On the Local Property of Factored Fourier Series

H. Bor

Abstract. In this paper two theorems on $|\bar{N}, p_n; \delta|_k$ -summability methods have been proved. These theorems include some known results.

Keywords: Summability factors, Fourier series, local property AMS subject classification: 40 D 15, 42 A 24, 42 A 28

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums s_n . Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{\nu=0}^n p_\nu \to \infty \quad \text{as} \quad n \to \infty \qquad \left(P_{-i} = p_{-i} = 0 \ (i \ge 1)\right). \tag{1}$$

The sequence-to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_\nu s_\nu \tag{2}$$

defines the sequence (t_n) of (\bar{N}, p_n) -means of the sequence (s_n) generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be $|\bar{N}, p_n|_k$ -summable $(k \ge 1)$ if (see [2])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty,$$
(3)

and it is said to be $|N, p_n; \delta|_k$ -summable $(k \ge 1 \text{ and } \delta \ge 0)$ if (see [3])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |t_n - t_{n-1}|^k < \infty.$$
(4)

H. Bor: Erciyes University, Department of Mathematics, 38039 Kayseri, Turkey e-mail: bor@zirve.erciyes.edu.tr

In the special case $\delta = 0$, $|\bar{N}, p_n; \delta|_k$ -summability is the same as $|\bar{N}, p_n|_k$ -summability, and in the case $\delta = 0$ and k = 1, $|\bar{N}, p_n; \delta|_k$ -summability is the same as $|\bar{N}, p_n|$ -summability.

Let

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} A_n(t)$$
(5)

be the Fourier series generated by a function f with period 2π which is Lebesgue integrable over $(-\pi, \pi)$. It is familiar that the convergence of the Fourier series at t = x is a local property of f (i.e. it depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the summability of the Fourier series at t = x by any regular linear summability method is also a local property of f. Borwein [4] has proved the following theorems for $|\bar{N}, p_n|$ -summability methods.

Theorem A. If the sequence (s_n) is bounded and (λ_n) is a sequence such that

$$\sum_{n=1}^{\infty} \frac{p_n}{P_n} |\lambda_n| < \infty \tag{6}$$

$$\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty \tag{7}$$

where $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$, then the series $\sum_{n=1}^{\infty} a_n \lambda_n$ is $|\bar{N}, p_n|$ -summable.

Theorem B. The $|\bar{N}, p_n|$ -summability of the series $\sum_{n=1}^{\infty} A_n(t)\lambda_n$ at a point is a local property of the generating function if the conditions (6) and (7) are satisfied.

It may be remarked that the above theorems have been proved by Lal [5] previously.

2. The results

The aim of this paper is to generalize the above theorems for $|\bar{N}, p_n; \delta|_k$ -summability methods. We shall prove the following theorems.

Theorem 1. Let $k \ge 1$ and $0 \le \delta k < 1$. If the sequence (s_n) is bounded and (λ_n) is a sequence such that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |\lambda_n|^k < \infty \tag{8}$$

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k} |\Delta \lambda_n| < \infty \tag{9}$$

and

$$\sum_{n=\nu+1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} = O\left(\left(\frac{P_\nu}{p_\nu}\right)^{\delta k} \frac{1}{P_\nu}\right),\tag{10}$$

then the series $\sum_{n=1}^{\infty} a_n \lambda_n$ is $|\bar{N}, p_n; \delta|_k$ -summable.

Theorem 2. Let $k \ge 1$ and $0 \le \delta k < 1$. The $|\bar{N}, p_n; \delta|_k$ -summability of the series $\sum A_n(t)\lambda_n$ at a point is a local property of the generating function if the conditions (8) - (10) are satisfied.

If we take k = 1 and $\delta = 0$ in our Theorems 1 and 2, then we get Theorems A and B, respectively. Furthermore, Theorem 2 includes as particular case well-known results due to Bhatt [1], Matsumota [6] and Mohanty [7].

3. Proof of the theorems

Proof of Theorem 1. Let (T_n) be the sequence of the (\overline{N}, p_n) -means of the series $\sum a_n \lambda_n$. Then, by definition,

$$T_{n} = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r} = \frac{1}{P_{n}} \sum_{v=0}^{n} (P_{n} - P_{v-1}) a_{v} \lambda_{v}$$

where $\lambda_0 = 0$. Then, for $n \ge 1$, we get that

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{\nu=1}^n P_{\nu-1} a_\nu \lambda_\nu \qquad (P_{-1} = 0).$$

By Abel's transformation, we have

$$T_n - T_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} p_v s_v \lambda_v + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v s_v \Delta \lambda_v + \frac{1}{s_n \lambda_n p_n}$$
$$= T_{n,1} + T_{n,2} + T_{n,3}.$$

By Minkowski's inequality for k > 1, to complete the proof of Theorem 1 it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |T_{n,r}|^k < \infty \quad \text{for } r = 1, 2, 3.$$
 (11)

Now, applying Hölder's inequality with indices k and k' where $\frac{1}{k} + \frac{1}{k'} = 1$, by (8), (10) and $s_n = O(1)$ we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |T_{n,1}|^k \\ &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \left\{\sum_{\nu=1}^{n-1} |s_\nu|^k p_\nu |\lambda_\nu|^k\right\} \left\{\frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_\nu\right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_\nu |\lambda_\nu|^k \\ &= O(1) \sum_{\nu=1}^m p_\nu |\lambda_\nu|^k \sum_{n=\nu+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\ &= O(1) \sum_{\nu=1}^m \left(\frac{P_\nu}{p_\nu}\right)^{\delta k-1} |\lambda_\nu|^k \\ &= O(1) \end{split}$$

as $m \to \infty$. Again, by (9), (10) and $s_n = O(1)$ we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |T_{n,2}|^k \\ &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \left\{\sum_{\nu=1}^{n-1} |s_\nu|^k P_\nu |\Delta\lambda_\nu|\right\} \left\{\frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} P_\nu |\Delta\lambda_\nu|\right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \left\{\sum_{\nu=1}^{n-1} P_\nu |\Delta\lambda_\nu|\right\} \\ &= O(1) \sum_{\nu=1}^{m} P_\nu |\Delta\lambda_\nu| \sum_{n=\nu+1}^{m+1} \left(\frac{P_n}{p_n}\right)^{\delta k-1} \frac{1}{P_{n-1}} \\ &= O(1) \sum_{\nu=1}^{m} \left(\frac{P_\nu}{p_\nu}\right)^{\delta k} |\Delta\lambda_\nu| \\ &= O(1) \end{split}$$

as $m \to \infty$. Finally, by (8) and $s_n = O(1)$ we have

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |T_{n,3}|^k = \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k-1} |\lambda_n|^k = O(1)$$

as $m \to \infty$. Therefore, we have

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{\delta k+k-1} |T_{n,r}|^k = O(1) \qquad (r = 1, 2, 3)$$

as $m \to \infty$ this completes the proof of Theorem 1

Proof of Theorem 2. Since the convergence of the Fourier series at a point is a local property of its generating function f, Theorem 2 follows immediately from Theorem 1

References

- Bhatt, S. N.: An aspect of local property of |R, log n, 1| summability of factored Fourier series. Proc. Nat. Inst. Sci. India 26 (1960), 69 - 73.
- [2] Bor, H.: On two summability methods. Math. Proc. Cambridge Phil. Soc. 97 (1985), 147 - 149.
- [3] Bor, H.: On local property of $|\bar{N}, p_n; \delta|_k$ summability of factored Fourier series. J. Math. Anal. Appl. 179 (1993), 644 649.
- [4] Borwein, D.: The nonlocal nature of the summability of Fourier series by certain absolute Riesz methods. Proc. Amer. Math. Soc. 114 (1992), 89 - 94.

- [5] Lal, S. N.: On the absolute summability factors of infinite series. Matematicki Vesnik 23 (1971), 109 - 112.
- [6] Matsumota, K.: Local property of the summability $|R, \lambda_n, 1|$. Tohoku Math. J. 8 (1956), 114 124.
- [7] Mohanty, R.: On the summability |R, log w, 1| of Fourier series. J. London Math. Soc. 25 (1950), 67 72.

Received 27.09.1996