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Convergence Results
for Discrete Trigonometric Collocation Methods
with Product Integration in Holder-Zygmund Spaces

L. Schroderus

Abstract. In this paper convergence results with respect to Holder-Zygmund norms - in-
cluding also maximum norm error estimates — are derived for the fully discrete trigonometric
collocation method presented earlier by Saranen and Vainikko for solution of boundary integral
equations on smooth closed curves. Approximation of the integral operator is based on product
integration for which the explicit Fourier representation of the main part is not needed, and
still the convergence of arbitrarily high rate for smooth solutions can be achieved. Saranen and
Vainikko have given their analysis with respect to Sobolev norms yielding results that do not
imply pointwise error estimates of optimal order. In this work the approach is based on the use
of Holder-Zygmund norms, and the optimal order maximum norm estimates are accomplished.
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1. Introduction

Saranen and Vainikko introduced in [12] for solution of boundary integral equations
a fully discrete trigonometric collocation method based on product integration. Dis-
cretization of the integral operator using product integration has been discussed before
by several authors (see, for example, the references given in [11: Section 3] and [12)).
But the approach of [12] gives us a new efficient scheme of applying this technique.
Previously, the operator was supposed to have a specific structure as a decomposition
of the main part with an explicit Fourier representation and a smoothing perturbation.
This form, however, is not necessary immediately available for operators appearing in
applications, and in order to use the discrete method the proper decomposition has to
be derived first. In [12] an expansion of more general form is now allowed, and the
product integration is applied directly without the exact Fourier representation of the
main part, making the method easier to employ in practical computations. Moreover,
it gives a high convergence rate, being even an exponential one in the case of infinitely
smooth solutions. In addition to solution of a single equation the method can naturally
be applied also to systems of boundary integral equations; an application to solving of
systems connected with the biharmonic clamped plate problem is presented in [2].
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The basic trigonometric collocation method was discussed in [3], and fully discretized
versions in [8] for operators of order 0 and in [1, 4, 11] for operators of arbitrary order.
For other full discretizations that have been presented for operators of some particular
types see, e.g., the references of [11, 12]. The method of [8] is actually a quadrature
method based on the use of integral representation of the operator and any Fourier
representation is not needed for applying the scheme. For application of the methods of
(1, 4] the previously mentioned specific decomposition of the operator is essential since
the main part is discretized based on its Fourier representation; the smooth perturbation
is replaced by the trapezoidal rule approximation. The method of [11] is applicable to
an operator of a form more general than it is the case in [1, 3, 4], but there also
the explicit Fourier representation of the main part is needed. The analysis of the
methods of [1, 8, 11, 12] is given with respect to Sobolev norms, and the maximum
norm error estimates of optimal order, which means the convergence of the same order
as for trigonometric interpolation, are not achieved. In [3, 4] Holder-Zygmund norms
are used, and pointwise error estimates of optimal order are derived for the methods
involved in the case of operators of integer order.

In this work we analyze the fully discrete trigonometric method of {12] analyzing it
by applying the Hdlder-Zygmund norms. Moreover, we present maximum norm error
estimates in the case of boundary integral operators of integer order. Concerning the
error analysis, we utilize the approach relying on the concepts of stability, consistency
and convergence known from (6, 8] and also from [9, 10, 11]. Our analysis is different
from that of [3, 4} especially because of the consistency estimates, describing the accu-
racy of approximation when discretizing operators by using product integration. The
methods of [3, 4] are included here with an extension that covers also e-collocation,
€ € [0,1). For basic results of Holder-Zygmund spaces, mapping properties of operators
with respect to these norms, and for some results of approximation theory, as well, we
refer to [3 - 5]. The statements of this work can be found in a less detailed form in [13)
where, however, approximation and consistency results are given without proofs.

2. Preliminaries

We consider the approximate solution of the equation

Lu=f (2.1)

where u and f are 1-periodic functions. For application of the discretization to be pre-
sented in the following, we need f to be continuous. A 1-periodic function (distribution)
u has the Fourier representation

1

u(t) = z -&(k)eik%rt with ﬁ(k) — /u(t)e“ikz”'dt.

kez 5

The form of the operator L to be described next covers elliptic boundary integral equa-
tions appearing in applications; for the interpretion of the representation, see [12]). The
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properties (2.2), — (2.2), of L following below imply the unique solvability of the equa-
tion (2.1).

Now, L is supposed to be a pseudodifferential operator of the form

L=Y4;, with (A;u)(t)= / ki(t, s)u(s)ds. (2.2),
=0 0

The main part Ap of L is assumed to have a 1-biperiodic kernel kg given by
ko(t,s) = s (t - s)ag(t,s) + kg (t = s)ag (t) (2.2)s

where aj € C°(R x R) is 1-biperiodic and a; € C2°(R) is 1-periodic, both functions
being infinitely smooth. For the Fourier coefficients of 1-periodic functions k¥ we assume
the existence of § € R and v > % such that

&5 (D) — P < clijP~

k() —sigao?| < o (7 (2:2).

As usual, C > 0 denotes here and in the following a generic constant. The coefficients
ag(t) := af(t,t) and a; are supposed to satisfy two conditions. The first one is the
ellipticity condition

(a3(1))* # (a5 (1)*  (t€R). (2:2)4
The second one concerns the winding number which for a function a is denoted by w(a)
and defined by w(a) = 7-[Aarg a(t))jo,1] where [Aarg a(t)](o,;) means the change of the
argument of the complex values a(t) when t increases from 0 to 1. We assume that

w(ag +05) = w(aj - a7). (2:2).
The operators 4; (1 <j < r) have biperiodic kernels k; of the form
kit s) = rj(t = s)aj(t,s)  with [&;(D <CUP (1#£0,1<5<r)  (22);
where the real values 8; are such that
Br<PBrar S ... S/ <B-3. (2.2),
Finally, we set for L the requirement
Lu=0 for ue CR) = u=0. (2.2)s

The analysis of the methods applied to the equation (2.1) is carried out with respect
to the Holder-Zygmund norms. To define these norms we present first some notations.
Let C™ (m € Ny) be the space of continuously m-differentiable 1-periodic functions
with the norm

- N d
m = J = = —,
llulle jz_%uv ullc  where |lullc = max|u(t)| and D = —
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Moreover, denote
suph>0~lm,';¢ f0<ax<l
[ulo = 1o3ullc
SUPpye e = fa=1
with
(Apu)(t) = u(t + k) — u(t) and Al = Apo .

Now, the Hélder-Zygmund space H? for real values ¢ > 0 is defined by
Ho={ue C’"I[D"‘u]a <o} (o=m+aeN+(0,1))

with the corresponding norm ||ul|ge = ||u||cm + [D™u)e. Introducing the notations A}
and A; forn € R as

(A;u)(t) =4(0)+ Z Ik'ﬂﬁ(k)eium

kez*

(Aju)(t) = Z Sign(k)|k|"ﬁ(k)e"‘2"‘

keZ*

(2.3)

where Z* = Z \ {0}, we extend the definition for non-positive values of ¢ by applying
the Bessel potential A}. The operator A} : H® — H®7" is an isomorphism when
o > max(0,7) (see Lemma 2.1). Choosing n such that n < ¢ < 0, we set

lullee = 1AZullze-n (2.4)

yielding with different values of 7 a family of norms || - |+ equivalent to each other.
Accordingly, we define the Hélder-Zygmund space H? for indices o < 0 to be the set of
1-periodic distributions u such that the norm (2.4) is finite.

In the following lemma we present some mapping properties of the Bessel potentials
A% (n € R). The property (2.5) and the invertibility result of A} are given in (3 - 5]
(without proofs - the results are classical and they are based on the works of Noether

and Stein (for accurate references see [5])). The estimates (2.6) (a related result is given
in {5: Lemma 4.7]) and (2.7) are verified in Appendix.

Lemma 2.1. For A} (n € R) given by (2.3) there holds
Ay . H® - H°™" (0 € R). (2.5)

The operator A} : H° — H°™" is an isomorphism for 0 > max (0,7) and consequently,
with the extension (2.4), for all o € R, such that the inverse is (A})™' = At . With

the notation K A
8ll; = l6(0)| + Z |k|#|¢(k)| (k€ R)

kez*

we have

Cllélae-ollullue  #fo>n

. . (2.6
Cllélilullae o <nv>lo—nl+1. )

6AZul[gon < {
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Furthermore, there holds
(845 = AZ8)ulyyon S ClBI Nl o= : (2.7)

for o € R and v > max (o -~ - 1|,|o — 1|)‘+ 2.

The next lemma gives the mapping property for the operator

(Au)(t) = //c(t — s)a(t, s)u(s)ds (2.8)a

where x is a 1-periodic function such that
DI <CHT (1 #0;7€R) (2.8)s

and a is a 1-biperiodic function (sufficiently smooth). For a with the representation

a(t,s) = Z ax(t)e'*? e

k€Z
we define the norm || - ||} by
lalls = llaolls + D [k[#llaxll;  (v,u € R).
k€Z*

Lemma 2.2. Let A be an operator of the form (2.8). Then the estimate
lAuflge-n < Cllall} Null o+ (2.9)

witho €R, §> 2, v> |0 —n|+1 and u > |o]| holds.

As shown in Appendix, analogously to [12], the following property of L can be
derived from Lemmas 2.1 and 2.2.

Theorem 2.3. For the operator L given by (2.2), — (2.2)s there holds that
L:H - H? (06€R) (2.10)

s an isomorphism.

To describe the approximate solution of the equation (2.1), we first define the N-
dimensional space Ty (N € N) of trigonometric polynomials

v(t)= Y we®™  (yeC)

€A N

N N
= - < — .
An {IGZ‘ 2<l_2}

.with .
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Let Q% (0 <& < 1) be the trigonometric interpolation operator such that
Quu=veTn: o) =u('f) (leAn) (2.11)

where u is a continuous 1-periodic function. For L given by (2.2) we apply a discretiza-
tion Ly of the form

LNu=Zr:Aj,N l

(Aonvu)(t) = / (t — ) [@w.¢ (a0(t, E)u(€))] (s) ds

| a<j<n) (2.12)
+az () / k3 (t = 5)[@u.u()] (s) ds

0

(A;nu)(t) = / k(= 5)[@n.¢ (a5t £)u(€))] (5) ds

/

Here @~ ¢ denotes the interpolation operator such that the trigonometric interpolation
is applied with respect to the variable £ at the points Jﬁ (j € AN). The equation (2.1)
is now solved by replacing L with Ly and collocating at the points J% (G € An),
which may equivalently be written as

un €Tv: QyLnun = Q% f. C o (213)

Finally, for analysis we define the trigonometric operator Py : H° — Ty (0 € R) by

(Pnu)(t)= a(k)e""?"'. (2.14)

kEAN

3. Lemmas

In this section we present lemmas needed in the analysis of (2.13). The first lemma gives
properties of the trigonometric operators Py and Q%. Concerning the estimate (3.1)
for positive indices we refer, for instance, to [5, 7] and the references given there; for
the remaining indices the result is immediate by (2.4). The estimate (3.2) is obtained
by extending in an obvious way the corresponding result of [3: Theorem 2.1] such that
in addition to € = 0 also the values ¢ € (0,1) are covered. The new estimates (3.3) and
(3.4), that give better results than the ones implied by the general property (3.2), are
verified in Appendix. Versions of the estimates (3.3) and (3.4) with respect to Sobolev
norms can be found in {10: Lemma 3.3], [11: Lemma 4.1] and [12: Propositions 4 and 5).
For Holder-Zygmund norms an approximation result related to (3.4) has been derived
in [5: Lemma 4.8] for Py in case of positive indices. From now on, we assume N > 2.
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Lemma 3.1. If r,0 € R with 7 < 0, then there holds
(1 — Pn)ullur < CNT~7ln Nljul|go. (3.1)
For 0 < 7 < 0 we have
I(7 = QN)ullu- < CN™=?InN|luye. (3.2)
Assume v € Ty. Then we obtain the estimates

1@~ ()l < CliglLlvlla- (v €R, v >|r]+1) (3.3)

and

I - @)@l <CNT N8Nl . (sriitoRomry) - (3:4)

We give next variants of the estimates (3.1) - (3.3) needed for showing the error
estimates with respect to the maximum norms. For this introduce the operators P+

and P~ by

(Pru)(t) = Y_a(k)e*™  and (P u)(t)= Y d(k)e™ ™.

k>0 k<—1

They can be written also in the form
1 - 21 -

with Ju = 4(0). The inequality (3.1)' below follows from the facts that P* Py = Py P%
and :
||(I = Pn)ullcr < CNT~%In N||u|| - (reNy,0€eR, 7 <0)

(see, e.g., [5, 7]). The essential result for proving (3.2)’, namely
IP*(Q% — Pn)ullcr <CN""*InN|ullue  (r € No, 0 € R, 7 < 0)

is shown in the proof of [5: Lemma 5.2] (there with € = 0; the extension for € € (0,1)
is obvious). The third result (3.3)' is shown in Appendix. ‘

Lemma 3.1'. Assume T € Ny and 0 € R with 7 < 0. Then
|P£(I = Pn)Yul|e < CNT=" 10 Niju]| ue @y
||P*(I - ij)ullc, < CN"%InN|u||g-. (3.2)

Moreover, for ¢ € C°(R) and v € Ty there holds

IP*Qn(gv)llcr < C(IP*vllcr + 1P vllcr). (3.3)
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The next lemma contains consistency properties for the approximation of an oper-
ator A: H® — H°#~% (5, c Rand § > 1) (see Lemma 2.2) given by

1

(Au)e) = [ st = shalt,)u(s)ds (KON < O, 1£0) (3.5)

0

where a is a sufficiently smooth 1-periodic function. Furthermore, let Ay be the ap-
proximation

(Anu)(t) = /K(t = 5)[@n,¢e(a(t, €)u(£))](s) ds. (3.-6)
0

Lemma 3.2. For A and An given by (3.5) and (3.6), respectively, there holds
|Q@~(A = ANl oo <CNT“lallisllvllze (v € Tn; 70 €R) (3.7)
where
v>|r-8]+1 and g > |B8l+|r - Bl + max (o — 7,0) + 2.
Especsally, if e =0 and
|&(1) = |l|’3| < Cclpf- (I # 0 for some v > 0), ' (3.8)
then 4
Q5% (4 = ANl s S CNTZ7 ™0 g5 ol e (2€5%)  (3.9)
with
/l > Iﬂl + IT _ﬂl +ma.x(a - T,O)+2+mm(1,7)
On the other hand, if € € [0,1) and in (3.5) a(t,s) =: a(t) depends only on t, then

QNAnv = Q3 Av (v € Tn).

Finally, if in (3.5) and (3.6) x(t) =1 (t € R) and a € C°(R x R), then we have for
any A €R

|QN(A = AN)V|l yous < CNP0llne (ve€Tn; 7,0 €R). (3.10)

Also these estimates are proved in Appendix. The corresponding results of [11:
Lemmas 3.4 and 3.5] and [12: Lemmas 2 and 3] in Sobolev spaces, and the related result
[4: Lemma 3.2] of (3.10) are referred to. From Lemma 3.2 we deduce the consistency
property for the approximation Ly of L, given by (2.12) and (2.2), respectively.

Theorem 3.3. Let L have the form (2.2), and assume thate = 0, or thate € (0,1)
and in (2.2)y a(t,s) = af(t) depends only on the veriable t. Then, we get for the
approzimation Ly given by (2.12) the estimate

1Q%(L = Lol o < CNTZoTmn@m =By (2€T2) (3.11)

where v > 0 is the value given in (2.2)..
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4. Stability and convergence

For the analysis of the fully discrete method (2.13) we use the stability result of the
corresponding trigonometric e-collocation method, € € [0, 1),

uly €Tw: QiLuly = Qf (4.1)

where L has the form (2.2), — (2.2).

Theorem 4.1. For sufficiently large values of N € N, the method (4.1) is stable,
1.e. there holds the estimate

Il < CIQ%Lvllrs (v >B,veETw) (4.2)

and consequently, the equation (4.1) is uniquely solvable if f € H°™P (o > B). More-
over, for B < 7 < o we obtain the convergence estimate

lu - ulyllar < CN™=In Nljullse. ' (43)

Proof. By [12: Theorem 2| (with the extension to all the values of ¢ € [0,1)),
the equation (4.1) is uniquely solvable for large enough values of N. We derive next
the stablility estimate (4.2). As shown in Appendix (see the formula (A.14)), by the
procedure of [12] applying the results of [6], we get for L the form ‘

L=c(A+B) (ceCZ(R),c(t)#0forteR) (4.4)

where A: H° — H°# (o € R) is such that Av € Ty for all v € Ty and B: H° —
H°—#%+8 (g € R) is bounded for some value § > 0. Hence we obtain

Lv=cQ%(c'QWLv)+c(I-Q%)Bv (veTn) (4.4)
which, when applying the invertibility of L, as well as (2.6), (3.2) and (3.3), yields
llvlin- < CllLv)lpe-s .
<c(IQuLolur-s + I - Q)Bolu-s)  (r> ).

< (@ Lellne-s + N*1a N|jo]ln- )

If N € N is sufficiently large (let us say, for instance, that N~¢In N < -2-1-6-.), then (4.2)
is implied. By (2.1) the equation Q% Lu$, = Q% Lu is equivalent to (4.1). By this, as
well as by (4.2) we get the error estimate

llu = uSelle < I(I = Pa)ullue + CIQUL(Py — IYulle-s (4.5)
if N is large enough. Then, we make use of the decomposition

& L(Py — I'u= L(Py — Nu + (I - Q%)Lu + (Q% — I)LPyu
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and the associated inequalities
|IZ(I — Pn)u||yo-s < CNT~7 In N|ju| o
I(T~ @%)Lulyop SCNT"N|ullye  (B<7<0).
I(Q% = LPnul| .-, < CN™= In Njull

Here the first two inequalities are direct consequences of (3.1) and (3.2) and the last

one follows from the representation (4.4) by (3.1), (3.2), (2.6) and (3. 4) (for N large
enough). Thus, we get

|QVL(PN — Iul| ;.- SCN"InN|ul|lg. (B<T<0). (4.6)
The convergence estimate (4.3) is achieved by (4.5), (3.1) and (4.6) B

Theorem 4.1 supplements the stability and convergence results of [3] and [4], where
(4.1) is considered for € = 0 in case of an operator L being of a form simpler than (2.2).
Recalling in this connection the analogy to [11: Theorem 3.6] and [12: Theorem 3}, we
.deduce next from the result of Theorem 4.1 and from the consistency property (3.11)
stability and convergence results.

Theorem 4.2. Assume that L has the form (2.2), and either € = 0, or € € (0,1)
and additionally in (2.2)y af(t,s) = a(t) depends only on the variable t. Assume also
f € H° P (g > p). Then, the equation (2.13) has @ unigque solution uy € Ty if only
N 1s large enough. Moreover, if B < 7 < g, there holds the asymptotic error estimate

llu — un|lzr < CNT~°InNiul|g-. (4.7)
Proof. By [12: Theorem 3] the equation (2.13) is uniquely solvable. Writing
QnLv=QNyLnv+QN(L—Ln)v  (veETy) (4.4)"

we obtain, for sufficiently large value of N, by (4.2) and (3.11)
ol < C{IQNLNvlIHr-s + |Q%(L ~ Ln)vllgyr-s }
< C{IQNLNvliHr-s + N7°||vlin-}

where § = min(1,7,8 — B;) > ;. Choosing again N large enough, we get from the
previous inequality the stability estimate

lolla- < CIIQNLNYlae-2 (v € Tn, 7> B). (4.8)
Application of (2.13) yields the equality
QNLN(Pnvu—un) = QN(Ln — L)Pyu+ QY L(Py — Iu (4.9)

which together with (4.8), (3.1), (3.11) and (4.6) implies
lv —unllar < WU = Pn)ulla-
+ C{IQN(IN — L)Pwullpr-s + |QY L(Py - Dl §
< CN™?InN|u|g-
(for B < 7 < o) which completes the proof B
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Now, by modifying the proof of Theorem 4.2, a result analogous to [4: Theorem
2.2/Formula (2.18)] with respect to the maximum norm can be shown.

Theorem 4.3. Let the assumptions of Theorem 4.2 be valid, and in addition, as-

sume that B € Z. Then, for sufficiently large value of N € N, we have for the method
(2.13) the error estimate

max(0,8)<r<o

e = unller < CNT=7 In Niju| 4 ( r€No, 7ER ) . (4.10)
Proof. The stability estimate
lwler < C(IPH @4 Lo)llcrs +IP- (@4 Lolc-s)  (*k)  (a11)
of the trigonorﬁétrié collocation method (4.1) follows, for sufficiently large N, from
loller < C(IP*(LoYlgr-s + 1P~ (Lo)llcr-s )
implied by [4: Lemma 5.1]. Moreover, we need the representation (4.4)', the estimates
[$ullcm < Cllullem (4 € CF°(R), m € No),

(3.3),(2.6),(2.7),(3.2) and (3.3). Essential for the stability result of (2.13) is the con-

sistency estimate

IP*Q%(L — Lno|

crs SCNT"Apllge  (v€Tn,0€R) (4.12)

with 0 < A < min(1,~, 8- 1), obtained by applying Theorem 3.3. Now, this inequality
with the choice ¢ = 7 and (4.11) yield

lvlle: < C(IP* Q4 Lnv)lors + 1P~ @y Lwolllcr-s) () (413)

if N is large enough. The convergence estimate (4.10) can be shown by modifying the
proof of Theorem 4.2. For estimation of

I1P*QNL(Py — Dullcr-s

we need the representation (A.13) (given in the proof of Theorem 2.2 in Appendix), and
particularly the equality

Qn(ag A} + agAg)(Pn — Iu
= Qnag(Pyv — QN)AJu + Qivag (Py — QN)Azu.

Hence, by the mapping property of B; in (A.13), we get (4.10) when applying (3.1),(3.1)’
-(3.3) and (4.12) 0
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5. Appendix

Next we give the proofs for lemmas and theorems of Chapters 2 and 3.

Proof of Lemma 2.1. Before verifying (2.6), (2.7) and (2.10) we give for ¢ > 0
and 0 = m + a with m € Z* U {0} and « € (0, 1] the results

l¢ullee < Clighaellullne (A1)
gulicm < Clidllem llullcm (A1)
which follow directly from
D@0 =3 (7)40 D and (gl < Clollulne
j=0

For estimation of ||¢u|| x-, in the case of ¢ < 0, we apply the invertibility of A} with a
choice of 7 = o — p, and consider only the norms || - [|g» (0 < p < 1). We write first

Af(exu) =ex y_ (max(L, |k +1]))"a(l)e = ex(Afu+ Cpeu)  (K€Z)  (A2)
leZ :

tk2nt

where ex(t) = e and

leZ

Cpru = Z [(ma.x(l, lk+1]))" — (max(1, |l|))”]ﬂ(1)e,.
By the formula |

e+ 07— " = nglT Ak D) (1#0,-k)
with £x; being a real value between |k + {| and |I| and A(k,1) = |k + 1| — |I|, we obtain
[k + 4" = [U|"| < Clklmax (Jk + 1"~ 1|=7, [} =) 1|7 '
| | ( ) (10—t
< Cl"* max (Jk+ 1175, 1117 1"
where the last upper bound is achieved by applying Peetre’s inequality
I <2 — kT Gk e 27 with j # k). (4.3)

Making use of the Holder inequality yields

1

H

|Caku|lc < C|k||"l+l{||1\,+,ullc + ( Z max (|k + 1|72, |l|_2)> ||A,+,u||1,,}

1£0,—k (A.4)
< ClEMHH|Afullc

In the same way we can show ||Ax(Cpiu)|lc < C|k||'l|+1||A;,A;,“u||c which implies

[Coru], < Cmax (1, |k||"|+l)[A;u]p (0<p<l)
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giving with (A.4)
ICakullze < CLEIMFH| ATl o (A.5)

Applying (A.1) with o = p a.nd
llexll e < 1+ 27°|k|° (A.6)
as well as (A.5), we get, based on the representation (A.2),
1A5 (exu)ls < Cllexllne (A7 ullae + ICrullne)
< C max (1, [K["HH2) | Adul| 1.
So, we obtain the estimate
A7 ()l < Clldllig 414l A7ullns (0<p <) (A7)
which with = ¢ — p implies for ¢ <0
lgulle = |AL_(8w)llte < Cllljo 1420145 pullze-
Consequently, for any v > |o| 4+ 1, when choosing p = "_”!%ﬂ, we have
¢ullne < Cligliliullae (o <0). (A.8)
Now, by (A.1) and (A.8), the estimate (2.6) follows:
Applying the expansion '
e 17 = 117 = i Ak, 1 + TN ea2age ) (1£0,-8)
where (i is between |k + I| and |I|, we have (A}eq — eoA,*,)u = 0 and, for k # 0,
A;ek - ekA; = ek(rysz;_l + Doi)

Dyxu = (|k]" — 1)2(0) — sign(k)((n — 1) + [k|7")(A;_u)(=k)e—¢
—2n Y sign(D|I"7 (k + Da()es
1(k+1)<0
+ 202D S A kPae.
1#£0,—k

Estimating in the already described way, we obtain || Dyrul|r» < C|k||"’1|+2||A,"_1u||Hp
(0 < p < 1) which further gives

(A76 = 98l o < COnoMBlsppappliullimens (O28). (49)
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Using AJA} = AY,, (A1 € R) we write

ASqe p(¢A+ A*d))u = (AL n—p% — ¢Av n- p)A;u + (‘fbA;—p - A;—pd’)u
and then by (A.9) obtain

IC8AT = AT é)ull .-,

< C{Ulio—gmrpraasallellne=s + 16lsppyzspliull— ] (420)

S Clll3 lull pro-s
with any ¢ € R and & > max(|o —n ~ 1],|o — 1|) + 2, verifying (2.7) in the case of A}.
To show (2.7) for A, (n € R) we consider first
AF(Ager —exAj)u = exEqp  with  Epgu = -2 z sign()|k + {|"a(1)e;.
I(k+1)<0
Again by (A.1) and (A.6), and by
IEakullre < CIEITTFAL_ullws (0<p<1)
it follows . '
||A;(A5¢ — @Aq )u”H, < C”¢”|‘r)—ll+2+p”Aj]-—lu”H’
which implies
IA5 6 - A ully. < Clol3 lulle-s (@ €RASJo—1]+2).  (A11)
Now, decomposing
(A7 = 6A7)u = Ag (ATé - 9AT)u + (Mg ¢ — $A5)ASu
and applying (A.10) and (A.11) gives
(A7 = eA0)ul e mr S ClSIS Nlullo-r (v > max(lo — 5 = 1], |0 - 1]) +2)
and thus the proof of (2.7) is complete U

Proof of Lemma 2.2. For proving (2.9) we utilize the representations

kGZ kEZ

a(t,s) = Zak(t)ek(s), Au = ZakK(eku), (Ku)(t) = /;c(t — s)u(s)ds

and show

K (exu)llme-n < C(max(L, kD) lullgors (6> L, 4> |o]). (4.12)
This estimate is achieved by using
A}, (Kexu) = ean(1+k)(max(1 |l+k|))° "Pa(l)er,
€z
(A.3), the Holder inequality and (A.6). From (2.6) and (A.12), we get
lAullye-n < Clalllillullyess (6> 5, v > lo—nl+1, 1 > |o])

and consequently, the statements of this lemma are verified i
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Proof of Theorem 2.3. By (2.2); we have, for 1 < j <r, |&;()] < Cl|F~% (I #
0) with v; = 8 — B; > . Thus, (2.9) implies that ||A;u| ge-s < Cllull ye-5; (0 € R)
for some value §; > 0. Therefore, §' = min; <;j<r(6;) > 0 exists such that

Y A;: H° - HO P+ (5 €R)

Jj=1

is bounded. As shown in {12], Ag decomposes to the form

Ap = Aor + Aoz
with
1
Aoy = adA} + a5 Ap and (Ao2u)(t) = /kog(t,s)u(s) ds,
_ 0
where
koa(t,s) = Koa(t — s)e(t, s) + k3y(t — s)ag (t) + £3,(t — s)ag (¢)
with H(t.5) +(1)
_ag t,s) —ag o
c(t,s) = W € Cl (R X R)

and, for [ # 0,
kbo(D)] S ClPF=mine ey < CUP~Y, k3, ()] < CpPY

where v > § is given by (2.2).. So, by (2.9), for some value § € (0, min(y,1) — 1), the
operator Agz : H” — H°"#*% (5 € R) is bounded. Gathering these results together,
we obtain the representation

L=A4y +B

Aoyt =afAt +aiA;: H® - HF
0T R8T Rl (0 €R) (A.13)
B]=A02+ZAJ'2HU—>H0_‘3+6

=1

with § = min (§',8) > 0, verifying the mapping property of L. Next we present a further
decomposition of L that implies L: H° — H°~# (o € R) to be isomorphic. Moreover,
the form is crucial for the proof of Theorem 4.1. A detailed discussion can be found
in [6] and in (3, 7, 12]. Because of the assumptions (2.2)4 and (2.2). we have for the
quotient 7+ with 0, = af + a5 and.o_ = af — ag the factorization 2+ = c,c_ such
that

o € {c€CPM)E) =0 (1<-1)} and c_€{ceCOPR))=0 (I>1))
‘allowing for Ag) the representation o

AO] = U_C+/i + Bg
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with

A= (P*c_ + P'c:')AE

and
By = [o_cy(c. Pt — P*c_)AE] + [o-cylci'P - P'c;l)AZ] —ag JAS

where Ju = 4(0). Here A: H® — H°# (¢ € R) is an isomorphism with the property
Av € Ty for all v € Tn. Furthermore, by Lemma 2.1 it holds By : H° — H° A+l (o ¢
R). Hence we finally get when denoting ¢ = o_c, and B = ¢~!(B; + B;) the form

L=c(A+B) (A.14)

where ¢ € C®(R) with ¢(t) # 0 for all t € R and B: H® — Ho-F+min(&1) (5 ¢ R).

Assume now that Lu = 0. We may write this equation by (A.14) and by the
properties of A and B equivalently in the form u = A™'Bu. If u € HC for some value
of o € R, then u € H7+t™ir(&1) 'and consequently u € C(R). Therefore, by (2.2)x we
deduce u = 0, and the proof is complete B

Proof of Lemma 3.1. We start by showing (3.4), since (3.3) is a direct conse-
quence of (3.4) and (2.6). Assuming ¢ = >,z é(k)er and v = 37 -\ O(pley, we

write
MA@y -Dov= D dkwio+ Y bk, (A.15)
k1< (k>4
with
> o(p) [|p+ k—N"e? e, xon —|p+ k|"€p+k] - ifo<k<
EA
ke = > i(p) [|p+ k4 N|7%e ™e, kin — |p+ kl"ep+k] if —& <k<o
€A
P:k5f¥
0 ifk=0
and

wz,e = Z o(p) [(ma.x(l, |npk|))"e”?"2"e,,pk — (max(1,|p + k|))"e,,+k]
PEAN

where nyx € Ay and lpx € Z are such that p 4+ k = np + I,k N. For estimation of
lwk |iwe (0 < p < 1)in the case of 0 < k < & we decompose

Apeprr = (Anep)ene™™ + e(Anex)

Aneptk-N = —(Dre—plezptk-N (4.16)
= (Ane—p)erprk-N + e_p(Anezpri-nN)

i(p+k—N)2mh

= —(Aneplek—_nNe + e_p(Anerpik—n)-
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Moreover, we need the inequalities
[p+k— NI SCN"p|* and [p+k["< CN"™*p}* (nueR) (A1)

implied by the facts that when p + k > % and 0 < k < ?, there holds

N N 3N N N N
— < k- N —_ k| < — — < ——k<p< —. .
7 Slp+ <5 <lp+kls— and F<o-k<p<.  (418)
Since |2p + k — N| < k, we obtain by (A.16), (A.17) and (A.6) that
lwk ellre < CNT7#IKH2)| A ko] e (A19)

for0< k < 1—;’-. Estimate (A.19) for values —% < k < 0 can be shown very analogously.
In a straightforward way, when applying (A.3), (A.16) (the first equality) and (A.6), we
achieve the estimate

ok clles < € (max(L, kD)"Y A S, (6> §). (420)
Consequently, from (A.15), (A.19) and (A.20) it follows

[A+(Q% — Doy, < CNT#||g|I3IIAL V]| 1o (A.21)

with A > || + max (x —1,0) + 1+ p. Choosing =7 — p and u = o — p with p € (0,1)

such that .
ifr>0

p<{2(u+r—max(o—7,0)—l) ifr <0

=

we get

(@~ — Dévllu- < CIIAT_(QN — Dévl| e
SCNTClRL NAZ-pollws (7,0 €R)
S CNTCIglL lvlime

with v > |7| + 1 4+ max (o — 7,0) verifying (3.4). The estimate (3.3) is now obtained
from

1@~ (ev)lla- < Q% — Dvllu- + lI¢vlla- < ClISIL ollar (v > |7 +1)
where (3.4) as well as (2.6) have been used B

Proof of Lemma 3.1'. Very analogously to the proof of (3.4), we can show
107 P*(@% = Dévlle < Cligl;llDvllc (€ No, v € Tw).
Additionally, we need the inequality
ID? P*(gv)||c < Cligll5ar (IP*vlles + 1P vlles) (5 € No, v € Tw)

implied by (2.7) and (A.1)'. The estimate (3.3)' now follows from these two estimates il
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Proof of Lemma 3.2. Denoting a,(t) = fol a(t,s)e ™" ds (¢t € R) we have

(AN~A)v—Q‘[ Yo owz Y akz,u]

1k|<N/4 |k|>N/4
with
> ;EAN [k(p +k—-N)-k(p+ k)e‘Z"‘]ﬁ(p)ep+k—N f0<k< %
p+k>

1 —_ .
e TV sean [k(p+ k+N)-ik(p+ k)e"2”‘]ﬁ(P)6p+k+N if —& <k<o0

Pk~

and with

o= Y (R(npr) = &(p + K2 ) 5(p)en,,

PEAN

where npx € Ay and Iy € Z* are as described before. Using (3.3), we obtain
QN(AN — A)vlly--s .
. . A.22
I IR A ERRS SR E P

|k|[<N/4 |k|>N/4

with v > | — | + 1. When determining the upper bound for ”2,1C,CIIH7—B, it is most
essential to consider

- . N N
A(p+k—-N,p+k,e) for OSkSZ,p+k>?
. . N

Alp+k+n,p+k,—¢c) for ——4—§k<0,p+k§—5

=

with the notation A(l,m,z) = &(I) — &(m)e'2™*. Assume again 0 < p < 1. In general,
we have, by (3.5) and (A.17), for the first expression

~ y N
A+ k- Np+ke] SCNowple (P958) (429)

and, analogously,

-~ . . . 4
|A(p+ k+ N,p+k, —s)l < CN"‘”*"lpl""’ (,,HEKO) . (A.24)

Therefore applying again (A. 17) (A 16) (as well as the analogous results for the values
—%& <k <0) and (A.6) we obtain

- IS
lzkellr-s < CIAT_5_p2k e < CNT Ik lollne (MSE).  (a25)

In the special case of ¢ = 0 and (3.8) being valid, we can improve the estimates of

(A.23) and (A.24). Namely, for 0 < k < % and p+ k > %’— there exists a value &,
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between N —p — k and p + k such that [p+ k — N|f — |p + k|f = ﬂ{f{l(2p+2k — N).
Consequently, by (3.8) we get, when estimating as before,

|A(p +k—N,p+ k’0)| < CNﬂ—min(v.l)—a+p|k| lp|°=* (:::Ei) )
2

Similarly, we have

|A(p+k + N, p + £,0)| < CNO-minr=etopyjplo=p (~RSk<p),
- 2

As a consequence of the previous two estimates, we can deduce
Izkollzr-a < CNTO°[E**?|lv||ye (1,0 € R) (A.26)

with § = min (7,1). Because of
|A(rpe,p + K, pae)| (max (1, Inpil) ™77 < CNT=7 8 k] (max (1, [pl)) "

for |k| > &, with > |B| + |7 — B| + max(c — 7,0) + 2 + 6 (also the equality is valid if
T > f3), there holds
N2k ellir-s < N7 k|H|[v]| e (A.27)

Thus the estimate (3.7) follows from (A.22) by (A.25) and (A.27), and the estimate
(3.9) by (A.26) and (A.27). Finally, in the case of x(t) = 1 (¢ € R) the condition
|&(D] < ClI|” (I #0) is valid for any r € R. Assuming a € C°(R x R) the application
of (3.7) gives

Q5 (4w =AYl .-y < CNolle—psrr  (AE€R,T€R)

and hence choosing r = ¢ — 7 + A + 3, we obtain (3.10)
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