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Convergence Results 
for Discrete Trigonometric Collocation Methods

with Product Integration in Hölder-Zygmund Spaces 
L. Schroderus 

Abstract. In this paper convergence results with respect to Hölder-Zygmund norms - in-
cluding also maximum norm error estimates - are derived for the fully discrete trigonometric 
collocation method presented earlier by Saranen and Vainikko for solution of boundary integral 
equations on smooth closed curves. Approximation of the integral operator is based on product 
integration for which the explicit Fourier representation of the main part is not needed, and 
still the convergence of arbitrarily high rate for smooth solutions can be achieved. Saranen and 
Vainikko have given their analysis with respect to Sobolev norms yielding results that do not 
imply pointwise error estimates of optimal order. In this work the approach is based on the use 
of Hölder-Zygmund norms, and the optimal order maximum norm estimates are accomplished. 
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1. Introduction 
Saranen and Vainikko introduced in [12] for solution of boundary integral equations 
a fully discrete trigonometric collocation method based on product integration. Dis-
cretization of the integral operator using product integration has been discussed before 
by several authors (see, for example, the references given in [11: Section 3] and (12]). 
But the approach of [12] gives us a new efficient scheme of applying this technique. 
Previously, the operator was supposed to have a specific structure as a decomposition 
of the main part with an explicit Fourier representation and a smoothing perturbation. 
This form, however, is not necessary immediately available for operators appearing in 
applications, and in order to use the discrete method the proper decomposition has to 
be derived first. In [121 an expansion of more general form is now allowed, and the 
product integration is applied directly without the exact Fourier representation of the 
main part, making the method easier to employ in practical computations. Moreover, 
it gives a high convergence rate, being even an exponential one in the case of infinitely 
smooth solutions. In addition to solution of a single equation the method can naturally 
be applied also to systems of boundary integral equations; an application to solving of 
systems connected with the biharmonic clamped plate problem is presented in [2]. 
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The basic trigonometric collocation method was discussed in [3], and fully discretized 
versions in [8] for operators of order 0 and in [1, 4, 111 for operators of arbitrary order. 
For other full discretizations that have been presented for operators of some particular 
types see, e.g., the references of [11, 121. The method of [8] is actually a quadrature 
method based on the use of integral representation of the operator and any Fourier 
representation is riot needed for applying the scheme. For application of the methods of 
[1, 4] the previously mentioned specific decomposition of the operator is essential since 
the main part is discretized based on its Fourier representation; the smooth perturbation 
is replaced by the trapezoidal rule approximation. The method of [11] is applicable to 
an operator of a form more general than it is the case in [1, 3, 4], but there also 
the explicit Fourier representation of the main part is needed. The analysis of the 
methods of [1, 8, 11, 12] is given with respect to Sobolev norms, and the maximum 
norm error estimates of optimal order, which means the convergence of the same order 
as for trigonometric interpolation, are not achieved. In [3, 4] Hölder-Zygmund norms 
are used, and pointwise error estimates of optimal order are derived for the methods 
involved in the case of operators of integer order. 

In this work we analyze the fully discrete trigonometric method of [12] analyzing it 
by applying the Hölder-Zygmund norms. Moreover, we present maximum norm error 
estimates in the case of boundary integral operators of integer order. Concerning the 
error analysis, we utilize the approach relying on the concepts of stability, consistency 
and convergence known from [6, 8] and also from [9, 10, 11]. Our analysis is different 
from that of [3, 41 especially because of the consistency estimates, describing the accu-
racy of approximation when discretizing operators by using product integration. The 
methods of [3, 4] are included here with an extension that covers also E-collocation, 
E E [0, 1). For basic results of Hölder-Zygmund spaces, mapping properties of operators 
with respect to these norms, and for some results of approximation theory, as well, we 
refer to [3 - 5]. The statements of this work can be found in a less detailed form in [13] 
where, however, approximation and consistency results are given without proofs. 

2. Preliminaries 

We consider the approximate solution of the equation 

Lu = I
	 (2.1) 

where u and f are 1-periodic functions. For application of the discretization to be pre-
sented in the following, we need f to be continuous. A 1-periodic function (distribution) 
u has the Fourier representation 

U(t) = > Ü(k) th27nt	with ft(k) = J (t)27rtdt. 

kEZ	 .	 0 

The form of the operator L to be described next covers elliptic boundary integral equa-
tions appearing in applications; for the interpretion of the representation, see [12]. The
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properties (2.2) a - (2.2) h of L following below imply the unique solvability of the equa-
tion (2.1). 

Now, L is supposed to be a pseudodifferential operator of the form 

L I 
j=o

: Aj	with (Aju)(t) 
= f k(t, s)u(s)ds.	 (2.2)a 

The main part A0 of L is assumed to have a 1-biperiodic kernel k0 given by 

	

ko(t,$) = ic(t - s)a(t,$) + r. - (t - .$)a(t)	 (2.2)b 

where a E C'°(R x R) is 1-biperiodic and a E C100(l) is 1-periodic, both functions 
being infinitely smooth. For the Fourier coefficients of 1-periodic functions ic we assume 
the existence of 0 E R and 7> 1 such that 

k(1) -llI ^ C1110—

	

(10 4	 (2.2) 
k(l) - sign(1)I1I	C1 

As usual, C > 0 denotes here and in the following a generic constant. The coefficients 
a(t) a(t,t) and a are supposed to satisfy two conditions. The first one is the 
ellipticity condition

(a(t))2 j4 (a(t))2	(t E IR).	 (2.2)d 
The second one concerns the winding number which for a function a is denoted by w(a) 
and defined by w(a) = [Larg a(t)] 1o ij where [arg a(t)] 10,1 1 means the change of the 
argument of the complex values a(t) when t increases from 0 to 1. We assume that 

w(a + a) = w(a - a).	 (2.2)e

The operators A (1 j <r) have biperiodic kernels k, of the form 

k, (t, .$) = K(t - .$)a,(t, s)	with I&(l)I < C1' (1 54 0, 1	j < r)	(2.2)j

where the real values Pj are such that 

flr/9r—i !S •.. 	01 </3.	 (2.2) 

Finally, we set for L the requirement 

Lu = 0 for u E C'°(R) = u = 0. (2.2)h 

The analysis of the methods applied to the equation (2.1) is carried out with respect 
to the Hölder-Zygmund norms. To define these norms we present first some notations. 
Let Ctm (in E N0 ) be the space of continuously rn-differentiable 1-periodic functions 
with the norm 

IIuIIc'	
d 

i: II D3u IIc	where Il u lic = max Iu(t)I and D = - 
di 

j=0
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Moreover, denote
SUph>Q h III-11. ifO<a<1 

IAuIIc if a = 1 SUPh>O	,i 
with

	

(/.hu)(t) = u(t + h) - u(t)	and	L = A., o Lh. 

Now, the Holder-Zygmund space H for real values a > 0 is defined by 

	

= ju e cm (D-u],, <}	(a = m + a E No + (0,1]) 

with the corresponding norm II u IIH = II u IIc + [Dm U ] a . Introducing the notations 
and A for 77 E R as

	

(Au)(t) = 11(0) +	IkIT?11(k)e2rt 
k EZ 

(Au)(t) =	sign(k)IkIu(k)e2t	
(2.3) 

k EZ-

where Z = Z \ {O}, we extend the definition for non-positive values of a by applying 
the Bessel potential A. The operator A : H --+ H° is an isomorphism when 17
a > max (0, 17) (see Lemma 2.1). Choosing tj such that 77 <a 0, we set 

II u IIH = II A ; u IIH . - ,,	 ( 2.4) 

yielding with different values of 77 a family of norms [j' equivalent to each other. 
Accordingly, we define the Hölder-Zygmund space H for indices a 0 to be the set of 
1-periodic distributions u such that the norm (2.4) is finite. 

In the following lemma we present some mapping properties of the Bessel potentials 
A (77 e R). The property (2.5) and the invertibility result of A are given in [3 - 5] 77
(without proofs - the results are classical and they are based on the works of Noether 
and Stein (for accurate references see [5])). The estimates (2.6) (a related result is given 
in [5: Lemma 4.7]) and (2.7) are verified in Appendix. 

Lemma 2.1. For A (77 E R) given by (2.3) there holds 

H° -	 (a E R).	 (2.5) 

The operator A : H - H'1 is an isomorphism for a > max (0, 17) and consequently, 
with the extension (2.4), for all a e R, such that the inverse is (A)' = At,,. With 
the notation

IIII=I(°)I+	k'(k)	(/1ER) 
k EZ 

we have

(CIIIIH_IIuhIH	if a >17	
(2.6) IIAuIIH-	C[u	if a <_ 77, v> I 	771+1.
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Furthermore, there holds 

11 (OA' - A ) u MH_ ,, ç C 11011: IkIIH'_'	 (2.7)

for a . E R and ii> max(Ia -,q- 1 1,1(7 - 1) + 2. 

The next lemma gives the mapping property for the operator 

(Au)(t) = / c(t - s)a(t, s)u(s) ds	 (2.8)a 

where n is a 1-periodic function such that 

k(1)I < Cl"	(1	0; 77 E R)	 (2.8)b

and a is a 1-biperiodic function (sufficiently smooth). For a with the representation 

a(t, s) =	ak(t)etk2r3
kEZ 

we define the norm II	by 

= II aoII +	I k III akII	(ii,i € IR). 
k E Z 

Lemma 2.2. Let A be an operator of the form (2.8). Then the estimate 

II Au IIH_ ,, :5 C[a' Il u IIH+ 6	 (2.9)

with a € R, 6'>, i> 1 - 'ii + 1 and fL> J ul holds. 

As shown in Appendix, analogously to [12], the following property of L can be 
derived from Lemmas 2.1 and 2.2. 

Theorem 2.3. For the operator L given by (2.2) a - (2.2)h there holds that 

L: Ha - H°	(aE IR)	 (2.10)

is an isomorphism. 

To describe the approximate solution of the equation (2.1), we first define the N-
dimensional space TN (N € N) of trigonometric polynomials 

V(t) = E viel27rt	(v i € (C) 
lEAN 

with.	-
AN= {i €	_ <1 :c	

}.
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Let Q (0 <E < 1) be the trigonometric interpolation operator such that 

Qu = v E TN:	= u() (1 E AN)	 (2.11) 

where u is a continuous 1-periodic function. For L given by (2.2) we apply a discretiza-
tion LN of the form 

L N U = >2Aj,N 

(AO,Nu)(i) =
	

- s) [QN,(ao( t , e)u(e))J (s) ds 

+ a (i)
/
 (t - s) [QN,u()] (s) ds 

(Aj,Nu)(t) = / ic(t - s) [QN,( a ( t , e)u (e))] (s) ds

(1 <j <r).	(2.12) 

Here QN, denotes the interpolation operator such that the trigonometric interpolation 
is applied with respect to the variable e at the points 1 (j E A N) . The equation (2.1) 
is now solved by replacing L with LN and collocating at the points 1 (j E AN), 
which may equivalently be written as 

UN E TN	Q,TL NUN = Qf .	 ( 2.13)

Finally, for analysis we define the trigonometric operator PA, H7- TN (cr E R) by 

(PNU)(t) =

	

	 (2.14)
kEAN 

3. Lemmas 

In this section we present lemmas needed in the analysis of (2.13). The first lemma gives 
properties of the trigonometric operators Pry and Q '. Concerning the estimate (3.1) 
for positive indices we refer, for instance, to [5, 7] and the references given there; for 
the remaining indices the result is immediate by (2.4). The estimate (3.2) is obtained 
by extending in an obvious way the corresponding result of [3: Theorem 2.1] such that 
in addition to e = 0 also the values e e (0, 1) are covered. The new estimates (3.3) and 
(3.4), that give better results than the ones implied by the general property (3.2), are 
verified in Appendix. Versions of the estimates (3.3) and (3.4) with respect to Sobolev 
norms can be found in [10: Lemma 3.31, [11: Lemma 4.1] and [12: Propositions 4 and 5]. 
For Hölder-Zygmtmd norms an approximation result related to (3.4) has been derived 
in [5: Lemma 4.8] for Pry in case of positive indices. From now on, we assume N > 2.
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Lemma 3.1. If r,a E  with r a, then there holds 

II( I — PN)u IIH	CN1nNIIuII H .	 (3.1) 

For 0 < r <a we have

11( 1 - Q)uIIH	CN	h1Nz1fl hq.	 (3.2) 

Assume v E TN. Then we obtain the estimates 

IIQ(Ov )IIn	Cqv	(r e R, ii > IT  + 1)	(3.3) 

and

11( 1 - Q)(cbv)IIH	 (v>IrI+1i(a_r,O))	(3.4) 

We give next variants of the estimates (3.1) - (3.3) needed for showing the error 
estimates with respect to the maximum norms. For this introduce the operators P+ 
and P by

(Pu)(t) =	ü(k)ek2	and	(Pu)(t) = 
k>O	 k<-I 

They can be written also in the form 

P 1 =(A+A+J)	and	P-=(A—A—J) 

with Ju = t(0). The inequality (3.1)' below follows from the facts that P 1 Piv = PNP* 
and

11(1 - PN)uIIc	CN T ln N II u IIH	(r E No, a € R, r <a) 

(see, e.g., [5, 7]). The essential result for proving (3.2)', namely 

IIP*(Q - PN)uIIc :5 CNTlnN II u IIH	(r EN0, a € R, r <a) 

is shown in the proof of [5: Lemma 5.2 (there with e = 0; the extension for e € (0,1) 
is obvious). The third result (3.3)' is shown in Appendix. 

Lemma 3.1'. Assume T E No and a E R with r < a. Then 

II P (I - PN)UMC 	CNT lnN II u IIH	 (3.1)' 

- Qv)u IIc	CN'	lnNIIuIIH.	 (3.2)' 

Moreover, for 0 € COO (R) and v E TN there holds 

II P Q v)IIc <C(IIPvIIc + IIPvIIc) .	 (3.3)'
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The next lemma contains consistency properties for the approximation of an oper-
ator A: H - H 6 (c,13 E IR and t5> ) (see Lemma 2.2) given by 

(Au)(t) 
= I 

ic(t - s)a(t, s)u(s) ds	( I k( l ) I :5 C111 0 , 1	0)	(3.5) 

where a is a sufficiently smooth 1-periodic function. Furthermore, let AN be the ap-
proximation

	

(ANU)(t) = j r* - s)[QN,(a(t,)u())](s)ds.	 (3.6) 

Lemma 3.2. For A and AN given by (3.5) and (3.6), respectively, there holds 

IQI(A - AN)v IIH_Ø :5 CNT °II a II' j I v IIH	(v E TN; T, E R)	(3.7) 

where
v>Ir—fl+1	and	iL> 181 + IT -,31 + max (r - r, 0) + 2. 

Especially, if e = 0 and 

k(l) - IlI < Cu	(154 0 for some y > 0),	 (3.8) 

then
IQ(A - AN)vIIH_ < CNT_c_m{} ll1Iu:uIvIIH

	(VETN 

with
ji> 101 + IT - fl + max (o, - T,0) + 2 + min (1,y). 

On the other hand, if e E [0, 1) and in (3.5) a(t, s) =: a(t) depends only on t, then 

QTANV = Q' Av	(v E TN). 

Finally, if in (3.5) and (3.6) K(t) = 1 (t E R) and a E C°(R x R), then we have for 
any A E IR

	

- AN)vII11_	CNv 1	(v e TN; r,a E R).	(3.10) 

Also these estimates are proved in Appendix. The corresponding results of [11: 
Lemmas 3.4 and 3.51 and [12: Lemmas 2 and 31 in Sobolev spaces, and the related result 
[4: Lemma 3.2] of (3.10) are referred to. From Lemma 3.2 we deduce the consistency 
property for the approximation LN of L, given by (2.12) and (2.2), respectively. 

Theorem 3.3. Let L have the form (2.2), and assume that e = 0, or that E E (0, 1) 
and in (2.2)b a(t,$) = a(t) depends only on the variable t. Then, we get for the 
approximation LN given by (2.12) the estimate

I	\ 
IIQ(L - LN)vI11_1,	cNr_0_mmn(1$_t)IIvIIH	VETN (3.11) 

where y> 0 is the value given in (2.2).
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4. Stability and convergence 

For the analysis of the fully discrete method (2.13) we use the stability result of the 
corresponding trigonometric c-collocation method, e E 10, 1), 

u E TN: Q'Lu = Q,f	 (4.1)

where L has the form (2.2)a - (2.2)h. 
Theorem 4.1. For sufficiently large values of N E N, the method (4.1) is stable, 

i.e. there holds the estimate 

I'IIH	C IIQ Lv Ily- p	(r >,8, V E TN)	 (4.2) 

and consequently; the equation (4.1) ' is uniquely solvable if f E H C	(a > 8). More-



over, for /3 < T a we obtain the convergence estimate 

II u - u IIH	cNr_ lnNIIuII H .	 (4.3) 

Proof. By [12: Theorem 2] (with the extension to all the values of c E [0, 1)), 
the equation (4.1) is uniquely solvable for large enough values of N. We derive next 
the stablility estimate (4.2). As shown in Appendix (see the formula (A.14)), by the 
procedure of [12) applying the results of [6), we get for L the form 

L = c(A + B)	(c E C°(R), c(t) 0 0 for t E R)	 (4.4) 

whereA:H— H'	(aER)is such that AvETN for all vETN and B:Ha,
(a E R) is bounded for some value S > 0. Hence we obtain 

Lv = cQ(cQLv) + c(I - Q')v	(v E TN)  

which, when applying the invertibility of L, as well as (2.6), (3.2) and (3.3), yields 

lIt'IIH	CIILvIIH_ø 

C (IIQ Lv IIH-ø +11( 1 - Q)BvII H -)	(r > /3). 

:5 C(IIQvLvIIH_ +N6lnNIIvIIjj) 

If N E N is sufficiently large (let us say, for instance, that N 6 In N < ), then (4.2) 
is implied. By (2.1) the equation QLu = Q'Lu is equivalent to (4.1). By this, as 
well as by (4.2) we get the error estimate 

II u - U, IIH r < 11( 1 - PN)UIIH + C lIQJ L( PN - I)u IIH_ p	(4.5)

if N is large enough. Then, we make use of the decomposition 

Q'L(PN - I)u = L(PN - I)u + (I - Q',)Lu + (Q,1 - I)LPNU
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and the associated inequalities 

II L (I - PN)uI H _ B CNT lnNIIuIIH 

- Q)LU M H	CNT lnNIIuJI H	(/3 <r <a). 

- I)LPNu IJH_ ^ 

Here the first two inequalities are direct consequences of (3.1) and (3.2) and the last 
one follows from the representation (4.4) by (3.1), (3.2), (2.6) and (3.4) (for N large 
enough). Thus, we get 

IQJ L(PN - I)uIH,._$	CNT° lnN II u lIH	(0 < T a).	(4.6)

The convergence estimate (4.3) is achieved by (4.5), (3.1) and (4.6)1 
Theorem 4.1 supplements the stability and convergence results of [3) and [4], where 

(4.1) is considered for e = 0 in case of an operator L being of a form simpler than (2.2). 
Recalling in this connection the analogy to [11: Theorem 3.6] and [12: Theorem 31, we 
deduce next from the result of Theorem 4.1 and from the consistency property (3.11) 
stability and convergence results. 

Theorem 4.2. Assume that L has the form (2.2), and either c = 0, or e E (0, 1) 
and additionally in (2.2) b a(t,$) = a(t) depends only on the variable t. Assume also 
I E HO (a > 3 ) . Then, the equation (2.13) has a unique solution UN E TN if only 
N is large enough. Moreover, if 3 < r a, there holds the asymptotic error estimate 

lu - u NllH	CN T lnNllull H .	 (4.7) 
Proof. By [12: Theorem 3] the equation (2.13) is uniquely solvable. Writing 

Q'Lv = Q'LNv + Q'(L - LN)V	(v E TN)	(4.4)"

we obtain, for sufficiently large value of N, by (4.2) and (3.11) 

ll V llH r <C{llQLN vll H _ 5 + llQ(L - LN)v llH_ } 

C {IIQ L N v IIH	+N6lIvIIn} 

where	mm (1,7,/3 - f3) > . Choosing again N large enough, we get from the
previous inequality the stability estimate 

V IlH	C lIQ L N v IlH	(v E TN, T > /3) .	 (4.8) 

Application of (2.13) yields the equality 

Q'I LN(PNU - U N) = QI(LN - L)PNU + QCN L(PN - I)u	(4.9)
which together with (4.8), (3.1), (3.11) and (4.6) implies 

U — U NlIH	IK I — PN)ullH 

+ C {IIQ(LN - L)PN u IIH	+ llQ L(PN - I)uIIH} 
CNTlnNIIuIlH 

(for /6 < r <a) which completes the proof I
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Now, by modifying the proof of Theorem 4.2, a result analogous to [4: Theorem 
2.2/Formula (2.18)] with respect to the maximum norm can be shown. 

Theorem 4.3. Let the assumptions of Theorem 4.2 be valid, and in addition, as-
sume that fi E Z. Then, for sufficiently large value of N E N, we have for the method 
(2.13) the error estimate

I rN0 ,aR \ lu U NlIC	CN T	in N ll u IlH	max(0,)<r<i) .	(4.10) 

Proof. The stability estimate 

II v [Ic <C(lIP + (QLv)lIc-s + IIP(QLv)IIc-s)	I 
rENo
VETN

 j	(4.11)

of the trigonometric collocation method (4.1) follows, for sufficiently large N, from 

v IIc <C(llP(Lv)IIc-8 + IIP(Lv)IIc-5) 

implied by [4: Lemma 5.1]. Moreover, we need the representation (4.4)', the estimates 

II u lIc m	C II u IIc rn	(0 E C(R), rn E N0), 

(3.3)', (2.6), (2.7), (3.2) and (3.3). Essential for the stability result of (2.13) is the con-
sistency estimate

- LN)V I C _Ø	CN T	Il'IIH	(v E TN, a E R)	(4.12) 

with 0 < .X < min (1,7,13—fl i ), obtained by applying Theorem 3.3. Now, this inequality 
with the choice a = T and (4.11) yield

IVETN \ v IIcr	C (II P4 (Q L N v )IIC B + Il P (Q L N v)lIc- s )	rENa)	(4.13)

if N is large enough. The convergence estimate (4.10) can be shown by modifying the 
proof of Theorem 4.2. For estimation of 

IPQL(PN - I)uIIc-, 

we need the representation (A.13) (given in the proof of Theorem 2.2 in Appendix), and 
particularly the equality 

Q,j (aA + aA)(Pp, - I)u 

= Q',a(PN - Q')Au + Q,a&(PN - Q')Au. 

Hence, by the mapping property of B 1 in (A.13), we get (4.10) when applying (3.1),.(3.l)' 
(3.3)' and (4.12)1
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5. Appendix 

Next we give the proofs for lemmas and theorems of Chapters 2 and 3. 
Proof of Lemma 2.1. Before verifying (2.6), (2.7) and (2.10) we give for a > 0 

and	m + a with m E V U {0} and a E (0, 1] the results 

II U IIH	C IlIlH ll U lIH	 (A.l) 

Il u IIc m <CIIIIcrnIIuIIc,,.	 (A. 1)' 

which follow directly from 

Dm ( 0u) 
=

( ) u(m2)	and	[u]	ClllHllullH. 

For estimation of lIullH, in the case of	0, we apply the invertibility of	with a 
choice of ij = a - p, and consider only the norms II IIH P (0 < p < 1). We write first 

AU) =	(max(1, 1k + ll))"u(l)e, = ek(Au + Cku)	(k E 7Z)	(A.2)77
IEZ 

where Ck(t) = ek2t and 

C,k u = E [(max(1, 1k + l l)) - ( max(1, lll))]u(l)ei. 
IEZ 

By the formula
1k + lI - I11? e1'z(k, 1)	 (154 0,—k) 

with eki being a real value between 1k + 11 and Ill and (k, 1) = 1k + 1 - Ill, we obtain 

1k + 1 1" - 111 '7 1	C I k I max ( 1 k + l I h7	I l l, 1 1 1') Ill" 

CIkI I ' Hl max (1 k + il_i, Ill') Ill"	
(l	0 —k) 

where the last upper bound is achieved by applying Peetre's inequality 

IjI'IkI'	21 r1j - k ftI	(j,k E V with j 54 k).	 (A.3) 

Making use of the Holder inequality yields 

CkuIIc	CIkI'' I IIA+-Ilc + (max (1k + 1I 2 , 111 -2 )) IIAuIIL2}	
(A.4) 1?EO,—k 

CIkI'IIAtLIIc. 

In the same way we can show IIh(C k u )IIc <CIkI" h IIi. h AuIIc which implies 

[C,,ku]p	Cmax (1, kl II )[Au]	(0 < p < 1)
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giving with (A.4)
IICkuIIHP	Ck 1 ' IIAuIIHP.	 (A.5) 

Applying (Al) with a = p and

II e kIIH p	1 + 27r ' I k l 1'	 (A.6) 

as well as (A.5), we get, based on the representation (A.2), 

II A ( e k u )llH , <	 (llAullHP + IlCkuIIHP) 

< Cmax (i, 

So, we obtain the estimate 

II A ( u )IIH P	CllllrI+l+PllAulIHP	(0 < p < 1)	 (A.7) 
77

which with i = a - p implies for a 0 

IIlIH = ll'_()llH P S ClllIrI+1+2P;IA_PullHP. 

Consequently, for any zi> lal + 1, when choosing p =	we have 

ll u llH < C lIllll u llH	(a <— 0)-	 (A.8) 

Now, by (Al) and (A.8), the estimate (2.6) follows. 

Applying the expansion 

1k + l - lll = l ll'( k , 1) +	l) _ 2 ((k 1))2	(1	0,—k) 
2	1k 

where (it is between 1k + Il and Ill, we have (Aeo - eoA)u = 0 and, for k 0, 

Ae t - etA = e t(iikA ,7 _ 1 + D,t)7777

with
Dtu = (I k I - 1)ü(0) - sign(k)((i —1) + 

- 277	sign(I)III"—'(k + l)ü(1)e, 
1(k+i)<o 

+	1)	
k))2i(l)e,. 

1*O—k 

Estimating in the already described way, we obtain llDkuIIHP '5 CIkIIhl1H2IlA;_luIIHP 
(0 < p < 1) which further gives

IO<p<1\ 

- A )u IHp	C( 7J, p)IIII_1 1 +2+lI u IIffP^- 1	I. viEll ) 
(A.9) 

17
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Using AA =	(A, j, E R) we write 

A	(A - A)u =	 - 7— 'Au + (A_ - U — Il — p T—p/ 7 

and then by (A.9) obtain 

11 -77	IIH-1 

<c{ IIIr	_1_ P +2+ P II u IIH- 1 + IIII rU_1PI+2+P IIuIIH1 }	
( A. 10) 

< C 11011i, IHIH-' 
with any a E R and i > max(Ia - - i i, Ia - i i) + 2, verifying (2.7) in the case of A. 

To show (2.7) for A (77 E IR) we consider first 

A(Aek - ekA)u = ekE Ilk with E,7 k u = —2 > sign(l)Ik + lIIlu(l)e:. 
I(k4-i)<o 

Again by (A. 1) and (A.6), and by 

II EIlk u II!1 P	C I k I' 1I2 II A _i u IIH P	(0 < p < 1)
it follows

-	O)UIIHI	CIIIIrIl_11+2+PIIA_lUIIHPT) 0

which implies

- A )u IH	 IIuIIHt	(a E R, )> Ia - ii + 2). 
Now, decomposing 

(A -	= A - (A	 c - A)u + (A - A)Au
0 77 77

and applying (A.10) and (A.11) gives

(All) 

II("	- A )uj IH_	CI Ikt IIH- 1	(v > max(Ia - - i i, a - i i) + 2) 
and thus the proof of (2.7) is complete I 

Proof of Lemma 2.2. For proving (2.9) we utilize the representations 

a(t, s) =	ak(t)ek(s), Au =	akK(eku), (Ku)(t) 
= f 

K(i - )u(s) ds 
kEZ	 kEZ	 0 

and show 

II K( e k u )IIH- 5 C ( ma ( 1 I k I))1I u IIH+ o	(6> , Y > l a l) .	(A.12) 
This estimate is achieved by using 

A__(Kek u) = e	k(1 + k)(max(1, 1 1 + kl))'ü(l)e,, 
IEZ 

(A.3), the Holder inequality and (A.6). From (2.6) and (A.12), we get 

II Au IIH_ < C II a II,',LII u IlH+ a	(6> 1 , v> Ia - iI + 1, u > Jul) 

and consequently, the statements of this lemma are verified I
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Proof of Theorem 2.3. By (2.2) j we have, for 1 j r, I(l)l C I1i (1 

	

0) with y = - ,8j >. Thus, (2.9) implies that II A, u IIH_	C 11 _ 1 (a E R)
for some value 6, > 0. Therefore, 6' = mini<,<(6,) > 0 exists such that 

r
A,: H a - H 6'	(a eR)

j= 1 

is bounded. As shown in [121, A0 decomposes to the form 

A0 = A01 + A02 

with

	

A0 = aA + a&A	and	(A02 u)(t) = I k02(t, s)u(s) ds, 0 '6

where
k02 (t, s) = c 2 (t - s)c(t, s) + ?c 2 (t - s)a(t) + 402 (t - s)a (i) 

with

	

c(t, s)	a(t,$) - a(i)	
C'°(R x R) = 021r(5_O - 1 

and, for I i4 0, 

k(')I <CIIIsmmn(l) ,	ic(l)I	cii,	k(I)I	Cl 

where y > .is given by (2.2). So, by (2.9), for some value 6 E (0, min(-y, 1) - ), the 
operator A02 : H' - H 6 (a e R) is bounded. Gathering these results together, 
we obtain the representation 

L = A01 + B1 

	

A01 = aA + a&A: H' -	
(a e R)	(A.13) r 

B 1 = A02 + E A,: H' -
j=1 

with 6 = min((5',6) > 0, verifying the mapping property of L. Next we present a further 
decomposition of L that implies L: H -p (a C R) to be isomorphic. Moreover, 
the form is crucial for the proof of Theorem 4.1. A detailed discussion can be found 
in [6] and in [3, 7, 12). Because of the assumptions (2.2) d and (2.2)e we have for the 
quotient	with a = a + a and. 	=	- a the factorization -	c.4.c_ such
that 

c + C {c E C(R)j(I) = 0 (1< —i)} and c_ C f c C C(R)I(I) =0 (1> i)} 

allowing for A01 the representation 

A01 = a_c+A + B2
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with
A = (Pc. + Pc)A 

and

B2 = [cr_c +(c_P - P+ c_)A] + [a_c+(c'P - Pc')A] - aJA 

where Ju = ü(0). Here A: H' - H° I (a E R) is an isomorphism with the property 
Ày E TN for all v E TN . Furthermore, by Lemma 2.1 it holds B2 : H a - Ha - '6+1 (a 6 
R). Hence we finally get when denoting c = a_c+ and B c'(B i + B2 ) the form 

L=c(A+B)	 (A.14) 

where c e C(1R) with c(t) 54 0 for all t E R and B : H -	-$+min(ö,l) (a 6 R). 
Assume now that Lu = 0. We may write this equation by (A.14) and by the 

properties of A and B equivalently in the form u = A 1 Bu. If u E H for some value 
of a E R, then u E and consequently u E C(R). Therefore, by (2.2)h we 
deduce u = 0, and the proof is complete I 

Proof of Lemma 3.1. We start by showing (3.4), since (3.3) is a direct conse-
quence of (3.4) and (2.6). Assuming = kEZ(k )ek and v = pEAN i3(p)e,,, we 
write

A(QV - I)q5v =	(k)w, +	(k)w	 (A.15) 17
IkI:5	 IkI> 

with

= I>

	(p) [IP + k - NI, e i2, e eP+k_N - I + kI 1 eP+k ]	if 0 < k 
PE AN 

p+k> q-

)[I + k + N I e2e +k+N - I + k I e +k] if - < k <0 
PE AN 

0	 ifk=0 

and

Wk =	(p) [(max(1, InpkI))'ePk 27rc e flPk - ( max(1, I + kI))"ep+k] 
PEAN 

where rInk e AN and lpk E Z are such that p + k = flpk + l k N. For estimation of

	

II w IIH P (0 < p < 1) in the case of 0 < k	. we decompose 

LheP+k = (Lhe)eke ik27rh+ e(Lhek) 

	

LheP+k_N = —(Ahe_)e2+k_pj	
(A.16) 

= (L.he.P )e2 P+k_N + e_p(Lhe2+k_N) 

= (hep)ck_Nc' i,-1-k--N)27h + e_P(he2P+k_N).
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Moreover, we need the inequalities 

Ip+ k — NI" CN T IpJ M and I p +kI" < CN" Ip l	ER)	(A.17)

implied by the facts that when p + k> E and 0 < k < L , there holds 

N	 N	 3N	N N	 N and	--k<p<--.	(A.18) 

Since 12p + k - NI < k, we obtain by (A.16), (A.17) and (A.6) that 

II w L eIlH' < CN"kl 1 llAvlI Hp (A.19) 

for 0 < k. Estimate (A.19) for values -% k < 0 can be shown very analogously. 
In a straightforward way, when applying (A.3), (A.16) (the first equality) and (A.6), we 
achieve the estimate 

II wLIIH P < C(max(1, IkI))hh1m_170)+1IIAvIIHP	(I k i >*).	(A.20)

Consequently, from (A.15), (A.19) and (A.20) it follows 

II A (Q ,I - J)q5v	<CN"JIIIjIAvII H p	 ( A.21 )
JA 17

with A > IiI + max(p - ,7 , 0)  + 1 +p. Choosing ii = ,r - p and jt =	p with p E (0,1) 
such that

fT	 ifr>0 
p<1

('i + T - max(u - r,O) — i) if T 0 
we get

II(Q - I)vIIH	C II A _(Q - I)vIIHP 

IIA_vIIHP	(r, E R) 
CNr0	IIvIIH 

with ii > 171 + 1 + max (a - r,0) verifying (3.4). The estimate (3.3) is now obtained 
from

IIQ( v )IIH	(Q -	+ II v IIH	IIvIIH	(> 1r1 + 1) 

where (3.4) as well as (2.6) have been used U 

Proof of Lemma 3.1'. Very analogously to the proof of (3.4), we can show 

- I ) v I	:5 C IIII+iII D3v IIc	(j E N0 , V E TN).

Additionally, we need the inequality 

CIIII+i(II Pv IIci + II PvIIc,)	(j E No, V E TN) 

implied by (2.7) and (A.1)'. The estimate (3.3)' now follows from these two estimates U
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Proof of Lemma 3.2. Denoting ak(t) = fo, a(i, s)2"3 ds (t E R) we have 

Q(AN - A)v = Q [
	

akz +	akz] 
k I <N/4	kI>N14 

with

=

 {

PEAN [k(p + k - N) - k(p + k)e 2 ] 3(p)ep+k_N	if O < k < 
+ pk> 

PEAN [k(p + k + N) - k(p + k)e_ t2 ](p)ep+k+N if -	k < 0 

0	 ifk=0 

and with
z,e = >... (k(nk ) - k(p + k)e1lPk2)3(p)enPk 

PEAN 

where rlk E AN and 1pk E V are as described before. Using (3.3), we obtain 

IQv(AN - A)vIIH- 

c{ E Il akII 11 ZkeIIH r - +	2 IlkII IlzIIH- I	(A.22) 

IkI^N/4	 IkI>N/4 

with ii > ft - 01 + 1. When determining the upper bound for I14,eIIHr_5, it is most 
essential to consider

NN 
L(p+k—N,p+k,E) fbr0<k<--,p+k>-- 

(p + k + n, p + k, —E) for —k<0,p+k< 
N 

2 

with the notation (l,m,x) = k(l) - (m)ez27. Assume again 0 < p < 1. In general, 
we have, by (3.5) and (A.17), for the first expression 

Z(p+ k - N,p+ k,e)j CN	1p1P	(o<k<\ 

	

\p+k>)	(A.23) 

and, analogously, 

+ k + N,p + k, -	CN	II	 (A.24) 

Therefore, applying again (A.17), (A.16) (as well as the analogous results for the values 
- <k <0) and (A.6) we obtain 

ZkcIlH_$	C II A,t_ zL,IIH P	CNIkI1IIvIIn	
I' Ik< "	(A.25)r,E1R) 

In the special case of e = 0 and (3.8) being valid, we can improve the estimates of 
(A.23) and (A.24). Namely, for 0 < k < and p + k >	there exists a value
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between N - p - k and p + k such that I + k - NI - I + kI = /9e'(2p + 2k - N). 
Consequently, by (3.8) we get, when estimating as before, 

	

A(p+ k - N,p+ k ,0)I cN fl_mine1,l)_+P IkI p O_ P	fO<k<* \ 

Similarly, we have 

(p+ k + N,p+ k,0)	 p1P	(-<k<O\ 

As a consequence of the previous two estimates, we can deduce 

II zk,oIIH p < CNT__6 IkI 2+P IIvII H	(T,a E R)	(A.26)

with 5 = min (-y,  1). Because of 

Z(72k, P + k, 1pkE) I (mac (1, Inpkl))	
P	 IkI'( max (1, P1)) a—p 

for Iki> L , with y > 1,8I + IT -,81 + max(a - r,0) + 2 + 5 (also the equality is valid if 
'r /3), there holds

Ikk,IIH't'	CNT__6 IkVIIvII H .	 ( A.27) 

Thus the estimate (3.7) follows from (A.22) by (A.25) and (A.27), and the estimate 
(3.9) by (A.26) and (A.27). Finally, in the case of i(t) = 1 (i E R) the condition 
Ik(l)I <cIiI r (1 0) is valid for any r e R. Assuming a e Cr(R x R) the application 
of (3.7) gives

Q.J(AN - A ) V I Hr_P < CNA IIVII T_ fl+r_ A	(A E R, T E R) 

and hence choosing r = a - ,r + A +,3, we obtain (3.10)1 
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