Oscillation and Non-Oscillation Theorems for a Class of Second Order Quasilinear Difference Equations

E. Thandapani and R. Arul

Abstract. In this paper there are established necessary and sufficient conditions for the second order quasilinear difference equation

$$\Delta(p_n\varphi(\Delta y_n)) + f(n, y_{n+1}) = 0 \qquad (n \in \mathbb{N}_0)$$

to have various types of non-oscillatory solutions. In addition, in the case that the equation is either strongly superlinear or strongly sublinear, there are established necessary and sufficient conditions for all solutions to oscillate.

Keywords: Quasilinear difference equations, oscillation, non-oscillatory solutions AMS subject classification: 39 A 10

1. Introduction

In this paper we consider the second order quasilinear difference equation

$$\Delta(p_n\varphi(\Delta y_n)) + f(n, y_{n+1}) = 0 \qquad (n \in \mathbb{N}_0)$$
⁽¹⁾

where $\mathbb{N}_0 = \{0, 1, 2, ...\}$ and Δ is the forward difference operator defined by $\Delta y_n = y_{n+1} - y_n$. Further we assume the following:

(a) $\{p_n\}_{n\geq 0}$ is a real sequence with $p_n > 0$.

(b) $\varphi : \mathbb{R} \to \mathbb{R}$ is a continuous, strictly increasing function with $\operatorname{sgn} \varphi(u) = \operatorname{sgn} u$ and $\varphi(\mathbb{R}) = \mathbb{R}$.

(c) $f : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ is a continuous function, uf(n, u) > 0 for $u \neq 0$, and $f(n, \cdot)$ is non-decreasing for each fixed $n \in \mathbb{N}_0$.

A prototype of equation (1) satisfying the conditions (a) - (c) is

$$\Delta((\Delta y_n)^{\alpha_{\bullet}}) + q_n y_{n+1}^{\beta_{\bullet}} = 0 \qquad (n \in \mathbb{N}_0)$$
⁽²⁾

ISSN 0232-2064 / \$ 2.50 © Heldermann Verlag Berlin

E. Thandapani: Madras Univ. P.G. Centre, Dept. Math., Salem - 636 Oll, Tamil Nadu, India R. Arul: Madras Univ. P.G. Centre, Dept. Math., Salem - 636 Oll, Tamil Nadu, India

where α and β are positive constants, $\{q_n\}_{n\geq 0}$ is a positive real sequence and $u^{\lambda_*} = |u|^{\lambda} \operatorname{sgn} u$ for any $\lambda > 0$.

By a solution of equation (1) we mean a non-trivial sequence $\{y_n\}_{n\geq 1}$ satisfying equation (1) for all $n \in \mathbb{N}$. A solution $\{y_n\}_{n\geq 1}$ of equation (1) is said to be non-oscillatory if it is either eventually positive or eventually negative, and oscillatory otherwise.

The literature on oscillation criteria of difference equations is vast (see, e.g., [1, 12], which cover a large number of recent papers on this topic). In particular, we refer to [16 - 23, 25], where oscillations of equations similar to equation (1) have been discussed. We note that an equation related to the continuous version

$$(p(t)\varphi(y'))' + f(t,y) = 0 \tag{3}$$

of (1) where p(t) > 0 has been the subject matter of many recent investigations (see, e.g., [2, 3, 6, 8 - 11, 13 - 15, 24]). Further, the oscillation results obtained for equation (3) can be applied to derive similar properties for solutions of certain partial differential equations. Hence, the study of oscillatory and non-oscillatory behaviour of solutions of equation (1) extends beyond the obvious self interest.

Our objective here is to investigate in detail the oscillatory and non-oscillatory behaviour of solutions of equation (1). Under additional hypotheses on p_n , φ and f, first we study the structure of the set of non-oscillatory solutions of equation (1), and then establish criteria for all solutions of equation (1) to be oscillatory. Thus, we are able to indicate a wide class of equations of the form (1), including (2) with $\alpha \neq \beta$, for which the oscillation of all solutions can be completely characterized.

2. Existence of non-oscillatory solutions

Throughout the paper we make the following assumptions without further mention:

$$\sum_{n=0}^{\infty} \left| \varphi^{-1} \left(\frac{k}{p_n} \right) \right| = \infty \quad \text{for every constant } k \neq 0, \tag{4}$$

where φ^{-1} : $\mathbb{R} \to \mathbb{R}$ denotes the inverse function of φ , and

$$\Phi_{k,N}(p;n) = \sum_{s=N}^{n-1} \varphi^{-1}\left(\frac{k}{p_s}\right) \qquad (n \ge N)$$

$$\Phi_k(p;n) = \Phi_{k,0}(p;n) \qquad (n \ge 0)$$
(5)

where $N \in \mathbb{N}_0$ and $\sum_{s=N}^{N-1} \cdots = 0$. From (4) and (5) it is clear that

$$\begin{split} \Phi_{k,N}(p;N) &= 0\\ \lim_{n \to \infty} |\Phi_{k,N}(p;n)| &= \infty \quad \text{for every } k \neq 0\\ |\Phi_{k,N}(p;n)| &> |\Phi_{m,N}(p;n)| \quad (n > N) \quad \text{for } |k| > |m| \quad \text{with } km > 0\\ \lim_{k \to 0} \Phi_{k,N}(p;n) &= 0 \quad \text{for each } n \ge N. \end{split}$$

We begin by classifying all possible non-oscillatory solutions of equation (1) according to their asymptotic behaviour as $n \to \infty$.

Lemma 1. Each non-oscillatory solution $\{y_n\}_{n\geq 0}$ of equation (1) must belong to one of the following three types:

- (I) $\lim_{n\to\infty} p_n \varphi(\Delta y_n) = \text{const} \neq 0$
- (II) $\lim_{n\to\infty} p_n \varphi(\Delta y_n) = 0$ and $\lim_{n\to\infty} |y_n| = \infty$.
- (III) $\lim_{n\to\infty} p_n \varphi(\Delta y_n) = 0$ and $\lim_{n\to\infty} y_n = \text{const} \neq 0$.

Proof. Let $\{y_n\}_{n\geq 0}$ be a non-oscillatory solution of equation (1). Without loss of generality, we may assume that $y_n > 0$ for $n \geq n_0 \in \mathbb{N}$. From equation (1), it follows that $\Delta(p_n \varphi(\Delta y_n)) < 0$ for $n \geq n_0$, and therefore the sequence $\{p_n \varphi(\Delta y_n)\}_{n\geq n_0}$ is decreasing. We claim that $p_n \varphi(\Delta y_n) > 0$ for $n \geq n_0$, so that $\lim_{n\to\infty} p_n \varphi(\Delta y_n) \geq 0$. If $p_{n_1}\varphi(\Delta y_{n_1}) = -k < 0$ for some integer $n_1 \geq n_0$ and k > 0, then $p_n\varphi(\Delta y_n) \leq -k$ for $n \geq n_1$, so $\Delta y_n \leq \varphi^{-1}(-\frac{k}{p_n})$ for $n \geq n_1$. Summing up the last inequality from n_1 to n, we see in view of (4) that $y_n \to -\infty$ as $n \to \infty$. But this contradicts the assumed positivity of y_n . Hence, $p_n\varphi(\Delta y_n) > 0$ for $n \geq n_0$, as claimed. A concequence of this observation is that $\Delta y_n > 0$ for $n \geq n_0$, that is, the sequence $\{y_n\}_{n\geq 0}$ is strictly increasing.

The limit $\lim_{n\to\infty} p_n \varphi(\Delta y_n)$ is either positive or zero. In the first case, the sequence $\{y_n\}_{n\geq 0}$ is unbounded, since there are positive constants k_1 and k_2 with $k_1 < k_2$ and an integer n_0 such that $\Phi_{k_1,n_0}(p;n) \leq y_n - y_{n_0} \leq \Phi_{k_2,n_0}(p;n)$ for all $n \geq n_0$. In the second case, since $\{y_n\}_{n\geq 0}$ is increasing, y_n tends to a positive limit, finite or infinite, as $n \to \infty$

Theorem 2. Assume that, for each fixed $k \neq 0$ and $N \in \mathbb{N}_0$,

$$\lim_{m \to 0} \frac{\Phi_{m,N}(p;n)}{\Phi_{k,N}(p;n)} = 0$$
(6)

uniformly for all $n \ge N_1 > N$. Then a necessary and sufficient condition for the equation (1) to have a non-oscillatory type (I) solution $\{y_n\}_{n>0}$ is that

$$\sum_{n=0}^{\infty} \left| f(n, c \Phi(p; n+1)) \right| < \infty$$
(7)

for some constants $k \neq 0$ and c > 0.

Proof. Necessity: Let $\{y_n\}_{n\geq 0}$ be a non-oscillatory type (I) solution of the equation (1). We may assume that $y_n > 0$ for $n \geq n_0 \in \mathbb{N}_0$ since a similar argument holds if $\{y_n\}_{n\geq 0}$ is eventually negative. There exist positive constants c_1 and k_1 such that $c_1\Phi_{k_1}(p;n) \leq y_n$ for $n \geq n_0$. Summation of equation (1) yields $\sum_{s=n}^{\infty} f(n, y_{n+1}) < \infty$ which combined with the above inequality leads to $\sum_{n=n_0}^{\infty} f(n, c_1\Phi_{k_1}(p; n+1)) < \infty$.

Sufficiency: Assume that (7) holds for some constants c > 0 and k > 0. Because of (6) we can choose some m > 0 and an integer N > 0 such that $m < \frac{k}{2}$ and

$$\sum_{n=N}^{\infty} f(n, \Phi_{2m}(p; n+1)) \le m.$$
(8)

Consider the Banach space B_N of all real sequences $y = \{y_n\}_{n \ge N}$ with the supremum norm $||y|| = \sup_{n \ge N} |y_n|$. We define a set S as

$$S = \Big\{ y \in B_N : \Phi_{m,N}(p;n) \le y_n \le \Phi_{2m,N}(p;n) \quad (n \ge N) \Big\}.$$

Clearly, S is a bounded, closed and convex subset of B_N . Now, define an operator $T: S \to B_N$ as

$$Ty_n = \sum_{s=N}^{n-1} \varphi^{-1} \left(\frac{1}{p_s} \left(m + \sum_{t=s}^{\infty} f(t, y_{t+1}) \right) \right) \qquad (n \ge N).$$
(9)

From the hypotheses this operator T is continuous. If $y \in S$, then since

$$0 \le \sum_{n=N_1}^{\infty} f(n, y_{n+1}) \le \sum_{n=N}^{\infty} f(n, \Phi_{2m}(p; n+1)) \le m \qquad (N_1 \ge N)$$

we obtain from (9)

$$\sum_{s=N}^{n-1} \varphi^{-1}\left(\frac{m}{p_s}\right) \le T y_n \le \sum_{s=N}^{n-1} \varphi^{-1}\left(\frac{2m}{p_s}\right) \qquad (n \ge N)$$

implying that $TS \subset S$. Therefore, by the Schauder fixed point theorem, T has a fixed point $y \in S$. It is clear that $y = \{y_n\}_{n \ge 0}$ is a positive solution of the equation (1), and it is obviously of type (I)

If (7) holds for some constants k < 0 and c > 0, then a similar argument can be used to construct a negative type (I) solution of the equation (1).

Theorem 3. A necessary and sufficient condition for the equation (1) to have a non-oscillatory type (III) solution $\{y_n\}_{n\geq 0}$ is that

$$\sum_{n=0}^{\infty} \left| \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s,c) \right) \right| < \infty$$
(10)

for some constant $c \neq o$.

Proof. Necessity: Let $\{y_n\}_{n\geq 0}$ be a positive type (III) solution of the equation (1). Then there are a positive constant c_1 and an $N_0 \in \mathbb{N}_0$ such that $y_n \geq c_1$ for $n \geq N_0$. Summing up the equation (1) from n to ∞ , we get

$$p_n\varphi(\Delta y_n) = \sum_{s=n}^{\infty} f(s, y_{s+1}) \qquad (n \ge N_0)$$

which implies

$$\Delta y_n = \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, y_{s+1}) \right) \qquad (n \ge N_0).$$

Summing up this equation again and using $y_n \ge c_1$, we find that

$$\Delta y_n = \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, c_1) \right) < \infty.$$

The proof when $\{y_n\}_{n\geq 0}$ is eventually negative is similar.

Sufficiency: Assume that (10) holds for some constant c > 0 (a similar argument will hold if c < 0). Choose $N \in \mathbb{N}$ sufficiently large so that

$$\sum_{n=N}^{\infty} \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=N}^{\infty} f(s,c) \right) \leq \frac{c}{2}.$$

Let B_N be the same Banach space as in the proof of Theorem 2, and let

$$S = \left\{ y \in B_N : \frac{c}{2} \le y_n \le c \ (n \ge N) \right\}$$

Clearly, S is a bounded, closed and convex subset of B_N . Now, we define an operator $T: S \to B_N$ as

$$Ty_n = c - \sum_{s=N}^{\infty} \varphi^{-1} \left(\frac{1}{p_s} \sum_{t=s}^{\infty} f(t, y_{t+1}) \right) \qquad (n \ge N).$$

This operator T is continuous, and it is easy to see that $TS \subset S$. Hence, by the Schauder fixed point theorem, T has a fixed point $y \in S$. This is the desired type (III) solution of the equation (1)

Next we give sufficient conditions for the existence of type (II) solutions of the equation (1).

Theorem 4. Suppose the condition (6) holds. Then the equation (1) has a nonoscillatory type (II) solution if condition (7) holds for some constants $k \neq 0$ and c > 0and

$$\sum_{n=0}^{\infty} \left| \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, d) \right) \right| = \infty$$
(11)

for every non-zero constant d such that kd > 0.

Proof. It is enough to consider the case where k > 0 and d > 0. Let a > 0 be an arbitrary fixed constant, and choose m > 0 small enough and $N \in \mathbb{N}_0$ large enough so that $a + \Phi_m(p; n) \leq c \Phi_k(p; n)$ for all $n \geq N$ and

$$\sum_{n=N}^{\infty} f(n, a + \Phi_m(p; n+1)) \le m.$$

This is possible because of (6) and of the fact that $\lim_{n\to\infty} \Phi_k(p;n) = \infty$. Let B_N be the same Banach space as in the proofs of the Theorems 2 and 3, and let the set S be defined as

$$S = \left\{ y \in B_N : a \leq y_n \leq a + \Phi_m(p; n) \ (n \geq N) \right\}.$$

Clearly, S is a bounded, closed and convex subset of B_N . Define an operator $T: S \to B_N$ as

$$Ty_n = a + \sum_{s=N}^{n-1} \varphi^{-1} \left(\frac{1}{p_s} \sum_{t=s}^{\infty} f(t, y_{t+1}) \right) \qquad (n \ge N).$$
(12)

This operator T is continuous, and as earlier it is easy to see that $TS \subset S$. Therefore, by the Schauder fixed point theorem, T has a fixed point $y \in S$. It is clear that $y = \{y_n\}_{n \ge 0}$ is a positive solution of the equation (1). From (12) we see also that

$$p_n\varphi(\Delta y_n) = \sum_{s=n}^{\infty} f(s, y_{s+1}) \to 0 \quad \text{as} \quad n \to \infty,$$

and by (11) that

$$y_n \ge a + \sum_{n=N}^{\infty} \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, a) \right) \to \infty \quad \text{as} \quad n \to \infty.$$

It follows therefore that $\{y_n\}_{n>0}$ is a type (II) solution of the equation (1)

Example 1. Consider the equation (2) where $\alpha > 0$ and $\beta > 0$, and where $\{q_n\}_{n\geq 0}$ is a positive real sequence. This is a special case of the equation (1) in which $p_n = 1$, $\varphi(u) = u^{\alpha_{\bullet}}$ and $f(n, v) = q_n v^{\beta_{\bullet}}$, and we have $\varphi^{-1}(u) = u^{\frac{1}{\alpha_{\bullet}}}$ and $\Phi_{k,N}(p;n) = k^{\frac{1}{\alpha_{\bullet}}}(n-N)$, so that the conditions (4) and (6) are satisfied for the equation (2).

The possible types of asymptotic behaviour at infinity of non-oscillatory solutions of the equation (2) are as follows:

(I)
$$\lim_{n\to\infty} \frac{y_n}{n} = \text{const} \neq 0.$$

(II) $\lim_{n\to\infty} \frac{y_n}{n} = 0$ and $\lim_{n\to\infty} |y_n| = \infty$.

(III) $\lim_{n\to\infty} y_n = \operatorname{const} \neq 0.$

From Theorems 2 and 3 it follows that the equation (2) has a type (I) solution if and only if

$$\sum_{n=0}^{\infty} n^{\beta} q_n < \infty, \tag{13}$$

and that the equation (2) has a type (III) solution if and only if

$$\sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} q_s \right)^{\frac{1}{\alpha}} < \infty.$$
 (14)

Theorem 4 implies that the conditions (13) and

$$\sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} q_s \right)^{\frac{1}{\alpha}} = \infty$$
(15)

are sufficient for the existence of type (II) solutons of the equation (2).

The conditions (13) and (15) are not always consistent. In fact, let $q_n = (n+1)^{\lambda}$ for some constant λ . Then, condition (13) holds if and only if $\lambda < -1 - \beta$, and condition (15) holds if and only if $\lambda \ge -1 - \alpha$. Hence these two conditions are inconsistent if $\alpha \le \beta$. Thus, if $\alpha > \beta$ so that $-1 - \alpha < -1 - \beta$, then there exists a type (II) solution for the equation $\Delta((\Delta y_n)^{\alpha_*}) + (n+1)^{\lambda} y_{n+1}^{\beta_*} = 0$.

3. Oscillation of all solutions

In this section we study the oscillatory behaviour of solutions of the equation (1). In view of the results of Hooker and Patula [5] and those of Kulenovic and Budincevic [7], it is reasonable to expect that a characterization of oscillation for the equation (1) can be obtained under suitable additional conditions on the nonlinear functions f and φ .

Definition 5. The equation (1) is said to be

(i) strongly superlinear if there is a constant $\gamma > 0$ such that the function $|\cdot|^{-\gamma} f(n, \cdot)$ is non-decreasing for each fixed n and

$$\int_{M}^{\infty} \frac{ds}{\varphi^{-1}(s^{\gamma})} < \infty \quad \text{and} \quad \int_{-M}^{-\infty} \frac{ds}{\varphi^{-1}(s^{\gamma_{\bullet}})} < \infty$$
(16)

for any M > 0;

(ii) strongly sublinear if there is a constant $\delta > 0$ such that the function $|\cdot|^{-\delta} f(n, \cdot)$ is non-increasing for each fixed n and

$$\int_{0}^{N} \frac{ds}{(\varphi^{-1}(s))^{\gamma}} < \infty \quad \text{and} \quad \int_{-N}^{0} \frac{ds}{(\varphi^{-1}(s))^{\delta_{\bullet}}} < \infty \tag{17}$$

for any N > 0.

According to the above definition, the equation (2) is strongly superlinear if $\alpha < \beta$ and strongly sublinear if $\alpha > \beta$.

Theorem 6. Assume the equation (1) is strongly superlinear. Assume further that

$$\varphi^{-1}(uv) \ge \varphi^{-1}(u)\varphi^{-1}(v) \quad \text{for all } u \text{ and } v \text{ with } uv > 0.$$
 (18)

Then all solutions of the equation (1) are oscillatory if and only if

$$\sum_{n=0}^{\infty} \left| \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, c) \right) \right| = \infty$$
(19)

for every non-zero constant c.

Proof. The necessity part follows from Theorem 3. To prove the sufficiency, suppose that the equation (1) has a non-oscillatory solution $\{y_n\}_{n\geq 0}$, say $y_n > 0$ for $n \geq n_0 \in \mathbb{N}_0$. Summing up the equation (1) from n to ∞ and noting that $\lim_{n\to\infty} p_n \varphi(\Delta y_n) \geq 0$, we have

$$p_n\varphi(\Delta y_n) \ge \sum_{s=n}^{\infty} f(s, y_{s+1}) \qquad (n \ge n_0)$$

which implies

$$\Delta y_n \ge \varphi^{-1} \left(\frac{1}{p_n} \sum_{s=n}^{\infty} f(s, y_{s+1}) \right) \qquad (n \ge n_0).$$

Now divide the last inequality by $\varphi^{-1}(y_{n+1}^{\gamma})$, where $\gamma > 0$ is the constant of strong superlinearity of the equation (1), and use (18) to obtain

$$\frac{\Delta y_n}{\varphi^{-1}(y_{n+1}^{\gamma})} \ge \varphi^{-1}\left(\frac{1}{p_n}\sum_{s=n}^{\infty}\frac{f(s,y_{s+1})}{y_{n+1}^{\gamma}}\right) \ge \varphi^{-1}\left(\frac{1}{p_n}\sum_{s=n}^{\infty}\frac{f(s,y_{s+1})}{y_{s+1}^{\gamma}}\right) \qquad (n\ge n_0).$$

Since $y_n \ge c_0$ $(n \ge n_0)$ for some constant $c_0 > 0$ we have, in view of the strong superlinearity of the equation (1), $y_{n+1}^{\gamma} f(n, y_{n+1}) \ge c_0^{-\gamma} f(n, c_0)$ $(n \ge c_0)$ so that

$$\frac{\Delta y_n}{\varphi^{-1}(y_{n+1}^{\gamma})} \ge \varphi^{-1}\left(c_0^{-\gamma}\frac{1}{p_n}\sum_{s=n}^{\infty}f(s,c_0)\right) \ge \varphi^{-1}(c_0^{-\gamma})\varphi^{-1}\left(\frac{1}{p_n}\sum_{s=n}^{\infty}f(s,c_0)\right) \quad (n\ge n_0).$$

Summing up the last inequality from n_0 to n-1, we obtain

.....

$$\varphi^{-1}(c_0^{-\gamma}) \sum_{s=n_0}^{n-1} \varphi^{-1}\left(\frac{1}{p_n} \sum_{t=s}^{\infty} f(t,c_0)\right) \le \sum_{s=n_0}^{n-1} \frac{\Delta y_s}{\varphi^{-1}(y_{s+1}^{\gamma})}.$$
 (20)

Since

$$\frac{1}{\varphi^{-1}(x^{\gamma})} \geq \frac{1}{\varphi^{-1}(y_{n+1}^{\gamma})} \quad \text{for } y_n \leq x \leq y_{n+1},$$

we have

$$\frac{\Delta y_n}{\varphi^{-1}(y_{n+1}^{\gamma})} \leq \int_{y_n}^{y_{n+1}} \frac{dx}{\varphi^{-1}(x^{\gamma})}.$$
(21)

Substituting (21) into (20), we obtain

$$\varphi^{-1}(c_0^{-\gamma})\sum_{s=n_0}^{n-1}\varphi^{-1}\left(\frac{1}{p_n}\sum_{t=s}^{\infty}f(t,c_0)\right)\leq \int\limits_{y_{n_0}}^{y_n}\frac{dx}{\varphi^{-1}(x^{\gamma})}<\infty,$$

which is a contradiction

Theorem 7. Let the equation (1) be strongly sublinear and suppose the conditions (6) and (7) hold. Then all solutions of the equation (1) are oscillatory if and only if

$$\sum_{n=0}^{\infty} \left| f(n, c \Phi_k(p; n+1)) \right| = \infty$$
(22)

for every non-zero constant c.

Proof. First, note that the necessity of the condition (22) follows from Theorem 2. Next, let $\{y_n\}_{n\geq 0}$ be a non-oscillatory solution of the equation (1), say $y_n > 0$ for $n \geq n_0 \in \mathbb{N}_0$. First note that $\Delta y_n > 0$ for $n \geq n_0$, and

$$\Delta y_n \ge \varphi^{-1} \left(\frac{1}{p_n}\right) \varphi^{-1} \left(p_n \varphi(\Delta y_n)\right) \qquad (n \ge n_0)$$

Summing up the last inequality from n_0 to n-1 and using the decreasing nature of the sequence $\{p_n \varphi(\Delta y_n)\}_{n\geq 0}$, we get

$$y_n \geq y_n - y_{n_0} \geq \varphi^{-1}(p_n \varphi(\Delta y_n)) \Phi_{1,n_0}(p;n) \qquad (n \geq n_0).$$
(23)

From the strong sublinearity and the inequality $y_n \leq c_0 \Phi_{k,n_0}(p;n)$ $(n \geq n_0)$, where $c_0 > 0$ is constant, it follows that

$$y_{n+1}^{-\delta}f(n,y_{n+1}) \ge c_0^{-\delta} \left(\Phi_{k,n_0}(p;n)\right)^{-\delta} f\left(n,\Phi_{k,n_0}(p;n+1)\right)$$
(24)

for $n \ge n_0$. From (23) and (24), and using the inequality

$$\frac{\Phi_{1,n_0}(p;n)}{\Phi_{k,n_0}(p;n)} \ge \varphi^{-1}\left(\frac{1}{k}\right) \qquad (n > n_0)$$

which follows from (18), we have

$$\frac{f(n, y_{n+1})}{\left(\varphi^{-1}\left(p_{n}\,\varphi(\Delta y_{n})\right)\right)^{\delta}} = \frac{y_{n+1}^{-\delta}f(n, y_{n+1})y_{n+1}^{\delta}}{\left(\varphi^{-1}\left(p_{n}\,\varphi(\Delta y_{n})\right)\right)^{\delta}} \\ \ge c_{0}^{-\delta}\varphi^{-1}\left(\frac{1}{k}\right)f(n, c_{0}\Phi_{k, n_{0}}(p; n+1))$$
(25)

for $n \ge n_0$. From the equation (1) and (25) we obtain

$$c_0^{-\delta}\varphi^{-1}\left(\frac{1}{k}\right)\sum_{s=n_0}^{n-1}f(n,c_0\Phi_{k,n_0}(p;s+1)) \le \sum_{s=n_0}^{n-1}\frac{-\Delta(p_s\varphi(\Delta y_s))}{(\varphi^{-1}(p_s\varphi(\Delta y_s)))^{\delta}}$$
(26)

for $n \geq n_0$. Since

$$\frac{1}{\left(\varphi^{-1}(x)\right)^{\delta}} \geq \frac{1}{\left(\varphi^{-1}\left(p_n \,\varphi(\Delta y_n)\right)\right)^{\delta}}$$

for $p_n \varphi(\Delta y_n) \ge x \ge p_{n+1}\varphi(\Delta y_{n+1})$, we have

$$-\frac{p_n\varphi(y_n)}{\left(\varphi^{-1}\left(p_n\varphi(y_n)\right)\right)^{\delta}} < \int_{p_{n+1}\varphi(y_{n+1})}^{p_n\varphi(y_n)} \frac{dx}{\left(\varphi^{-1}(x)\right)^{\delta}}.$$
 (27)

Substituting (27) into (26), we obtain

$$c_{0}^{-\delta}\varphi^{-1}\left(\frac{1}{k}\right)\sum_{s=n_{0}}^{n-1}f(n,c_{0}\Phi_{k,n_{0}}(p;s+1)) < \int_{p_{n}\varphi(y_{n})}^{p_{n_{0}}\varphi(y_{n_{0}})}\frac{dx}{(\varphi^{-1}(x))^{\delta}} < \infty,$$

which is a contradiction \blacksquare

Example 2. Consider the equation (2) again. Since

$$\varphi^{-1}(u) = u^{\frac{1}{\alpha_{\bullet}}}$$
 and $f(n,v) = q_n v^{\beta_{\bullet}}$,

the equation (2) is strongly superlinear or strongly sublinear according as $\alpha < \beta$ or $\alpha > \beta$. Therefore, from Theorems 6 and 7, it follows that a necessary and sufficient condition for the oscillation of all solutions of the equation (2) is

$$\sum_{n=0}^{\infty} \left(\sum_{s=n}^{\infty} q_s\right)^{\frac{1}{\alpha}} = \infty \quad \text{if } \alpha < \beta \qquad \text{and} \qquad \sum_{n=0}^{\infty} n^{\beta} q_n = \infty \quad \text{if } \alpha > \beta.$$

Remark. Our results reduce to some of the results of He [4] when $\varphi(u) = u$. Also, our results generalize some of the results obtained in [19] in the sense that we do not require the condition $p_n \to \infty$ as $n \to \infty$.

References

- [1] Agarwal, R. P.: Difference Equations and Inequalities. New York: Marcel Decker 1992.
- [2] DelPino, M., Elgueta, M. and R. Manasevich: Generalizing Hartman's oscillation result for $(|x'|^{p-2}x')' + c(t)|x|^{p-2}x = 0$, p > 1. Houston J. Math. 17 (1991), 63 70.
- [3] Elbert, A. and T. Kusano: Oscillation and nonoscillation theorems for a class of second order quasilinear differential equations. Acta Math. Hung. 56 (1990), 325 - 336.
- [4] He, X. Z.: Oscillatory and asymptotic behavior of second order nonlinear difference equations. J. Math. Anal. Appl. 175 (1993), 482 - 498.
- [5] Hooker, J. W. and W. T. Patula: A second order nonlinear difference equation: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91 (1983), 9 - 29.
- [6] Kitano, M. and T. Kusano: On a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 25 (1995), 321 355.
- [7] Kulenovic, M. R. S. and M. Budincevic: Asymptotic analysis of nonlinear second order difference equations. An. Stiint. Univ. Iasi (N.S., Sect. Ia) 23 (1984), 39 - 52.

- [8] Kusano, T. and B. S. Lalli: On oscillation of half-linear functional differential equations with deviating arguments. Hiroshima Math. J. 24 (1994), 549 - 563.
- Kusano, T., Akio, O. and U. Hiroyuki: Oscillation theory for a class of second order quasilinear ordinary differential equations with application to partial differential equations. Japan J. Math. 19 (1993), 131 - 146.
- [10] Kusano, T., Akio, O. and U. Hiroyuki: On the oscillation of solutions of second order quasilinear ordinary differential equations. Hiroshima Math. J. 23 (1993), 645 - 667.
- [11] Kusano, T., Naito, Y. and A. Ogata: Strong oscillation and nonoscillation of quasilinear differential equations of second order. Diff. Equ. Dyn. Sys. 2 (1994), 1 - 10.
- [12] Lakshmikantham, V. and D. Trigiante: Theory of Difference Equations: Numerical Methods and Applications. New York: Acad. Press 1988.
- [13] Mirzov, D. D.: On the question of the oscillation of the solutions of a system of nonlinear differential equations (in Russian). Mat. Zametki 16 (1974), 571 - 576. Engl. transl. in: Math. Notes 16 (1974), 932 - 935.
- [14] Mirzov, D. D.: On some analogs of Sturm's and Kneser's theorems for nonlinear systems.
 J. Math. Anal. Appl. 53 (1976), 418 425.
- [15] Philos, Ch. G.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 36 (1981), 168 - 178.
- [16] Popenda, J.: The oscillation of solutions of difference equations. Comput. Math. Appl. 28 (1994), 271 – 279.
- [17] Szmanda, B.: Characterization of oscillation of second order nonlinear difference equations. Bull. Polish Acad. Sci. Math. 34 (1986), 133 - 141.
- [18] Thandapani, E.: Oscillatory behavior of solutions of second order nonlinear difference equations. J. Math. Phys. Sci. 25 (1991), 457 - 464.
- [19] Thandapani, E., Graef, J. R. and P. W. Spikes: On the oscillation of solutions of second order quasilinear difference equations. Nonlin. World 3 (1996), 545 - 565.
- [20] Thandapani, E., Maria Susai Manuel, M. and R. P. Agarwal: Oscillation and nonoscillation theorems for second order quasilinear difference equations. Facta Univ., Series: Math. & Inform. (to appear).
- [21] Wong, P. J. Y. and R. P. Agarwal: Oscillation theorems and existence of positive monotone solutions for second order nonlinear difference equations. Math. Comp. Modelling 21 (1995), 63 - 84
- [22] Wong, P. J. Y. and R. P. Agarwal: Oscillation and nonoscillations of half-linear difference equations generated by deviating arguments. Comp. Math. Appl. (to appear).
- [23] Wong, P. J. Y. and R. P. Agarwal: Oscillation and monotone solutions of a second order quasilinear difference equation (to appear).
- [24] Wong, P. J. Y. and R. P. Agarwal: On the oscillation and asymptotically monotone solutions of second order quasilinear differential equations. Appl. Math. Comp. (to appear).
- [25] Zhang, B. G.: Oscillation and asymptotic behavior od second order difference equations. J. Math. Anal. Appl. 173 (1993), 58 - 68.

Received 10.10.1996