [11]. 

Remark 4. There are simple examples to show that a < 1 is necessary in Theorem 
2. We choose

	

T(x) = sin (nx - 2n+
	

(n E N) 

and
7r	(k-1)ir 

YnO = 0,	Ynk =	+	(k = 1,2,... ,2n). 
2n+1	n 

Then V is almost regular with a = 

IITnIYn,pII =(2n+1) 	sin (2n)L 

and II T I L,,II = 11 sin yIL,,II. 

3. On the rate of convergence of trigonometric interpolation 
and periodic Besov spaces 

Our aim is to study the rate of convergence of interpolatory polynomials in dependence 
of the regularity of the approximated function. It turns out that the correct classes to 
do this are the periodic Besov spaces. Therefore we start with a short description of 
their properties. 

3.1 Besov spaces of periodic functions. We follow [16: Chapter 3]. Let D,r 
and D,' denote the set of all complex-valued, 27r-periodic, and infinitely differentiable 
functions and its dual space, respectively. Furthermore, we put -	- 

	

f(k) = fA (k) = (27r)_hf(et)	(k E Z, I e D,,!).
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Then any f E D 71! can be represented by its Fourier series 

f =	1(k) e ikx	 i ( convergence n D,'). 
k EZ 

To introduce Besov spaces we need a smooth decomposition of unity. Therefore, let 
be an infinitely differentiable function satisfying 

11 iflxl<1 

t o ifIxI>.	
(13) 

Next we put
WOW = OW 
p 1 (x) = (2x) - '(x)	 (14) 

ç(x) = 1 (2'x)	(e 2 2). 
Hence, we have

	

jot(x)=1	for all xER. 

	

Definition 2. Let 1 p oo, 0 < q	: and s E R. Then we put 

(	 /00 
B;q = f E D' : IIfI B qIl = (\ 2' 1	of(k)j(k)e	

IL,,) < kEZ 

(q < c) and 

B 00 = {i E Dr': IIfI B 00II = sup 2 t3 (k)f(k)e	L,, 
kEZ 

Remark 5. All spaces above are quasi-Banach spaces (Banach spaces if q 2 1). 
They are independent of the special choice of b (equivalent quasi-norms). These spaces 
of periodic functions are extensively investigated in [6: Chapter 51 and in [16: Chapter 
3].

Remark 6. For .s > 0 the above somewhat complicated definition of B g coincides 
with those one given by means of moduli of smoothness or derivatives and differences 
etc. (cf., e.g., [16: Subsection 3.5.4]). 

Remark 7. Of some interest will be the following: 

eithers> -

B; q '-* C	if and only if	 1 p ors=— and 0 <q1 
p 

(cf. [6: Sections 6.2, 6.31 or [16: Subsection 3.5.5]). 
Let us recall the well-known characterization of Bp3q based on best approximation: 

as usual we put
E(f,L,,) = infllf-9IL,,II 

where the infinum is taken over all trigonometric polynomials of degree at most n.
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Proposition 1 (see [6, Section 5.6] or [16: Subsection 3.7.1]). Let 0 < q	00, 1 
P _< 00 and s>0. Then fEB q if and only if 

(n+l)E(f,L) Eq. 

Moreover,

If IL II + (	((1 + )3	E(f, LP))) 
\n=O 

yields an equivalent quasi-norm on B3 pq• 

As it is also well-known one can replace E(f, L) by the error of some concrete 
approximation processes, e.g. de la Vallée-Poussin means. For us it will be sufficient to 
consider the following modified version of those means. Let /' be the function defined 
in (13). Then we put 

(bnf)(x) =	(^) J(k)	(n E N, I e Dr ').	 (15) 
kEZ 

Proposition 2 (see [6: Section 5.21 or [16: Subsection 3.7.4]). Let 0 < q 00, 1 
p<oo, and s>O. Then fEB q if and only if 

(n + 1)'	Ill - b0fIL II E £q. 

Moreover,
/ 00 

if iii + (	((n + 1)	If - flfiLPII) ) 
\n=O 

yields an equivalent quasi-norm on B3 pg 

3.2 Approximation of functions by interpolatory polynomials. In this part we 
consider matrices Y = { yn,k}nk which are almost regular of order a < a,. Thanks 
to the periodicity of the underlying function spaces we may consider also the following 
more general classes. 

Definition 3. We say a matrix Y = {yn,k}n,k satisfies the regularity condition 
(R.) if there exists a sequence {z} 0 of real numbers such that the matrix Y 
defined by

YnkYnkZn	(k0,...,2n;nENo) 

is almost regular of order a < a7, (cf. (9)). 
Of course, if the matrix satisfies the regularity condition (R,,,), then we have the 

equivalence of the discrete norm iIT iY , pII and the continuous norm iJT IL7,Ii on each 
level n and the corresponding constants do not depend on n (as before, if Y is a given 
matrix, then 1',, denotes its n-th row).
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To such a given matrix Y and to any periodic function I E C we associate a 
sequence of interpolatory polynomials I, by 

(If)(x) = 

where the fundamental functions tnk are defined to be 

sin "X 
2 
ynj\ 

) 
( 

II	 (Ynk Ynj\	
(xER,nE N, k=O. ..... 2n) 

	

jE{0,1 ,...,2n}\{k} sin 	2	) 

and £00 (x) = 1. 

Later on we need that the polynomials In are projections onto the set of trigono-
metric polynomials of order at most n, that means 

	

IT=T	 (16) 

for all trigonometric polynomials Tn of degree at most n (cf. [22: Volume 2, Chapter 
1O/p.l]). 

Theorem 3. Let 1 < p < 00. If the matrix Y satisfies the regularity condition 
(R.,,,,), then there exists a constant c , ,7 such that 

	

II! - 1 fIL Il	(1 + n) IF 1 1f IB' i II	 (17) 

holds for all f E B,' 1 and all n E No 

Proof. Let b be the function defined in (13), fip t ) t the corresponding smooth 
decomposition of unity from (14), and bf the de la Vallée-Poussin means introduced 
in (15). Let [] be the integer part of 11 . Then we have 

	

flnf = flb[!]f+In(,b[!Jff).	(18) 

For convenience we introduce the abbreviation 

ft (x) =	cot(k)f(k) e	(x E R, £ E N0 ).	 (19) 
kEZ 

Then, if 2'	<2r+1, the identity 

- f)(x) =	
(^EZ 

(k)( 1 f -f)A(k) e
£r—I  
CO 

1:=	(Wf - f)t+ri(X)
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holds. In this situation Theorem 2 yields 
00 

	

II'(f — 1 jf)ILpII lI'(f I[Jf)1+r_iILpM 
1=0 

<D	I'(f - bEif)t+r_iIYn,pM 

= D	11(1 -	]f)t+r-i IYn,PII. 

Next we make use of a simple observation. Any row Y. of a matrix Y satisfying the 
regularity condition (7Z) can be complemented to a matrix Z such that Y = Z, and 
Z0 C Z,,+ 1 ( > 1). Since we are going to apply Theorem 1 only minimal regularity 
properties of the corresponding sequences {zk} are needed. In fact, we use 

27r(k—)	 27r(k+) 

	

2 (2r+m + 21) + 1	Z(2r+m+2k	2 (2 r+m + 21) + 1 

for k = 0,. .. , 2(2+m + 2) and £ > 1 where m e N has to be chosen sufficiently large 
but independent of ii. Applying Theorem 1 with respect to Z2 '+- +21 we obtain 

Ri - 7l'[i]f)t+r—I 1 1'n,P11	-l'(!]f)t+r—I IZ2r+m+2,pII 
k 2m + i\ 

CP	2n+1 ) l(fif)t+r_iILpII 

and finally

00 

- 7b[!]f)ILpM	D, C I ( 2n + 1 )	
- l]f)1+r-1 ILM

(20) 
CO 

C > 2 (IIft+r-iI 1 pM + I([f)t+riILpM) 
1=0 

where C does not depend on Y, Z, I and n. By a Fourier multiplier assertion we know 

sup II0gILII :5 C II9I L II	 (21) 
nEN0 

for all g E L (cf. e.g. [16: Theorem 3.3.4]). Taking this into account (18), (20) and 
Proposition 2 are leading to

00
-I 

Ill - I0fL ^ C ((1 +	Ill IB	+ 2	2 "P' IIft+r—I l Lpll) 

c'( 1 + n ) - lIfIB 1II	 . 

for some constant c' independent of n and f I



678	K. V. Runovski and W. Sickel 

Remark 8. An inspection of the proof of Theorem 3 shows that we have even 
proved more: for f E B' 1 it holds 

n *IIf_ 1 fI L II_ O	asn — oo.	 (22) 

For this one has to use

IIf —ifILpII —O	asn-

and

P IIft+rI LpIH 0	asr — oo. 
t=o 

Furthermore, there is no hope to replace B 1 by B g with q> 1 in (17) and (22). That 
follows immediatly from Remark 7. 

Remark 9. Similar results but restricted to the matrix X = {xk},k (cf. (1)) 
are derived in Oskolkov [8], Prestin [12] and Sickel [17]. 

Shortly we discuss an extension to p = 00. 

Lemma 1. Let 1 p < oo. If Y is a matrix satisfying the regularity condition 
then

asn—*00	 (23) 

holds for all  E B,1. 

Proof. From Proposition 2 we know 

If — b1fIC II —O	asn —*oo 

for any f € BO q, with q < co. Because of B,' 1 -+ B, 1 this holds for those f we 
are interested in. Next we apply Nikol'skij's inequality (cf. [6: Subsection 3.3.5] or [16: 
Subsection 3.3.2]). It follows 

In(f — [ rL lf)IC II <c(1+n)In(f—tnf)ILpM. 

Remark 8 complements the proof I 

3.3 Characterization of periodic Besov spaces. Next we formulate and prove a 
counterpart to Proposition 2. 

Theorem 4. Let  <p< oo, O<q <00, and s> . Let Y be amatrix satisfying 
the regularity condition (R,,,). Then the following assertions are equivalent: 

(i) feB;q.
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(ii) I E C and

00, 

If(yoo)I 
+ (	

((1 + 
)IIf - IfILPIp)) 

<00.	 (24) 

(iii) I E C and

k  

f( 	
(n

CYOO)1+	 -In_f IL p11q
zO	 ) 

< 00.	 (25) 

(iv) f e C and

00 

If(yoo)I + (2ns 
I I2+ I —If -	

j jq
	

<00.	 (6) 

Proof. Step 1: First we show the finiteness of (24) - (26) if I E B q . We employ 
similar techniques as in the proof of Theorem 3. In view of the splitting in (18) and 
Proposition 2 for the finiteness of (24) it will be sufficient to deal with 

A 

= 
(((1 + n)3 II'(f - wf)ILM)) 

For completeness note that 

If(yoo)I	IIfI C II 5 c IIfI B00 00 11 - <c' f IB qII	 (27) 

because of s> (cf. Remark 7). Let d = min(1, q). To estimate J we apply 

00 

11'(f - tIf)IL	C	2 LP
 

t=0 

(cf. (20) and (21). Inserting this we obtain
4 

j
d < { 

00 2 r + I _.1	 / 
00 

-	i	2	2 IIft+r-1 LII) } 
r0 n=O 

<C2rSd (2P iii€+r-1i1ii) 
II
0011	 I 

C	2' 27 IIft+r-1 ILpIIdi3 

14

	^I 

c227 2r+t)3dIIf+r_iILpIId  

c'"B8 d JI	pqII
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because of s > . By the above argument that proves finiteness of (24). The corre-
sponding estimates in the cases (25) and (26) can be derived completely analoguous. 

Step 2: If (24) or (25) is finite, then for I E C it follows I E Bp5q by means of the 
characterization of Besov spaces given in Proposition 1. 

Step 3: Let f E C. Suppose that the expression in (26) is finite. We employ the 
same abbreviations as in proof of Theorem 3. Similar as there the following identity 
holds in LP: 

f(x) = 

CO

 (I2n+1_1f - I2_1f)A(k)(k)ei	y > 1) 
n€-1 kEZ 

because of
(I2+1_If—I2_1f(k) = 0	for IkI^!2' 

and	 = I (in II I Lpil; cf. [22: Subsection 10.7.141). Hence, 

Ift(x)I 5	 I(I2++1_If - 
n=-1  

Again we put d = mm (1, q). The Fourier multiplier theorem from [16: Theorem 3.3.41 
gives us

sup lR'2+'+'_1f - 12"+' _lf)!I T-'p11 :5 C 12'+1+'-1f - I2+i_ifILpI 

for some c > 0 independent of f . All together this proves 

4 

i(t 2 Is q 1ftlLp
 jjq	

i I2tsd II'2 ' 1 -1f - 
) q n—I	 I 

t

	 4 

2 —nsd (2(t+n)aq I2+,+,1j - I2fl+L_lfILPII) 
q 

(

III2j+ .—lf - I2_1fILM9) 

for some constant c independent off. It remains to estimate the term 1 1folLp Il. Again 
we employ

I	I0f+(I2+I_1f—I2n_1f)	(convergence in L)
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(cf. [22: Subsection 10.7.14)) which implies 

Ifo(z)I = 1(0) + 1(1) e" + 

3fIf(x)Idx

2,r 

JJIof (x ) I dx + 
n=o 

J(I+f - 12n—If)(x) dx 

	

(2)	(IofL +o II2n+1I1f _I21fILII)

a' 

	

<c(	

'00 
-	It IofI L II +	2'	2fl+'lf - I2n1f IL	1 1 

\n=o	 1) 
because of s > 0. The proof is complete I 

Remark 10. We proved a little bit more than stated. In addition we showed that 
the expressions in (24) - (26) form equivalent quasi-norms in Bq. 

4. Unconditional Schauder bases in Bq 

There are several different approaches to construct unconditional Schauder bases in func-
tion spaces. After the break-through contributions of Ciesielski and collaborators, cf. 
e.g. [1] and [2], in case of Sobolev spaces those problems were extensively investigated. 
What concerns Besov spaces we refer to Ropela [13] and Oswald [9] for unconditional 
spline bases in B q ([O, 1]) (non-periodic case), Peetre [10], Triebel [21] and Sickel [18] 
for unconditional bases of analytic functions in B q (R), Lizorkin [4], Orlovskij [7] and 
Schmeisser [15] for unconditional bases consisting of trigonometric polynomials for (gen-
eralized) periodic Besov spaces on the n-torus, or Meyer's book [5] for wavelet bases of 
several types. 

Our approach is motivated by formula (26) and is similar to wavelet-techniques. For 
this we need to supplement our conditions on the matrices Y. In view of (26) it will be 
sufficient for us to consider submatrices. For a strictly increasing sequence d = 
of non-negative integers we say the pair (Y, d) satisfies the regularity condition (R.p,a) if 
the conditions of Definition 3 are satisfied at least for the rows with index d. Moreover, 
formula (26) motivates to concentrate on sequences with the mesh refinement property 
M

YdnCYdn+i	n>O. 

To keep notations simple we put 

	

Yd = W,,	Ydk = W k,	W = {W} =
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The corresponding interpolatory polynomials we denote by 

2d 

Jf(x)=	 (n>0). 

If (Y, d) satisfies the mesh refinement condition (M), we have 

2d+i 

	

(J+ 1 f - Jf)(x) =	(1— Jf)(w(+l)k)Jd,(x) 

	

k=O	 (28) 
=

	

	 (1 - Jflf)( w(+l)k) Jd1(x). 
kEW+i\W 

Here k e W, 1 \ W, is used as an abbreviation instead of w(fl+I)k e W 41 \ W,. 
Because of IWn I = 24 + 1 we have IWn+i \ W,	2(4+i - 4). We introduce the 
functions

	

Itd0k	ifk=0,1,...,2d0andn=0 
£nk =

	

	 (29)

1n k' ifk'W\W_i and n>0 

with an appropriate counting in the second line. So we associate to every nodal point 
Wnk one fundamental function 

4.1 Characterizations of Besov spaces by general sequences of interpolatory 
polynomials. Unfortunately, the dyadic sequence {2' - 1}used in Theorem 4 does 
not satisfy the mesh refinement condition. For this reason we have to generalize our 
considerations from Subsection 3.3. First, observe the identity 

	

f = Id01 +>(Id+If_Idf)	(convergence inL)	(30) 

is valid for every f e C and each sequence {d} 0 of strictly increasing non-negative 
integers. Second, we take into account the following equivalent characterization of 
periodic Besov spaces. Therefore, instead of the decomposition of unity defined in (14) 
we could take also systems J^p t }00 0 satisfying the following conditions: 

(i) There exist two real numbers 8> 1 and a> 1 such that 

suppo c {e:	< S}	and	suppp	: 61 <	
<6t+a} ( > 1). 

(ii) For any j E No there exist a positive constant c3 such that 

sup sup bit k4 ')I c 
LEN0 tER 

(iii) There exist two positive constants A and B such that


	

0 < A <	€(x) <B < 00.
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Then

B;q = {f E Dr': IIfIB3 11* 
= (3g	

€(k)f(k)enIL) <} pq
£=O	

1:
IkEZ 

(q < oo) and 

B'= {i e Dr ': IIfI B II = sp8t	
t(k)f(k)eILpD 

<00 } . k€Z 

Moreover, IIfIB q II* yields an equivalent quasi-norm in B q (cf. [3] or [20] for details in 
the non-periodic case).	 - 

Having these properties established then one could follow the proof of Theorem 4 
step by step ending up with the following generalization. 

Theorem 5. Let  <p<cx, 0<q <oc and s>	Let Y be amatrix satisfying 
the regularity condition	Moreover, assume that {d} 0 is a sequence of strictly

increasing non-negative integers such that there exist 8 > 1 and a, 8 with 0 < c < 6 
such that	

d 
O<a<f</3<cx	(n^1).	 (31)


Then f belongs to B q if and only if f E C and 

- IdfILpM E £q. 

Moreover, the expression

'00 
IVdofI LpII +	

6nsq II'd+,f - IdfILp 
n=O	

q)	 (32) 

(modification if q = oo) yields an equivalent quasi-norm in Bg 

4.2 Unconditional Schauder bases in B " , q Based on Theorem 5 and the observa- 
tion made in (28) it becomes now easy to construct Schauder bases. 

Theorem 6. Let 1 < p < 00, 0 < q < 00 and s > . Let d = .{d} 0 be a 
strictly increasing sequence of non-negative integers which fulfils (31) for some 8 >. 1 
and 0 < a < /3 < cx. Further we assume that the pair (Y, d) satisfies the regularity 
condition (1?.,,,) and the mesh refinement condition (M). Let L . nk be the functions 
introduced in (29). Then the set 

£(Y, d) = {Cok k	0.... . ,2d0} U {nk :	= 1,2,... ,2(d - d_ 1 ), n	1  

yields an unconditional Schauder bases for the periodic Besov spaces Bq
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Proof. We know that every I E B q can be represented as 

I Id0 f +	(Id+1f - Idf) 

2d0	 (convergence in L)	(33) 

=	aokrok + j	j	a1C,f 

for suitable chosen ak E C (cf. (28)). The representation converges in I B qII, that 
is implied by Theorem 5 and q < cc. The stability of the representation in (33) (with 
respect to the cik) follows from Theorems 1 and 2; in fact, we have 

CP	 1	
RI - Jf)(w(+i) k)I 

	

+ + 1 kEW +i\W	
) 

a(+l)kr(+I)kLP 
kEW+,\W	 (34) 

= i Tdn+if - IdflLpM 

<D (2dfl+11 
+ 1	RI - Jnf)(w(i) k)I) . 

k E W, , \ W,, 

Because of

	

= (f - Jf)(w(+l)k)	 (35) 
unconditionality is implied by Theorem 5. From that uniqueness of the representation 
in (33) becomes obvious (cf. also the following remark, in particular (36)) I 

Remark 11. Again we have proved more than stated. If f E C is given by 
2d 0	 oo 2(d—d_,) 

f = >cQkLOk+>	j	YnkEnk, 

then
L _ 2d 0	p	 2(d,—d_,)	P 

(2d01+ 1	IaokIP) +	 + 1	lank ) }

	

(36) 

yields an equivalent quasi-norm on B q . Here 5 is the number for which d satisfies (31). 
Taking into account 

aok = f(wok)	(k = 0,1,... ,2d0.)

(w(+1)k—wflj 
-	 2n	 in 

a(n+1)k - f(W(n+1)k) -	f(w,)	H	 w,\	(37) 
jE{O,i ...,2d}\{t}	sin	

2 

(k=0,1,...,2(d1—d),n>0)
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(cf. (35)), we have obtained an explict formula for Ill IBq II (in the sense of an equivalent 
norm) using only weighted means of values off at the points {wk},k. 

5. Examples 
5.1 Uniformly distributed knots. We have to show existence of sequences d = 
f dn}n and of matrices Y satisfying the conditions of Theorem 6. A natural family 
of admissible matrices and corresponding sequences {d} 0 consists in the following. 
Having in one level a uniform distribution of knots, then we subdivide the corresponding 
interval to the right of each knot into e subinterval of equal length for some £ 2 2. That 
means we require

2d+1+1=e(2d+1)	(n>0) 

for some £ E N \ {1}. Then the number of knots in level n + 1 is given by a constant 
multiple of the number of knots of the preceeding level. Since the numbers dn have to 
be integers it follows from

d1 = £4 + 

that £ has to be an odd number. For simplicity we require in addition d0 = 0 and 
d 1 = 1. We end up with

4+1 = ?' -	(n 20). 

The knots are required to be equally distributed, hence given by 

w00=0	 )
(38) 

Wk	
2

?"'k	(k=0,1,...,3eT'-1.J 

The corresponding matrix W' satisfies the conditions (R.,,,a) as well as (M) if £ is an 
odd natural number larger than 1. 

5.2 Non-uniformly distributed knots. More general bases may be obtained by 
destroying the regular structure of these sets of knots in a certain controlled way. For 
instance, we may take 

Wnk = Wnk + 6nk (k E W, \ W_ 1 , 71 2 1). (39) 

There Enk E 10, 1) can be chosen arbitrarily. The only requirement with respect to 7nk 
consists in Ynk E N. To obtain the regularity of a corresponding matrix we need to have 

2ir
<a<ap .	 (40) 

Let r E N. Having this condition at hand we get 
2ir 

Wk — k+ek 3 

2ir	 2ir - - R— — + 1 (kr) + enk	8tnk 
3 

= W(n+r)(kt).
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As long as r - 1 <Ynk (40) implies 

27r(k - a)  27r(k + a) 
2d++1 <W(n+r)k< 

- 2dn+r + 1 

In case r - 1 = 7nk we have

W (n+r)k = W(n+r)(k!+I). 

If such a situation occurs, we include also W(n+r) (kP) in our knot sequence of level 
n + r. By an appropriate counting this modified sequence, now denoted by V(n+r) k, 
also satisfies

27r(k—a)	 27r(k+a) 
n .j i <V(n.r)k ^	, 

-n+r r i	£.Un+r 

Hence, the above construction leads to a family of matrices Vt = {vk},k satisfying 
the conditions (R..) and (M) and being different from the "regular" case Wt. 

Remark 12. The above examples show that there exist matrices V and sequences 
d satisfying the conditions of Theorem 6. Hoewever, of interest would be a more general 
stability result corresponding to the regular cases Wt (cf. (38)). 

Acknowledgement The authors would like to thank the referee for pointing out 
to us Theorem 1. 
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