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Approximate Solutions 
for Multiple Stochastic Equations 
with Respect to Semimartingales 

C. Tudor and M. Tudor 

Abstract. In this paper we investigate different types of approximations for a class of multi-
ple stochastic equations driven by semi martingales. This class includes in particular integro-
differential equations and Volterra stochastic equations. 
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1. Preliminaries 

Multiple stochastic integrals with respect to the Brownian motion were introduced by 
Ito [3) for deterministic integrals, Meyer [7] for martingale differentials and random in-
tegrands, and Ruiz de Chaves [8] for a class of semimartingale differentials. As far as 
we know there are no results about associated non-anticipating stochastic equations. 
Of course, such equations will include the classical ItO equations, as well as integro-
differential and Volterra equations. In the present paper we consider some approxima-
tion schemes associated to this class of stochastic equations. 

Let (,T,P,(.F)o<<1) be a filtered probability space and let S = M'* + A' (1< 
i n) be a family of reaf semimartingales such that 

d(M') = m di,	dA = a t di,	ImI c,	j (a'f di <c.	(1.1) 

Define the sets

Cn={u=(ui,...,un)EL0,l]:0<ui< ... <un<1} 

and
C(t) = C,, fl {u,, < t}	(t E [0,1)). 
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A process {H(u)} UEC, is said to be predictable simple if it has the representation 

H(u) =h3 1 1 bu]( U 1) . 1 ( a i bJ](U n)	 (1.2) 

where 0 < a < b < a32 < b < ... < b, hi are bounded, ,F i are measurable, and 
1 M denotes the characteristic function of a set M. We denote by pn the o.a1gebra 
generated by the set En of predictable simple processes. 

The next result is due to Meyer [7] in the case S = ... = Sn where S 1 is  martingale 
with the increasing process = t, and to Ruiz de Chaves [8] when S' are possible 
different semimartingales which satisfy (1.1). 

Theorem 1.1. The mapping J, E' - L2(1,..F,P) defined by 

J(H) =h (s - 5') ... (5a - s1)
an 

for H of the form (1.2) has a unique extension (denoted also by J) 

J: L 2(pn , A n ØP) - L2(Q,.F,P) 

(where A n is the Lebesgue measure on C) with the property 

E(I J ( H)I 2 ) <4cE (f H(u)1 2 du).	 (1.3) 

We call J(H) the n-multiple stochastic integral of H with respect to S', ..., S' and 
we denote it by

f H(u)dS, . . .dSn 
r. 

We also put

f B(u)dS , ... dS= 
JCn 

H(u)1{<}dS..dS
Cr.()  

Remark 1.2. The process { fC (t) H( u ) dSUl . . .d5} [0] is a càdlàg semimar-
tingale (resp. martingale if every 5% is a martingale) and we have the inequality 

	

E (o
sup , 	H(u)dS .. . d5 2 <5.22cE (f IH(u)1 2

r.	
du).	(1.4) 

	

<t< 	C(t) 

Let now

(1<j<rn)	(1.5)
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where S 1 ••• S3 satisfy (1.1). Let 

H(u) = {H,(u)} 15j5m	with	H13 (u) E L2 (P', ) ® P).	(1.6) 

Then we define 

fc H(u) dZ	0 dZ 
= ( J H dS . . dS)

1<i<d 

and

JC(i)	- 

in a similar way. 

Remark 1.3. From [7: Theorem 49] it follows that multiple stochastic integrals can 
be viewed as iterated stochastic integrals (altghout in [7] only the case of martingales 
is treated, the semimartingale case follows similarly). 

2. Main results 

We consider a multiple stochastic equation of the form 

X = H(t) + J
C-M 

F(u	
-

,X,)dZ 0	
-

® Z	(t E [0,1])	(2.1) 

where H is a cadlàg Rdvalued process, Z3 are of the form (1.5) and F is as in (1.6). 

Remark 2.1. Obviously, the Ito equations are particular cases of (2.1). Moreover, 
the characterization of multiple stochastic integrals as iterated stochastic integrals im-
plies that also the stochastic integro-differential equations (and in particular stochastic 
Volterra equations) studied by Berger and Mizel [2] are covered by (2.1). 

The proof of the following existence and uniqueness theorem follows as in the case 
of classical ItO equations and thus is based on the method of successive approximations 
(the details are left to the reader). 

Theorem 2.2. Assume the following hypotheses are satisfied: 

(1) H is continuous and

E
 (

sup IH(t)1 2 ) <. 
0<1<1

(2.2) 

(2) Z' are continuous semimartingales which satisfy (1.5). 

(3) F(u, x) is measurable and satisfies the Lipschitz and the growth conditions in x.
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Then there exists a paihwise unique continuous solution { Xt}iElol] of equation (2.1) 
such that

 
(O<t<i 

	

E sup IXjI 2 < .	 (2.3) 
 I 

Remark 2.3. The above result covers [2: Theorem 2.E]. 
Next we shall investigate the convergence of several types of approximations to the 

solution of equation (2.1). For simplicity we shall assume that d = rn = 1, n = 2 and 
H(t) c, that is we consider the double stochastic equation 

	

X = c +f	F(u,v,X	'dc2	(0 t < 1).	 (2.4) '-'v 

For it we introduce the following approximations (the assumptions needed in order that 
these approximations to be well defined are given within the statement of Theorems 2.5 
and 2.6):

(a) Carathéodory approximations {Xr}_ i < t < i defined by 

lc	 if-1<t<0 

	

-c+fo<<<iF(u,v,_)dSdS if  <t<1.	(2.5) 

(b) Chaplygin approximations {Y'} 0 << 1 defined by 

1/to = C 

=c+ I	F(u,v,Y,')dSdS
(2.6)

	

+J
	

IF (u,v,Y,)(Y' —Y,')dSdS. a —x 

(c) Let 13 be the Banach space of all continuous adapted processes {(t)}o<< 1 with 
respect to the norm

= E ( sup I(0I2\o <t <1 

Consider the operator 1 : 13 - 13 defined by 

= h(t) - h(0) - J 

	

O<	
F(u,v,h(u))dSdS.	 (2.7) 

tL<V<t 

The Newton approximations {Z"} 0 << 1 associated to (2.4) (or to the operator ) are 
defined by

Z=c	 '1 
- Z' = Z' - d4 '(Z')(I(Z'))(t)	(0 < t <	

(2.8) 
 1) 

J 

where, for h, z E 8 with z(0) = 0, by d' 1 (h)(z) we mean the pathwise unique solution 
of the linear double stochastic equation 

Y(0) = 0 

	

z(t) = d(h)(y)	(0	t	1) }	
(2.9) 

(here dc (h)(y) is the Gâteaux derivative of at h e 8 computed in the point y E 8).
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Remark 2.4. In the case of Ito equations, the convergence of the Carathéodory 
approximations is examined by Bell and Mohamed [1] and Mao [5,6), and the Newton 
method is examined by Kawabata and Yamada [4). 

The following two theorems represent extensions to multiple stochastic equations of 
the above mentioned results. 

Theorem 2.5. Assume the hypotheses of Theorem 2.2 hold. Let {Xt}o<t.c i and 
{X'}o<g< i be the solution of equation (2.4) and the Carathéodory approximations as- 
sociated to equation (2.4), respectively. Then there exists a constant K > 0 such that 

	

E (o 
sup	- xI2 ) <1	for all n> 1.	 (2.10) 

	

<t<I	 n 

	

Theorem 2.6. Suppose	 -

(1) E( 1 c 1 2 ) < no

	

aF(u z)	 SF(oz) (ii) F(u, x) and	are continuous, and	 K1. 
ax 

Then the following conclusions hold: 

(a) The Chaplygin approximations {Y"}o<< 1 associated to equation (2.4) coincide 
with the Newton approximations {Z'}o<<1. 

(b) (Local convergence). There exists to e (0, 1) such that 

lim E 
(O<t<to 

	

sup I'" - X , 12 = 0.	 (2.11) 
n—oo 

(c) (Global convergence). We have 

lim E 1 sup	- X , 12 = 0	 (2.12) 
n— 

if and only if

sup E( sup Y I 2 ) = L < no.	 (2.13) 
n	\o<i<i	I 

We need the following lemma. 

Lemma 2.7. Let {Yt }o.z t < i be a continuous process of the form 

Yt = H +JO<U<V<t 
G(u,v)dSdS	(0 <t <1).	(2.14) 

 

We assume the following: 

(a) H is a continuous process and 

E
 ^O< t<i	 o

supIYI2<no	and	
E ( 

sup IHi I 2 <no.	(2.15) 
 <t<1
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(b) G is a predictable process such that, for some constants K 1 ? 0 and K2 ^! 0,

	

E( I G ( u , v ) 1 2 ) K + K2E ( sup 1Y3 1 2)	for all 0 <u <v < 1.	(2.16) 

Then if 0< to <t 1 < 1, we have 

E( ,,,
s,p  IYt I 2 )

	

	cl {E(IYt0 I 2 )+E( sup IHt_H1012)
 ^ t<t i	 to<t<ti 

+ K1 + K2E 
(0!^":Sto 

IY3 I 2 (t -to)1 c2(t1_to) 
 )	 ) 

where C 1 is a constant independent of K1 , K2 and to, t 1 . Moreover, if K2 = 0, then 

E 
( to<t<tl 

sup 1Y1 - Y1 0 1 2	 Hi - H10 1 2  + K1 (t 1 - t 0 ) 	(2.18) 
 to<t<ii 

where C2 is a constant Independent of K 1 , K2 and to, t1. 
Proof. If t > to, we have 

Yt = Y 0 + ( H1 - H10) 

+J	G(u,v)dSdS + J 1o<<j0<<tG(u,v)dSdS.	
(2.19) 

1o<u'(v<f	 C,,
Then, by using (1.4) and (2.16), we obtain 

E( , , sup  IYtI2
!5t<ii 

cl {E(IYt0 I 2 )+E(
10
 sup H1 _H0I2) 
 1< 1, 

+ [	 <Ki + K2E (0:5 sup YI2)] (t - t0) + K2 f(to<u<E	 sup IY2 dv }
jto	 j0 v 

where (2.17) is a consequence of the Gronwall lemma. The inequality (2.18) follows in 
a similar manner from (2.19)1 

Proof of Theorem 2.5. From (2.3) it follows that F satisfies (2.16) with K2 = 0 
and hence by (2.18) we deduce 

	

E(1 X1 - X 2 ) < C2 (t - s)	for all s < t.	 (2.20) 

Next we have 

- Xj = H(t) +fo<U<V<t 
[F(u,v,x:_1) - F(u,v,X_1)] 

 
with

H(t) 
= fo<U<V<t 

[F(tz,v,x_) - F(u,v,X)} dSdS, 
 

and thus by (1.4), the Lipschitz condition and (2.20) we deduce 

E
 (

sup IH(t)I 2 )	C3 sup E(I XU - X. 1')	.	(2.21) O<,(i	 IuvI<.i.	 fl 

Now the conclusion follows from (2.21) and (2.17) 1
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Proof of Theorem 2.6. (a) First we note that from (1.4) 4 maps B into itself. 
Then we have

(h + thy(i) -	
=  

E	
G(t) + R()	for all h, y e B	(2.22) 

where	
OF(u, v, h(u)) 

G(t) = y(t) - y(0) -
	

y(u) dSdS	(2.23)

and

	

R(t)fo<U<V<t 

IOF(uvh(u))	OF(u,v,h(u) +e9(u)) 

= 	-	Ox	-	Ox	J 
y(u)dSdS	(2.24) 

	

and 9 is a measurable process with 0	9	1. It is easily seen that lim...0 li Re 118 = 0.
Therefore the Gâteaux derivative d(h)(y) is given by 

d'1(h)y = urn	 = C	in 8.	 (2.25) 
C. —0	C 

By Theorem 2.2 it follows that the linear double stochastic equation (2.9) has a pathwise 
unique continuous solution d'I'(h)(y) E B (the fact that the coefficients are now 
random do not change the result and the proof of Theorem 2.2). Now (2.8) and (2.9) 
imply the equality Y' = Zn. 

(b) Denote

li h il E ( sup ih(s)1 2 )	(0 <t	1, h E B). 
I 

We have the equality 

yn+l	 ' - = H(t)+	 0J(y+l — X)dSdS 1,<U<j	Ox 

where

OF(u,v yn\ 
H(t) =  

	

fo<U<V<t 
IF(u v, Y) - F(u, v, X) +	' u )	- Yn)] dSdS. 

	

Ox	U	U 

It is easily seen that iI hmnii C4tY° - X II, and hence by (2.17) we deduce 

	

ll Yn+I - x Il	Cs te<t lI Y ' - x.	 (2.26) 

Choose now to E (0, 1) such that a = C5t0eC5t0 < 1. Then from (2.26) we have 

IIY+' - x112 <	- x 11 2 lit 0 -	 to 

and hence (2.11) follows.
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(c) Assume now (2.13) is satisfied and define 

i i =sup{O<t<1: IY'-xII--40 as 

Of course, from (2.11) we have 0 < t	t1	1. For 0 < e < t 1 we have by (2.18) 

E
 (

sup IX t - x 1 _I 2) C6e, 
t l — ct<(i 

sup E ( sup	 ^C7E 
n	 t,—eI ) 

and thus	 / 
E (	sup IY - XI2)	GE

\t, —e<i(1 1	J 

for n large enough. If we assume that t < 1, then proceeding as in Part (b) we get a 
6 E (0,1 - t 1 ) such that 

E(o<t<tj+6 
sup IYjn_xt12)_4o	as noo 

and this contradicts the definition of i1 I 
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