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The Skew Derivative Problem 
in the Exterior of Open Curves in a Plane 

P. A. Krutitskii 

Abstract. The skew derivative problem for the Laplace equation in the exterior of open curves 
in the plane is reduced to the Fredholm integral equation of the second kind, which is uniquely 
solvable.	 -	-	-	 --
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1. Introduction 

Boundary value problems for 2-dimensional partial differential equations are mostly 
treated in domains, bounded by closed curves. . A small number of studies are devoted 
to problems in the exterior of open curves, for instance, Dirichiet and Neumann problems 
for Helmholtz and Laplace equations were treated in [1, 4, 6 - 13, 15 - 161. Similar 
problems have great significance, because open curves model cracks, screens or wings. 
The present note is an attempt to consider a skew derivative problem for 2-dimensinal 
harmonic functions in the exterior of open curves. This problem arises in the physics of 
semiconductors [5). 

2. Formulation of the problem 

In the plane x = ( XI, x 2 ) E R 2 we consider simple open curves r 1 , ...,	E C2 'I 
(0, 1]), so that they do not have common points. We put 

r =	r. 

We assume that each curve rn is parametrized by the arc length s: 

rn = { x: x = x(s) =(x1(s),x2(s)) for s E [an,bn]}	(ri = 1,...,N) 
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so that a 1 <b 1 < ... < av <bN. Therefore points x ë F and values of the parameter 
s are in one-to-one correspondence. Below the sets of the intervals on the Os-axis 

U[an, b] 

will be denoted by F also. 
The tangent vector to F at the point x(s) we denote by r (cos a(s), sin a(s)), 

where cos a(s) = x'1 (s) and sin a(s) = x(s). Let n = (sin a(s), - cos a(s)) be a 
normal vector to F at x(s). The direction of n is chosen such that it will coincide with 
the direction of T if n is rotated anticlockwise through an angle of 

We say, that the function u = u(x) belongs to the smoothness class K if the following 
conditions are satisfied: 

1) u e c°(R2 \r) fl C 2 ( R 2 \r), and u is continuous at the ends of F. 

2) Vu E C°(R2\F\X), where X is a point set, consisting of the endpoints of F: 

X 
=

(x(a) U x(b)). 

3) In the neighbourhood of any point x(d) E X, for some constants C > 0 and 
E > — 1, the inequality

IVuI <Clx - x(d)l c	 (1)

holds where x—x(d) and d=aord=b for n=1,...,N. 

Remark. In the definition of the class K we consider F as a set of cuts in a plane. 
In particular, the notation C°(R 2 \r) denotes a class of functions, which are continuously 
extended on F froth the left and right, but their values on F from the left and right can 
be different, so that the functions may have a jump on F. 

Let us formulate the skew derivative problem for the Laplace equation in 1R2\F: 
Problem U. To find a function u = u(z) of the class K which satisfies the Laplace 

equation
Au(x) = 0	(x E R 2 \F; A = a + a 2 ),	 (2)


the boundary condition
(ô	 a I — u(x(s)) + f3— u(x(s)) j = f(s)	 (2)b 
\ t' fl x	 Tz	/ r 

and the conditions at infinity 

lu(x)l <const and	Vu(x)l = o (1 x 1')	as lxi	Jx 2 +
 X 2 00.	(2) 

We suppose that /3 is a real constant. All conditions of the problem U must be satisfied 
in the classical sense. 

The problem U arises, for instance, in the mathematical models of magnetized 
semiconductors [5[. The Neumann problem for the Laplace equation in the exterior of 
open curves is a particular case of our problem when 9 = 0. 

On the basis of energy equalities [14: Sections 21.2, 28.2 and 31.11 we can easily 
prove the following assertion.
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Theorem 1. Let I' E C2 '' (A E (0, 1]). If a solution of the problem U exists, then 
it is defined up to an arbitrary additive constant. 

Let us show that if u 0 = u 0 (x) is a solution of the homogeneous problem U, then 
uo(x) const. To prove this with the help of energy equalities, we envelope open curves 
by closed contours, tend contours to the curves and use the smoothness of the solution 
of the problem U. In this way we obtain 

11 V_ 011 2
2( 2 \r ) =	JIVUOII2(C\F) = Ir 

U 	 - ( u—oô(—I ds—I U
 \5flJ 	

0 ;
) 

ds, 

where the conditions (1) and (2) are taken into account and C, is the circle of the

radius r with the center in the origin. Besides, in the latter formula we consider F as a 

set of cuts. The side of I' which is on the left, when the parameter s increases we denote

by F and the opposite side we denote by r. In a similar manner, by the superscripts 


and "-" we denote the limit values of functions on F+ and r, respectively. 
By fr ... d we mean	... da. Using the homogeneous boundary condition

we obtain from the latter formula 

	

IIoII 2( 2 \r ) = -0IIru f3u0\ 	I - (au0\ 
ds (— ds—u a7.—) 

	

I.. 	\ôTJ	 J	J 
(N

([u(x(bm))] - [u(x(am))12) 
M=1 

-	([u(x(bm))1 - [u(x(am))]2) } = o 

since U(x(bm)) = u(X(bm)) and u(x(am)) = u(x(am)) form = 1,...,N in accor- 
dance with the smoothness properties of the function u 0 , which belongs to the class K. 
Thus, Vu 0 0 and uo const, and the theorem is proved due to the linearity of the 
problem U  

3. Integral equations at the boundary 

Below we assume that f = f(s) from (2) b is an arbitrary function from the Banach 
space C°"(F), with Holder exponent A E (0, 1]. We consider the angular potential from 
[2] for the equation (2) a On I'

it 
= _Jra (3) 

The kernel V(x, a) is defined (up to indeterminacy 27rm, with m = ±1, ±2,...) by the 
formulae

	

Cos V(x,a) — x
1 

 —yi(a)	 x2—y2(a) and	sin V(x, a) = 

	

- Ix - y(a)I	 x-y(a)I'
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where
!J(a) = (y1(0'),y2(01)) e I' 

Ix - y(a)[ = J(x i - Y1 (a )) ' + (x 2 - Y2(a)). 

One can see that V(x, a) is the angle between the vector y(a)x and the direction of the 
Ox  -axis. More precisely, V(x, a) is a many-valued harmonic function of x connected 
with in Ix - y(a)I by the Cauchy-Riemann relations. 

Below by V(x, a) we denote an arbitrary fixed branch of this function, which varies 
continously with a along each curve r (n = 1, ...., N) for given fixed x r. Under 
this definition of V(x, a), the potential v[iJ(x) is a many-valued function. In order that 
the potential v[iz](x) be single-valued it is necessary to impose the additional conditions 

I ju(cr) dor = 0	(n=1,...,N).	 (4) 

Below we suppose that the density u(s) belongs to the Banach space C'(r) (w E 
(0, 1], q E [0, 1)) and satisfies the conditions (4). We say that P E C(f) if the function 
h defined by

h(s) = u(s) fl I -	- 

belongs to the Holder space C°"(r) with exponent w and II/ L IIc(r) = II h IIco,(r) . As 
shown in [2, 6], for such j(s) the angular potential v[j(x) belongs to the class K. In 
particular, the inequality (1) holds with e = — q, if q E (0, 1). Moreover, integrating 
v[](x) by parts and using (4) we express the angular potential in terms of a double 
layer potential

v[z](x) = ---/ p(a)— in Ix - y(a)I da	 (5) 2ir j1 .	any 

with density

P(a) = J(e) d	(a E [a,bj; n	1,...,N).	 (6) 
a. 

Consequently, v[,u](x) satisfies both equation (2)a outside r and the conditions at infinity 
(2).	 S 

Let us construct a solution of the problem U. Such solution can be obtained with 
the help of potential theory for the equation (2). We seek a solution of the problem in 
the form

u[p](-T) = v[z](x) - fiw[,u](x) + C ,	 (7) 

where C is an arbitrary constant, v[z](x) is given by (3) and (5), and 

= - -' f 1,(,) 1, Ix - y(a)Ida.
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As mentioned above, we will seek /2(s) from the Banach space C'(r) (w E (0, 1), q e 
[0, 1)). We note that /2(s) must satisfy the conditions (4). For such p the function (7) 
belongs to the class K and satisfies all conditions of the problem U except the boundary 
condition (2)b. In particular, the conditions at infinity hold due to (4). To satisfy the 
boundary condition we put (7) into (2) b , use the limit formulas for the angular potential 
from [2, 61 and arrive at the singular integral equation [11: Section 961 for the density j. 

1 —+,62 f ()sinO(x(s)Y(a)) d = f(s)	(s E )	 (8) - 27r	r	x(s) - 

where O( X , y) is the angle between the vector and the direction of the normal n. 
The angle OO(x, y) is taken to be positive if it is measured anticlockwise from n, and 
negative if it is measured clockwise from n. Besides, 0 (x, y) is continuous in x, y E r 
if x 5A Y. 

Thus, if /2(s) is a solution of the equations (4), (8) from the space C() (w E 
(0, 1, q E [0, 1)), then the potential (7) satisfies all conditions of the problem U. The 
following theorem holds. 

Theorem 2. if r E c2 ,A and I E coA(r) A E (0, 1]), equation (8) has a solution 
/2(s) from the Banach space C'(r) (w e (0, 1], q E [0, 1)), and the conditions (4) hold, 
then the function (7) is a solution of the problem U. 

Our further treatment will be aimed to the proof of the solvability of the system (4), 
(8) in the Banach space C(f). Moreover, we reduce the system (4), (8) to a Fredholm 
equation of the second kind, which can be easily computed by classical methods. 

It can be easily proved that 

Y(s ) a) 
= .. ( sin o(x(s)Y(a)) -	e C0A (r x I') ir	Ix(s) - y(a)I  

(see [6, 7] for details). Therefore we can rewrite (8) in the form 

1	d 
-	 — + /2(Y(s,1)d = —1 f/32f() i4 c )	 (s E I').	(9) f	_sJF 

4. The Fredhoim integral equation and the solution 
of the problem 

Inverting the singular integral operator into (9) we arrive at the following integral equa-
tion of the second kind [11: Section 991:

N-i 
P(S) +	/ p(a)Ao(s,o)da + 

1
> G,,s" = ---o(s) 

Q(s)	
(s € I'),	(10)



744	P. A. Krutitskii 

where
1 1 Y(,a) 

Ao(Sa)=_J	—S 
N 

Q(s) = JJ hVs - ans./bn - slsign(s - an) 
nI

1 1 1 2Q(a)f(a)
d 

and Go,..., GN_i are arbitrary constants. To derive equations for these constants we 
substitute ti(s) from (10) into the conditions (4). Then we obtain 

N—I 
)1n ()d + .	BnmGm = Hn	(n = 1,...,N),	 (11) f	m0 

where

1n() = _JQ_'(s)Ao(s,a)ds 
an 

bn 
Hn _fQ(s)o(s)ds	 (12) 

an 
bn 

Bnm = _JQ_i(s)smds 

an 

By B we denote the (N x N)-matrix with the elements Bnm from (12). As shown in 
[7), this matrix is invertible. The elements of the inverse matrix will be called (B)n,,,. 
Inverting the matrix B in (11) we express the constants G0 , ..., GN_i in terms of ju as 

Gn = E (B 1 )nm IHm -y(,)1Tn (,) d,] 
M=1 

We substitute Gn into (10) and obtain the following integral equation for z(s) on 

Y(S) + j— IF z(a)A(s, ) da = _J ._(s)	(s E 1'),	 (13)

Q(s) 

where
N—i	N 

A(s,a) = Ao(s,o) -	Sn E (B')nmlm(a) 
n0	m1 

N—i	N 
= o(s) -	 (B)nmHm.


n=O m=i 
It can be shown using the properties of singular integrals (see [3: Section 51 and [11: 
Section 18]) that 'h(s) and Ao(s, a) are Holder functions ifs E r and a E r. Therefore,
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(I)(s) and A(s, a) are also Holder functions if s E r and a e r. Consequently, any 
solution of the equation (13) belongs to C(r), and below we look for ,u(s) on r in this 
space. Moreover, it follows ,from our treatment that any solution of the equation (13) 
meets the conditions (4). 

Instead of z E C-(r) we introduce the new unknown function	E C° ,'O (r) defined

by p. (s) = 

P(S)Q(S) 
and rewrite equation (13) in the form 

(s) + Ir p.(a)Q'(a)A(s,a)da = (s) (s Er). (14) 

Thus, the system of equations (4), (8) for p(s) has been reduced to the equation (14) 
for the function Ms(s). It is clear from our consideration that any solution of equation 
(14) gives a solution of the system (4), (8).	 - 

As noted above, (s) and A(s, a) are Holder functions if s E r and a E r. More 
precisely (see (7] and (11: Section 18]), 4D E C01'(r) (p = min{A, }) and A( . , a) E 
cop(r) uniformly with respect to a E r. We arrive at the following assertion. 

Lemma 1. If r E c2,A (A E (0,1]), 'I E cop(r) (p = min{A, }) and a *' E C°(r) 
satisfies the equation (14), then it. E c°P(r). 

The condition E C° P(r) holds if I E coA(r) . Hence below we will seek (s) 
from C°(r). 

Since the function A(s, a) belongs to C°(I' x ), the integral operator from (14) 


Ap,(s) = Ir p*(o,)Q-'(a)A(s,a)do, 

is compact and maps C°(r) into itself. Therefore, (14) is a Fredholm equation of the 
second kind in the Banach space C°(r). 

Let us show that the homogeneous equation (14) has only a trivial solution. Then, 
according to Fredholm's theorems, the inhomogeneous equation (14) has a unique so-
lution for any right-hand side. We will prove this by a contradiction. Let j2(s) from 
C°(r) be a non-trivial solution of the homogeneous equation (14). According to Lemma 
1, po E C°'(r) (p = min{A, }). Therefore the function /A°(s) = p2(s)Q'(s) belongs 
to C (r) and converts the homogeneous equation (13) into an identity. Using the ho-
mogeneous identity (13) we check that i°(s) satisfies the conditions (4). Besides, acting 
on the homogeneous identity (13) with a singular operator with the kernel 1- we find 
that z°(s) satisfies the homogeneous equation (9). Consequently, i°(s) satisfies the 
homogeneous equation (8). On the basis of Theorem 2, u[°](x) is a solution of the ho-
mogeneous problem U. According to Theorem 1, u[p°](x) const (z E R2 \r). Using 
the limit formulas for the tangent and normal derivatives of potentials [2, 6], we obtain

- 

8 
lim	/3	u(p ](x) - 5 —u[ji ](x) 

z._.z(3)E(r)+	fl1 -	 -•	 (s E. r). 
—	lim t13_u[P°](x) - —u[,u°](x) = —(1 + /32 )/20 (3) 0 —. xx(s)E(I')-
	

ijT
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By r+ we denote the side of r which is on the left as the parameter s increases and 
by r- we denote the other side. Consequently, if s E I', then p°(s)	0 and p(s) = 

0, and we arrive at a contradiction to the assumption that P' (s) is a non-
trivial solution of the homogeneous equation (14). Thus, the homogeneous Fredhoim 
equation (14) has only a trivial solution in C°(r). 

We have proved the following assertion. 

Theorem 3. If r e C2 '' (A E (0, 1 1), then (14) is a Fredholm equation of the 
second kind in the space C°(r). Moreover, equation (14) has a unique solution P . E 
C°(r) for any 41 E C°(r). 

As a consequence of Theorem 3 and Lemma 1 we obtain the following corollary. 

Corollary. If F E C 2 ,A (A E (0,1]) and 1 e C°'P (r), where p = min{ A, }, 
then the unique solution of equation (14) in C°(r), ensured by Theorem 3, belongs to 

We recall that (s) belongs to the class of smoothness required in the corollary if 
f E C0A (r) . As mentioned above, if p E C°"(r) is a solution of equation (14), then 
p(s) = p.(s)Q'(s) is a solution of the system (4), (8) in the space C'(I'). We obtain 
the following statement. 

Proposition. If F E C 2 '' and f e c°'(r) (A E (0, 1]), then the system of 
equations (4),(8) has a solution p E C(r), p = min{ A, }, which is expressed by the 

formula p(s) IL. (s)Q'(s), where p e C°"(r) is the unique solution of the Fredholm 
equation (14) in C°(r). 

Thus, the system (4), (8) is solvable for any f E C°"(F). On the basis of Theorem 
2 we arrive at the following final result. 

Theorem 4. If r E C2 ' A and f E C0A(r) (A E (0,11), then the solution of 
problem U exists and is given by (7), where p(s) is a solution of the equations (4), (8) 
from C(F), p = min{A, } ensured by Proposition. 

It can be checked directly that the solution of the problem U satisfies condition 
(1) with e = -. Explicit expressions for singularities of the solution gradient at the 
end-points of the open curves can be easily obtained with the help of formulas presented 
in [6, 7]. 

Theorem 4 ensures existence of a classical solution of the problem U when F E C2'' 
and f E C°''(r). On the basis of our consideration we suggest the following scheme 
for solving the problem U. First, we find the unique solution p.(s) of the Fredhoim 
equation (14) from C°(r). This solution automatically belongs to C°'P(F), with p 
min{ A, 1 }. Second, we construct the solution of equations (4), (8) from C' (r) by the 
formula p(s) = p(s)Q'(s). This solution automatically belongs to C'(r). Finnaly, 
substituting p(s) into (7) we obtain the solution of the problem U. 
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