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Nonlinear Geometric Optics for Shock Waves 
Part II: System Case 

Ya-Guang Wang 

Abstract. In this paper we investigate the nonlinear geometric optics of a stable shock wave 
perturbed by high frequency oscillations for quasilinear hyperbolic conservation laws in one 
space variable. We obtain the existence of the oscillatory shock wave and its leading profiles, 
which are solutions to a boundary value problem of integro . differential systems. Furthermore, 
the asymptotic properties of the oscillatory shock wave as well as the shock front are justified. 
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1. Introduction 
This paper is devoted to the study of rapidly oscillatory waves for quasilinear hyperbolic 
conservation laws in one space variable 

	

ai+Of(u)=O (xER,t>O))	
(1.1) 

u lj=o = uo(x)	J 

when the initial data uo(x) are the perturbation of a shock wave by small amplitude, 
high frequency oscillations. Usually, the interesting points of this problem are focused on 
the formal analysis'nalysi of leading profiles for oscillations, the proof of existence for leading 
profiles and the exact oscillatory solutions in a domain independent of high frequencies, 
and the rigorous justification for the asymptotics of oscillations. The problem (1.1) was 
investigated by A. Majda and M. Artola [14] in the formal analysis even for the case of 
several space variables. 

Under the assumption of the unperturbed shock wave being stable in the sense 
of A. Majda [12], we study the rigorous justification of asymptotic expansions for the 
rapidly oscillatory shock wave for the problem (1.1). After the free boundary problem 
of oscillatory shock wave and shock front is transformed into a fixed boundary problem, 
we prove the existence of the rapidly oscillatory shock wave in a domain independent 
of frequencies of oscillations by extending the classical theory of Cauchy problems for 
one space dimensional quasilinear hyperbolic systems into the case of boundary value 
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problems. Similar to A. Majda and R. R. Rosales in [15] and other references in the case 
of Cauchy problems, the leading profiles of the oscillatory shock wave satisfy a mixed 
problem of integro-differential systems. We discuss the asymptotics of the shock front 
as well as the shock speed. The justification of the asymptotics is established by the 
idea of the simultaneous Picard iteration, which has been adopted in some references 
(see, e.g., [8]). That means to estimate 

u''(t, x) - u (t, x; , ) 

for each v with u' and U' being the convergent sequences to exact solutions u E and 
profiles U, respectively. We use the usual Picard iteration for the boundary value 
problem of profiles to construct the solution sequence Ut . As A. Majda in [13], the 
problem of the shock wave is studied by using the Picard iteration for the nonlinear 
equation, and the Newton iteration for the nonlinear boundary condition to construct 
the solution sequence uCt'. Moreover, in order to make the above estimate of the 
asymptotics valid for the case v = 0, we must properly construct the zero-th order 
approximate solutions of uC as well as U for boundary value problems, which is different 
from the case of Cauchy problems. 

The present paper is a continuation of the study in [18], where the scalar conserva-
tion law was investigated. In the scalar case, the coupled problem of the shock state and 
shock front can be decoupled into two problems, which makes us possible to use some 
existing results directly, the rigorous justification of the asymptotics for the rapidly os-
cillatory shock wave in the scalar conservation law was established there. As in [18], it 
is observed that the leading term of the shock front does not oscillate, and oscillations 
are only appeared in the leading term of the shock speed. For the motivation of this 
problem we refer to the introduction of [18]. 

There is a rich literature devoted to the constructions and applications of weakly 
nonlinear asymptotic expansions for rapidly oscillatory waves. Most of the rigorous 
justifications are given in the setting of smooth solutions. See papers of J. L. Joly, G. 
Métivier and J. Rauch [8, 91 and references therein for Cauchy problems, and those of 
J. Chikhi [2] and M. Williams [19, 20] for mixed value problems with fixed boundaries. 
In recent years, there also have been a lot of works devoted to the rigorous study of the 
formal analysis in the setting of bounded variation solutions. We mention the interesting 
works of C. Cheverry [1], R. DiPerna and A. Majda [5], S. Schochet [17] for initial value 
problems, and that of M. Sablé-Tougeron [16] for the boundary value problem. The 
asymptotic analysis of nonlinear hyperbolic waves had also been investigated by Y. He 
and T. B. Moodie in [7] and references quoted there. 

The remainder of this paper is arranged as follows. In Subsection 2.1, we formulate 
the problem of the oscillatory shock wave as well as that of leading profiles by using the 
method of multiple scales. In Subsection 2.2, we discuss the compatibility conditions of 
these boundary problems, and state the main results. The problem of the oscillatory 
shock wave is studied in Section 3, which contains three subsections in the construction 
of the zero-th order approximate solutions, the analysis of linear problems, and the 
proof of the convergence of solution sequences. Section 4 is devoted to the study of 
the problem of leading profiles by a procedure similar to Section 3. Finally, in Section
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5 we prove the asymptotic properties of oscillations, which concludes the result of the 
nonlinear geometric optics. 

2. Formulations of problems and main results 

2.1 Formulation of problems. For the m x m conservation laws in one space variable 

ôtU + .9f(u) = 0	 (2.1.1) 

we assume that they are strictly hyperbolic in i for each u E Rm , i.e. if A(u) = f'(u) is 
the Jacobian of f(u), then the algebraic equation 

	

det J AI - A(u)I = 0	 (2.1.2) 

admits rn distinct real roots

AI(U) < A 2 (u) .< ... 

Let rk(u) and lk(u) be the corresponding right and left eigenvectors of A(u) with respect 
toA k (u) for each kE {1,...,rn}, 

(AkI - A(u))rk (u) = 0	and	lk(u)(AkI - A(u)) = 0,	(2.1.3) 

with normalization
l(u) . rk(u ) = ik = { 

0 if i 5k k	 (2.1.4) 
1 ifz=k 

for any u E lR tm and i,/cE {1,... , rn) 

For a fixed j E{1,.. . ,rn} we assume that .\(u) is genuinely nonlinear, 

VA,(u) . r(u) 0 0	 (2.1.5) 

for any u E R', and let u+,u_ and a be constants such that 

Iu+ ifx>at 
=	.  

1u_ ifx<at 

is the j-th shock wave solution of (2.1.1), which satisfies the Lax entropy condition (see 
[11])

At <a < A	and	A7 	< A'  

and the Rankine-Hugoniot condition

	

a[u] = [f(u )]	 (2.1.8) 

where we denote At	A(u+) and )ç = A(u - ) for each i,	= - when j = 1, 

A 1 +oo when j = rn, and denote by [u] =	- u the jump across the shock front.
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We assume that
the plane shock (2.1.6) is stable	 (2.1.9)

in Majda's sense [12], which implies that the matrix (see [12: Proposition 3.1]) 

is invertible	 (2.1.10)

where r = r(u) and r = r(u). As A. Majda in [12], it is easy to see that, under 
the genuinely nonlinear assumption (2.1.5), the stability it  (2.1.10) is satisfied 
when the shock (2.1.6) is weak enough. 

Let us study the following Cauchy problem for (2.1.1) with initial data being a small 
perturbation of the plane j-th shock (2.1.6): 

OtUC+ôzf(Uf)=0 (t>0,xR) 

+ Eu 0 (x) if x > 0 }

	

(2.1.11) (0, X) =
1 u .. + eul 0 (x) ifx<0 

where E > 0 is small enough, and u' ,0 E C'. Since the shock (u+,u_,o) is stable, as 
A. Corli and M: Sablé-Tougeron in [4] we can assume that when e E (0,eo] is small 
enough, and u 0 (x) satisfy some compatibility conditions, which will be given precisely, 
the initial value problem (2.1.11) determines a local shock around the origin. 

Before giving assumptions on the problem (2.1.11), let us first introduce some no-
tations. Given a small closed neighborhood w C {t = 01 of the origin, suppose Q 
is the closure of a determinacy domain of w for the Cauchy problem (2.1.11) when 
I U - u± I <i'. The space C'(ci) is the usual one of functions whose derivatives of order 
less k are continuous in Q. Equip this space with a family of norms 

UIJe,k, =
IaI<k 

Afamily uC E C k (ci) (e > 0) is bounded in C,4 (Q) if the family of norms IIu e II C,k,O (e > 
0) is bounded, and a family fO L I, is bounded in C[0,T] if 0 6 E C'[0,T] and the 
family of norms II dtIIe,k_I,[O,	(e > 0) is bounded for k > 1. Obviously, we have 
C(l)	C°(1l) n L°°(cl). 

Let C(R) be the space of continuous almost periodic functions in 6 E R (see 
Y. Katznelson [10]). Denote by C°(ci : IR") = C°(1l : C(R)) the space of continuous 
functions from ci into C(l). For k E N, define the space C'(ci : R) of those functions 
U E C°(ci : R) whose derivatives O( j.o) U belong to C°(ci : Thl ) for any Ia] k. 

For the problem (2.1.11), we assume that there are U± , o(x,6) E C'(w : IR) such 
that

II4,o(x) - U±,0 (X , )lei± = o(i)	 (2.1.12) 

when e - 0, where w+ = w fl {x > 01 and w = w fl {x <0} (we use the notation "±" 
to mean two cases according to thei.ipperand lower signs, and it will be used in this 
whole paper) ; 	from (2.1.12); we have that u 0 is bounded in C(w).
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The aim of the present paper is to study the local existence of the shock wave 
solution U C to the problem (2.1.11), and the asymptotic expansions of UE and its shock 
front {x = 'P(t)} with respect to E. 

Now, let us simplify the problem (2.1.11), and deduce the problem of leading profiles 
of UC as well as the shock front {x = 

As in [18], let

U c (t , x) = f u + cu(t, x) if x > at + c(t)	
(2.1.13) 

1L + cu(t,x) if x< at .+ e(t) 

be the shock wave solution of the problem (2.1.11), i.e. (u' 	satisfy 

ôt(u+ + eu) + O f(u + + cu . ) = 0 if x > at + c(t))
>	(2.1.14) 

3(u.. + cue) + 3f (u_ + EuC) = 0 if x < at + c(t) J 

which is equivalent to 

Ue + A(u + + cu)5u = 0 if x > at+ c(t)
>	(2.1.15) 

a, u' + A(u_ + cu)Ou = 0 if x <at + E(t) J 

and satisfy the Rankine- Hugoniot condition 

(a + c i) (c[u e ] + [u]) = If (U + cu e )]	 (2.1.16) 
dt  

on {x = at + c4(t)} with [u e ] = (u - ue)(t,at + e0 8 (t)): 

At this stage, both of functions u and ç are unknown. Thus, (2.1.15) - (2.1.16) 
is a free boundary value problem. In order to transform this problem into the fixed 
boundary case, we perform the tranformation 

I i=t
- at - c(t) 

in (2.1.15), and obtain that 0, (i,:i) = u(t,x) satisfy 

3fl + (A(u 4 + cü) - (a + cd€cb)I)ôü = 0 if > 0	
(2 1 17) 

ÔjÜ + (A(u + cu) - (a + cdt )I)3ü = 0 if i <0. J	. 
Bytaking the transformation

J
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in the second line of (2.1.17), we know that (t4,) satisfy the coupled problem with a 
fixed boundary 

ô1 u ± (A(u± + Eu) - (a +ed)I)3t4 = 0 ((t, x) E 1l) 

(a + edt )(E[u e ] + [u]) = If (u + cu e )] (x = 0)	
(2.1.18) 

0) = 0 

-	u(0,x)=u0(x) 

where the tilde and bar of notations are dropped for simplicity,	= Q fl {x > 01, and
If = 1+ - f is the jump on {x = 01 for any function f. 

Suppose that the solutions (u,) of the problem (2.1.18) have the forms 

	

u(t,x) = U(t,x; , ) + cVj (t,x; 16 , ) + 0(E2) }

	
(2.1.19)

= (t, ) -I- c(t, ) ± 0(e2) 

where	x; r, 9), V± (t, x; T, 9), (t, r) and p(t, r) are almost periodic in (T, 9) E R2.
Let us formally deduce the problem of (Ui, ) from (2.1.18). 

Set T = and 9 = . Plugging the formal expressions (2.1.19) into the equations 
in (2.1.18), expanding A(u± + cu) by Taylor's formula at u and grouping each power 
of c, it follows that the term of "c" is 

aU± ± (A - (a + 3r4. )I)ô9U± = 0	 (2.1.20)

with A± = A(u±), and the term of "c 0 " is 

a, U, + a, V± ± (A, - (a + o)r)(5U± + 9oV) 

(at o 	=0 

with B = V2 f(u) being the Hessian of f at u. Similarly, the "c 0 " term of the 
boundary condition in (2.1.18) is

(a + 5)(u) = [1(u)] 

which implies
Orc = 0	 (2.1.22) 

i.e. 0 is independent of 	=	by using (2.1.8) and [u]	0, the	term of the
boundary condition in (2.1.18) is 

(a + 0,.)[u] + [(al - A)U] = 0.	 (2.1.23) 

Defining the operator
P±(ô,ôo) or ± (A, aI)O
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and denoting its symbol by	a), it is easy to see that charP* = {c((A —a), 1)1 c E 

	

Let the operator E be the extension in C°(	: R2 ) of the following action on the 
space of trigonometric polynomials: 

= [ H(X , a)u(i , x)e(ATO) if (A,a) E charP	(2.1.24) 
0	 otherwise. 

Here, for (.\, a) E charPj , ll(.\,a) is the projector in C tm on the kernal of p(A,a) 
with respect to the decomposition 

Ctm = sp(r)	... 

with r = r(u) given by (2.1.3) and sp(r) being the span of r. Then, as J. L. Joly 
et al. in [8, 91, on	: R2 ), we have the following: 

(1) E± U = U is equivalent to P±(ôr,ô9 )U = 0. 

(2) For any V E C' (Q : l 2 ) , E± Pi. (a7 ,a0 )V = 0. 

Acting the operator E on (2.1.20) - (2.1.21) and using (2.1.22), it follows that the 
leading terms of (u,) satisfy

EU=U 

E±(aU± ±(A —aI)ôU± ±B±(3oU±,U±)xaeU±)	 1 (2.1.25)
x[u]+[(aI—A)U]=O (x=O=0) 

U± It= ro = U± , o(x,9)	) 

where X(t,r) = dgq5+ô. 

Let us analyse the problem (2.1.25) in detail. Define 

+p+p 
lE0 u(t,x;r,8) = i(t,x) = urn (2)2Jfu(i,x;T,9)drdO 

.- p - p 

to be the mean value operator of u E C°(Q : R2 ) in (r, 9). For any fixed k e 11,. .. ,rn 
let IE be the extension, similar to E±, of the operator 

!Eu(i, x)& r-4-aO) = f 
n ± u(t, x)e' ( ° ) when (A, a) =	(A - 

1 0	 otherwise 

where c E R\{0} and fl is the projector in Ctm on the kernal of p ( (A - a), 1). 
Obviously, we have	 - - - 

=	+E0	 (2.1.26)
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and, for any (A, a)	c( :j (.\ — a), 1) with c 

M' u(t, x)e+ O) = ( lu(i, x))l(T+aO)± 

by using (2.1.4). 

Let U be the functions determined from (2.1.25), U±,k = EU and tJ = E0U. 
Then from (2.1.26) we have

U =	=E U±, k +U 

The fact U± k = E U shows that U±k(t, x; r, 9) can be viewed as a function of (t, x, O 
(A —a)r), from which it follows that there is a scalar function o, (t, x, 0) almost periodic 
in9Rsuch that 

	

U±k = I1U±,k = (lU±,k)r = a (t,x,9 T (	— a)r)r.	 (2.1.27) 

This implies

	

a' (t. x; 9	(	— a)r)r	.	 (2.1.28) 

with a denoting the derivative of a(t,x;9) in 9 E R. 

On the other hand, it is obvious that 

where
+p 

Mu(i,x;r,9) = lini	fu(tx;r +s,9±(	_a)s)ds 
p—oo  

—p 

is the mean value operator in the direction (r, 0) = (1, ±( —a)) for any . k E {1,.. , rn}. 
Therefore, by using (2.1.28) we have 

= E± ((d + o)aou±) 

= MH ((	+ ô)	a ' (t,x;9 (A — a))

(2.1.29) 
=E M ((dt c + ô,ç)a ' (t, x; 9 (A - a)r))r 

k=1	
k

=	dta'(t,x:9+(	— a)r)r	 ;'.• 

= E(dô9U±)
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Acting the operator E0 on (2.1.25) and using (2.1.29), we obtain that (U±, 0) satisfy 

• a, U, ±(A - aI)ôJf = 0 (i,x >0) 
dj q5 [ u ]+[(aI—A) Uj=0 (x=O)

(2.1.30) 

U(0,x) = U±,0(x) 

with

U0(x) = urn	fU±o(x,o)do. P-0 2p
-p 

As A.Majda and R.Rosales in [15], we can easily reformulate the problem (2.1.25) 
as an integro- different ial system for a introduced in (2.1.27). 

2.2 Compatibility conditions and main results. Let us study compatibility con-
ditions for the problems (2.1.18), (2.1.25) and (2.1.30). Since (2.1.30) is deduced from 
(2.1.25) with X(t,r) = dt qf + 5, it is obvious that the compatibility conditions of 
(2.1.30) immediately follows from those of (2.1.25). 

Since the boundary condition in (2.1.18) must be valid at {x = t = 0}, the zero-th 
order compatibility condition for the problem (2.1.18) is 

(a + edt(0))(E(u) + [u]) - [f(u + eu)] = 0	 (2.2.1) 

with [ut] = u ,0 (0) - u ,0 (0). It is well-known (see, e.g., P. D. Lax [11)) that the shock 
speed a + edj0(0) and the state ahead of the shock, u + eu 0 (0), define a unique 
state behind the shock, u_ + eue 0 (0) , so that the zero-th order condition (2.2.1) is 
satisfied. Moreover, when (d(0),u.0(0)) are bounded in e G (0,eo], we also have the 
boundedness of u ,0 (0) in c E (0,co]. 

Differentiating the boundary condition in (2.1.18) with respect to t, and evaluating 
the result at x = t = 0, we obtain 

dc(0)(e[u] + [u]) + (a + edj(0)) [ôu e I =O ] - [A(u + cu)5tueIo] = 0. (2.2.2) 

On the other hand, from the equation and initial data in (2.1.18) we have 

5t u(0,0) = F(A(u± + Et4 ,0 (0)) - (a + edt(0))I)dzu ,0 (0).	(2.2.3) 

Substituting (2.2.3) into (2.2.2), it follows the first order compatibility condition for the 
problem (2.1.18): 

	

d(0)(e[t4] + [uP + ((a.± Ed(0))L- A(z + +	.0(0)))du0(0) 

	

2	 (2.2.4) 
+ ((a + ed t q5 e (0))I. - A(u + Eu ,0 (0))) du ,0 (0) = 0.
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In order to deduce compatibility conditions for the problem (2.1.25), let us first 
diagonalize this problem. Set

T(r',.. .,r)	 (2.2.5) 
with r = r(u j ) determined from (2.1.3) by setting u = u. From (2.1.4), it is obvious 
that T' =	with It I(u±). Define 

T'U. 

Then by the same computation as from (2.1.20) and (2.1.21) - (2.1.25), we deduce that 
(Ui , x) satisfy the problem

=	(ô ± (A - iI)ôo)U± = 0 

a,	(A:, —aI)OzUj±±(±(aoUj,Uj)—xaoU±) =0	
(226) 

x[u]+(aI—A+)T+U^—(aI—A.)L(L=0 onx=O=0 

U±I,=ro = U±,o(x,O) := T1U±o(x,9) 

where !E is defined similar to lE in (2.1.24) with fl(A,a) replaced by fi±(A,a), the 
projector in Ctm on the kernel of(A,c), the symbol of P±(ar,5g) = O +(A —crl)ôo 
with A = diag[),.. . , .X,], and the bilinear form B(ü,i) equal to T;1B(Tu,Tii). 

Let U = (Ui,... , Up)". From the first and last lines of (2.2.6) we get 

U(0,x;r,9) = U,o(x , 9 9(A t —a)r). 

For simplicity, we denote 

U±(0,x; r,6) = U±o(x,O :F (A± - uI)r)
T.	(2.2.7) 

= 

Evaluating the boundary condition in (2.2.6) at x = i = 0 = 0, we obtain the zero-th 
order compatibility condition for the problem (2.2.6) 

x(O , r)[uj + (a1— A+)T+U+,o(0, (a1— A+)r)	
(2.2.8) 

_(crI—A_)T_U.,o(0,(A_ —crl)r) =0 

which easily implies the zero-th order compatibility condition for the problem (2.1.30) 

	

dtq(0)juj + (cr1 - A+)IJ+,0(0) - (a - A_)U..,o(0) = 0	(2.2.9) 

by taking the mean value of (2.2.8) with respect to r E R. 

Differentiating the boundary condition in (2.2.6) with respect to i, we have 

atxtul + (cr1 - A + )T+ aU+ - (cii - A.. )T_aU. = 0 on x = 0 = 0.	(2.2.10)
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From the second line of (2.2.6), it follows 

aU h=o = ( A 1, - ciI)5U±,o	± (n± o0 U ,0 , U ,° ) - x(°, T)OOU± ,o)	(2.2.11) 

with U ,o(x,r,9) = Uj,o(x,9(A —aI)r) given by (2.2.7). Substituting (2.2.11) into 
(2.2.10) at t x = 9 = 0, it immediately follows the first order compatibility condition 
for the problem (2.2.6) 

a1x(o , T)[U] 

• (al - A+ )T+ (crl - A + )5U+ o(0,(aI - A+)r) 

• (ol - A_)T_(aI -	 (0, (A - - oi)r)	 (2.2.12)
- {(aI - A+)T++((B+(a9U+,o,U+0) - x(0,r)Ô8U+0)) 

+ (cii - A_)T_E_ ((B_(a9U_,0,(J_,0) - x(0,r)ôeU_, 0 ))1	= 0 

with x(°, r) determined from (2.2.8). 

Similarly, we can deduce higher order compatibility conditions for (2.1.18) and 
(2.2.6). As A. Majda in [13: Proposition 2.21, we have the following 

Proposition 2.1. 
(1) Suppose that u 0 (0) = a 0 and d(0) = ci satisfy the zero-th order condition 

(2.2.1) with (a'o, o e } eE( o ,eo1 being bounded, let P and P f be the projectors in C tm on 
the spaces

SP{ri+l(u+ + ea ,0 ),.. . ,Tm(t + ea,o)} 

and
sp{ri(u_ +Eao),...,rj_i(u_+eao)}, 

with respect to the decompositions 

C' =	sp(r(u + + ea .,o))	and	Ctm =	sp (rk(u_ +a,0)), 

respectively, with sp(d) being the span of d. Assume constants g, e Ctm satisfying 
Pg = 0 and l eg' } eE(O,eoj being bounded. Then, there are (uo(x), (t)) bounded in 
C() x C[0,To] such that 

u ,0 (0) = a,0, c(0) = 0, d1 (0) = cC, (I— P)du 0 (0) = 

and the first order compatibility condition (2.2.4) is satisfied. 

(2) Let P and P_ be the projectors in Cm on the spaces sp{r 1 ,. . . , r } and 
sp{rj,... , r_ } with respect to the decompositions 

M	 m 
Cm = sp(rfl	and	Ctm = sp(rfl, 

k=l	 k=l 
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respectively. For any given V(9) E C(R) and W(0) E CPO (R) satisfying PV = 0 
and P± W± = 0, respectively, there are 

(U±,o(x,9),X(t,T)) E C'(w	R) x C 1 ([0, T0 ] R) 

such that 

(I— P±)U±,o(0,8) = V(0)	and	(I—P±)aU±0(0,9) = W± (0), 

and the compatibility conditions for the problem (2.1.25) up to order one are satisfied. 

Proof. Assertion (1): Let us diagonalize the condition (2.2.4). Set 

T = (r i (u± ±ea ,o),... ,rm(u± +eao)). 

Obviously, from the normalization (2.1.4), we have 

(Tm' = (l i (u± +Ea ,0 ),... ,lm(u± +eao)) 

By taking the transformation

v , (x) = (Tu,0(x) 

in (2.2.4), it follows that (2.2.4) is equivalent to that (dv0(0),d(0)) satisfy the 
condition 

d(0)([u]+[a]) 
M 

+ E (a +.eac - \ k(u+ +Ea+,o))2dxvc+,(0)rk(u+ ± Eae+,o) 
k=i	 (2.2.13) 

M 

+ E (a + EC' - )tk(u_ + Ea'-0
) ) 2 d _,0(0)rk(u_ + ea ,0 ) = 0. 

k=1 

The hypotheses (I - P:' )d.u' ,O (0) = g give rise to 

=	dv(0)rk(u + + ea,) 
k=i

	

	 (2.2.14) 

dv'(0)rk(u +Ea,o). 

By applying the stability condition (2.1.10) in (2.2.13) we know that, for any given g, 
(2.2.13) defines uniquely d 6 (0) and 

Vt = {dv(o),... , dxv e (0) , dzv(0),. . .
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Moreover, when 1e9}e(010 is bounded, we have that	(0),EVe}eE(O,o] is also
bounded. 

It remains to construct (u0(x),(t)) bounded in C() x C'[0, To], such that 
u 0 (0) = a 0 ,	(0) = 0, d(0) = a C , and (dru0(0),d(0)) are determined as 
above. For simplicity, let us only discuss the case	For instance, by setting 

(t) = / (aC(e + e) - iEd(0)(e - et))ds 

it immediately follows	€ C2 [0, T0 ] satisfying all demands for any T0 > 0. 

Assertion (2): As in (2.2.6), set U = T;-'U± with Tk given in (2.2.5). The hy-
potheses

	

(I - P)U , o(0,9) = V± (0)
	and	(I— P±)a1U±,o(0,O) = W± (0) 

imply 

V, (0) =	 W(8) =	aa:o(o,e)r 

and	
k=1	 (2.2.15) 

V_ (0) =	 W_ (0) = 

By substituting (2.2.15) into (2.2.8) and (2.2.12), and using the stability condition 
(2.1.10), we immediately get the functions 

	

(U±,o(O,O),x(O,9)) € C(R)	and	(3U±,o(0,8),3x(0,9)) E C(R). 

Similar to the proof of Assertion (1), it suffices to construct X(t,r) € C'([O,To] : R) 
with x(O T) and ax(0, r) being the functions determined from (2.2.8) and (2.2.12). Let 
x(0, r) = a(r) and 9x(0,r) = b(-r). It is easy to verify that the function 

a(r+t)+a(r—i)	1 t 
=	2	+	j b(,) d, € C'([0,T0 ] : R)	(2.2.16) 

r-t 

is the one we look for U 

The main assumption of this paper is the following one: 

(MA) Given the initial data uo(x) € C'() satisfying the compatibility condi-
tions (2.2.1) and (2.2.4) for the problem (2.1.18) for any e € (0,e 0 ], there 
are U ,o(x,9) € C'(w : IR) satisfying the compatibility conditions (2.2.8) and 
(2.2.12), such that we have the asymptotic property (2.1.12).
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Remark 2.1. When u e C'() and U,,o E C 1 (w,R) satisfy the asymptotics 
(2.1.12), u 0 (0) = ôuo(0) = 0, and U± ,o(0,0) = OU±,o(0,9) = 0, the assumption 
(MA) is obviously valid. 

Now, we can state the main result of this paper as follows. 
Theorem 2.1. Under the above assumption (MA), we have the following. 

(1) There are constants T, E O > 0 such that the problem (2.1.18) has unique solutions 
u and q bounded in C(4.) and C[0,T}, respectively, for any e E (0,co], where 

= ç n {t <T}. 

(2) There are unique solutions U E C 1 (i. : R2 ), x E C'([O,T] IR) and 0 E 
C2 [0,T] to the problems (2.1.25) and (2.1.30). 

(3) For the above solutions (u,	we have the asymptotic properties 

I u ( t , x ) - Uj (t,x; 1, fl11+ = o(i)	 (2.2.17)

and
- x(t, fl IL	. = o(1) 

II( t) - (t)11L—[o,	= 0(1)	
(2.2.18)

when e - 0. 

Remark 2.2. From the results in (2.2.18), we can easily obtain the asymptotic 
property of the shock front '{x = it + eq(t)}. 

3. Existence of oscillatory shock waves 
This section is devoted to the proof of Theorem 2.11(1), which gives the existence and 
uniqueness of the exact solutions (u,) to the problem (2.1.18). 

3.1 . Construction of approximate solutions. Introduce the notations 

and	 . 

G(u,u,dj) =	+ede)(e[ue]	[u]) - [f(u+Eue)]).	(3.1.2)

The function f(u± + eu) admits Taylor's expansion at the constant state u as 

f(u + 6u) = f(u) + A±(Cu) + 62 f( i - )V2 f(u + 

This implies
Ge(uudtq e ) = dtq(e[ue) + [u]) + [( cII , — A)u E ]	., 

	

[V2f(u + eu e )(u e , ue)]d	(3.1.3)
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by using the Rankine- Hugoniot condition (2.1.8), where [.] denotes the jump of the 
related function on {x = 01. Obviously, the problem (2.1.18) can be written as 

= 0 (t,x >0)) 

Ge (u , u , d i ) = 0 (x=0)
 

Ju(0,x) = u0(x). 

Under the assumption (MA) in Subsection 2.2, we try to construct approximate solutions 
(u,'°) of this problem, which are bounded in C(ft) x C[0,Toj ((To, 0) E l) and 
satisfy

rcf	,0 .LC,O\ e,0	- iti ,	jU	1=0 — 

dG e (u o ,u c_ O ,dt cbto ) l i =o = 0 (k = 0,1)	
(31 5) 

= 0 

u'°(0,x) = U(X). 

Set m(x) = ôu 0 (0,x) fork E 10, 11. The initial condition in (3.1.4) implies that 
mO± E (x ) = 4 ,0 (x) are bounded in C'(w). From the compatibility condition (2.2.1), 
we immediately obtain that the sequence {dt ' 0 (0)} eE(0,eo] is bounded when Co > 0 is 
small enough, such that, for any e E (0,eo], 

c(u .,o(0) - u , (0))	Iu + — u _I .	 (3.1.6) 

From the equation in (3.1.4), we deduce mt(x) e C°(w 4 ) and Em' '(x) are bounded 
in C°(w) by using the boundedness 0fE51 t4 0 (X) in C(LI). 

Let us construct the approximate solutions u'0 of (3.1.4) by the following lemma. 

Lemma 3.1. Given functions rn' E C(w+), CmhjC € C°(w+) and the sequence 
{ d1'°(0)}o,01 bounded as above, there are functions u' 0 bounded in C(2+) such 
that

u°(0 ,x) = m(x)	and	a1u'°(0,x) = m(x)	(3.1.7) 

a1 u'° ± (A(u j + eu'°) - (a + edj 0e0 (0))I)ax u 0 = 0 on t = 0	(3.1.8) 

and

	

31u'° ± (A — aI)ôt4' 0	bounded in C°(cl - ).	 (3.1.9) 

• Proof. The conclusion (3.1.8) is a simple consequence from (3.1.7) and the choice 
of m. It is sufficient to construct bounded u' 0 in C(1) satisfying (3.1.7) and (3.1.9). 
Denote the extensions of mO± e in w still by m, with m E C(w). Set 

	

in(x) = F(A(u± +ern(x)) - (a+ed t c(0))I)dxrn°(x).	(3.1.10)
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Obviously, we have that em(x) are bounded sequences in C°() and that rn(x) are 
extensions in w of m(x) = ôu'°(o,x) obtained from (3.1.5). 

Let us solve the linear Cauchy problem of u'0 in ci 
UE 

	

± (A - cI)O1 u'° = m ± (A - aI)d1rn° }

	
(3.1.11)

= mOje(x) 

from which the conclusions (3.1.7) and (3.1.9) are obviously valid by using the fact that 

m' ± (A - aI)d1 rn	±(A± - A(u + em') + ed' 0 (0)I)di in	(3.1.12) 

are bounded in C(ci). Hence, it suffices to verify that the solutions u' 0 of the problem 
(3.1.11) are bounded in C(ci). As J. L. Joly et al. in 18], it is obvious that u'0 are 
bounded in C(Q) by using (3.1.12). 

To check that EV1410 are bounded in C°(ft), let us diagonalize the problem (3.1.1 1). 
Set T = (r,.. . ,r) as in (2.2.5) and define 

cO - j-1 e,O v± - ± 

Then v'0 satisfy

	

aV ° ± (A - aI)ôv'° =	e ± (A - 

	

v'°(0,x) =	C(x)	 }	
( 3.1.13) 

where ff' = T'm and	c T 1 m. Obviously, the same assumptions as those 
of m(x) are still valid for	(x), with i E 10, 1}. It is easy to see that the solutions 
v'0 of the problem (3.1.13) can be expressed as

z 
c,O	 —O,c	 1 

v(i,x) m(x) ±	-	f	in(r)d	 (3.1.14) 

for any i e {1,. . . , m}. From here, we immediately obtain that EVv'° are bounded in 
C(ci) which is equivalent to the boundedness of eVu° in C°(cl + ) U 

Set a = djq(0) and b = d(0). From the compatibility conditions (2.2.1) and 
(2.2.4), we know that the sequences {ac}eE(oco] and {Cbc}c E ( O c o l are bounded when 
(3.1.6) holds. Define the approximate solution '° E C 2 (0, T0 ] of (3.1.4) by the following 
lemma. 

Lemma 3.2. Let u' 0 E C(Q) be the approximate solutions of (3.1.4) given as 
above. Then there is a OE,o bounded in C,2 [0, To] for e E (0,6o], with co > 0 small 
enough, such that

dGe (u O ,ueO ,dt O )I o = 0 (k = 0,1) 

C0 (0) = 0, d'0 (0) = ae,	d'°(() = b.	
(3.1.15)
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Proof. The compatibility condition (2.2.1) can be written as 

dçbE(0)([u] + e[ueo(0)j) + (ci - A,)u'°(0,0)	
(3.1.16) 

- (al - A_)u'°(0,0) Ege(0) 

where ( uW ,0 (01 = u	t, 0) - u_cO (t, 0), and 

g C ( t ) =	{f (u + + E u ĉ 0 ) - f(u) -	
(3.1.17) 

- f(u + U" 0 ) + f(u - ) + EAU0}(t,0) 

is bounded in Q0 1 To], by-using the Rankine- Hugoniot condition (2.1.8), the bound-
edness of t4'° in C(), and Taylor's expansion of f(u j + Eu°). As in the proof of 
Lemma 3.1, performing the transformations v 0 = Tu,'° in (3.1.16), it follows 

d j c(0)([u] + EtUeO(0)]) + (al - A)T+v.'°(0,0)	
(3.1.18) 

- (ci - A)Tv'0 (0,0) = g'(0) 

Obviously, from the stability condition (2.1.10), we have that the matrix 

M e ( t ) = (Eu] + E[UcO(t)], {(a -	 {(A - a)r })	(3.1.19) 

is invertible when c E (0,e 0 }, with E0 small enough. Hence, (3.1.18) gives rise to 

d(0) = F, . (M'(0)) 9 '(0) (3.1.20) 

where è = (1,0,... ,0) and 

g c (t) = eg c (i) -	(a - A t ) rv',(t,0) -	- a)rv(t,0).	(3.1.21) 

Let us solve the initial value problem 

d t q5cO (t) = F, . (J4(t))' gc(t) }

	
(3.1.22) 

= 0. 

The existence of a solution	'° E C2 [0,To] is clear for this problem. By using the 
- boundedness of g (t) and v, (t,0) in C i [0, T0 ], we obtain that 06 ,0 (t) is bounded in 

C[0,To]. On the other hand, from the above discussion, we know that the solution 
of the problem (3.1.22) satisfies d'°(0) = ae and Ge (i4 o ,u. O ,dj 0 )l t	= 0. If we 
can verify that	also satisfies	-	 - 

d eO (0) = b,	 (3.1.23)
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then from the definition of b, and the first order compatibility condition in (2.1.18), we 
immediately have

dtGc(u.O, u E d, I'°)0	0. 

Let us prove the assertioi (3.1.23) as follows. Differentiating the equation in (3.1.22), 
it follows

dcbeo(0) =	. (Me(0))_ldg(o) +F, . d(M e (0)) g(0).	(3.1.24)

From the definitions of Mc(t) and gC(f) in (3.1.19) and (3.1.21), respectively, we have 

d t M e (0) = (e[aue0(0)], 0,.. . , 0)	and	(Me(o))_lge(o) = (ae, *)T	(3.1.25) 

by using d°(0) = a, where * is an 1 x (rn — i) vector the explicit expression of which 
we do not need. By substituting the formula 

d t (Mc (0)) _ l = _(Me(0))_l (dM(0))(M(0))1 

into (3.1.24), and using (3.1.25), we obtain 

dcb'°(0) =	. (M(0)) (dg e (0) - eae [ôt u e0 (0)]) .	(3.1.26)

On the other hand, from (2.2.2) we have 

b, Qu] + e[u0(0)]) + [(ui - A(u))Oueo(0)] 

= [((A(u + eu c0 (0)) - A(u) - eae)0t u'°(0)]	 (3.1.27)

= ed 1 g(0) - Ea [OtueO(0)] 

with ge(t) defined in (3.1.17). In a way similar to (3.1.20), from (3.1.27) we deduce 

= ei (A4(0)) -1 (dg(0) - ea[ôu'°(0)])	 . (3.1.28) 

where	(t) is defined in (3.1.21). Comparing (3.1.26) with (3.1.28), it concludes the 
assertion (3.1.23) U 

Summing up, we have the following 

Proposition 3.1. Under the assumption (MA) in Subsection 2.2, there are approx- 
irnate solutions (t4, °,0 ,') to the problem (3.1.4), such that u' 0 ' 0' ,0 ) are bounded in 
C(1Z)x Ce20,Tø], and satisfy 

•	
L(u'°,q'°)u'°lto = 0 •	• •, •

	 = 0	(k	0,1)	
(31129) 

= 0 
U"

0 ( 0 , X) = u , '0(X)



Nonlinear Geometric Optics for Shock Waves II	875 

3.2 Iteration scheme and. proof of Theorem 2.11(1). From the definition (3.1.2) 
of Ge, it is easy to see that the Fréchet derivative of GC with respect to its arguments 
at (v,,v_,dt(p) is 

Gel ,d)(V+, v_,dj)
(3.2.1) 

= ([u] + e[ud])dep + (u + ed j )(v] - [A(u + eue)v]. 

As A. Majda in [13), given approximate solutions (u'°,'°) by Proposition 3.1, we 
solve the problem (3.1.4) by the iteration scheme 

L(u, c & )u v =0 

	

d'') = _Ge (u , d')	 .1 
+ G d)(u,di v )	 (3.2.2) 

Ct+1(0)_0	 I 

J 

i.e. we use the usual Picard iteration for the equation, and the Newton iteration for 
the boundary condition. The zero-th and first order compatibility conditions in (3.2.2) 
for any ii > 0 were verified by A.Majda in [13: Section 31 even for case of several space 
variables by using (3.1.29). 

To study the problem (3.2.2), let us first consider the linear problem 

L' (u'	f	) 
Gel

	

= ge(t)	
(3.2.3) 

	

C(0)O	
I v(0,x) = u,o(x)) 

where {u} and {} are bounded inC(cl4.0 ) and C[0,To], respectively, f E C1(.0) 
and gC E C'[0, To] satisfy the compatibility conditions of (3.2.3) up to order one. 

To alleviate the burden of notations, in the remainder of this section, setting w = 
+ fl {t = s} we use 11 u ( t )II and Il u ( t )IIi = 11 u ( t )II + II Vu ( t )II to denote the L(w) 

and W"(w) norms, respectively, of u(t,). Analogously, we use II u lIt and II u IIi,t to 
denote the L) and W'(lfl norms, respectively, of u( . ). For any € L00[0,T], 

the norm 11011L—j0,,] is also denoted by I)IIt, for any t E (0,T]. 

For the problem (12.3), we have the following 'results, the proof of which will be 
given in the next subsection.	- 

Proposition 3.2. 

(1) Suppose that the families f e e C°(cl.0 ) and gC E C°[0,T0 ] are bounded and 
satisfy the zero-th order compatibility condition of the problem (3.2.3)., Then there exist
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unique weak solutions (v, pe) E C°(Q., ) x C' [0, T0 ] to the problem (3.2.3). Moreover, 
there is a constant C > 0 such that 

+ Iv(t)II	CcCTMt (get 
+ II4,Ii 

+ i jjf(s) 11 ds)	(3.2.4) 

for any t E (0,T0 ], where M >_ 1 + E (I Vu .IITo + I Vu .JlT0 + Id?lITo). 
(2) If (f,gC) have the additional regularity (f,gC) E C 1 and satisfy the first 

order compatibility condition of the problem (3.2.3), then the unique solutions (v, p) 
of (3.2.3) obtained above belong to C 1 ( 0 ) x C'[0, To). Moreover, we have the estimate 

Ied c (t)I + HEVl1)v(t) 

Cexp(CMteCMt)(Edgcj1 + I Edz4oI + IIEf(0)II
(3.2.5) 

+ EM(IIg i + I4,II) 
+ / (eM IIf( s )M + IEotf(s)M)ds) 

for any t E (0,T0]. 

For any ii, given (V,,P) bounded in C(1l.)x C[0, T], let us study the iteration 
scheme (3.2.2). Fix 

M ^_> 1 + II U ''IIe,i,cl + II u-e , IIei,4 + IIdtLIe,i,[or] 

and
> e ( i u '	+ IIUIIT + IIdtIIT) 

with i	2 
Iu+— _I Then we have the following result. 

Lemma 3.3. There are a constant C(m7) depending on ij, and two increasing func-
tions C1 () and C2 () such that, for any t E (0,T], 

Idt(t)I + Mu(t)II	CecMt (I 0 I + EC 1 (II u IIt + I dtIIt))	(3.2.6) 

and
+ 

Cexp(CMteCMt )(IIEdz uoM + EM Ii4,oII	 (3.2.7) 

+ eC2(II u II^ + dtII,i,[O,])). 
Proof. By applying the estimate (3.2.4) in the problem (3.2.2), we obtain 

II	EVIl \ + 11u 6 v + '(t)ll	CeCMt (IIu o II + ii	lIt)	(3.2.8)
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where
geP	_Ge(u&',diCP) + 

I	
(3.2.9) 

Edt v [u] + / [(A(u + 17 eu e ) — A(u + eu e ))u e ' v ] dij. 

Obviously, we have an increasing function C 1 ( . ) such that
\ c II	C,L'II g	lit	

f cC 1 ii u ±
i, lit + IId1 ci, lIt)	 (3.2.10) 

Substituting this estimate into (3.2.8), the estimate (3.2.6) follows immediately. Simi-
larly, by employing the estimate (3.2.5) for the problem (3.2.2), and using (3.2.9) and 
(3.2.10), we get the conclusion (3.2.7)1 

The next result is devoted to the iteration scheme (3.2.2), from which we immedi-
ately obtain the conclusion of Theorem 2.11(1). 

Theorem 3.1. There are constants T > 0 and co > 0 such that, for any c E (0 ) E01, 
the iteration scheme (3.2.2) defines a sequence (u'±", 0"') E C(cZ.)xC(0,T] satisfying 
the following conditions. 

(1) There is a constant i, 0 < 17 < ltt +
— 

- - 1,	
2

such that, for any v and E E (0,c0l) 

one has
I±lcift + Id t "II ,i,io , 'n	K	 (3.2.11) 

and
c(IIuIIT + Id i 'll T) < 17.	 (3.2.12) 

(2) For each fired c E (0, e0 ], the sequence (u', '') converges inC 1 (c^ j.) x C 2 j0, TI 
to solutions (i4, ) e C 1 (l) x C 2 [0, TI of the problem (3.1.4). 

(3) Moreover, u" —* uE in C°(.), and	—*	in C 1 [0,T] as v —	, unz-
forinly in c E (0,e0]. 

Proof. Assertion (1): Choose

cO K0 > C (17) (11t4 oil + ll u ,oll + 1) + lu± lITo + ll d t'° llTo 

and

I cO K1 > C(17)(li u 0li1^ + li u 0ii,i,+ + i) + l i u±	+ IidteOIlc,I,Eo,Tcl
To 

with C(17) > 0 being the constant in (3.2.6) and (3.2.7). Then, there are constants 
T > 0 and co > 0 such that, for any v 0, 

	

lk4 L li + IId t ill 7	Ao 

lI cVu 'IIT + li ed 'llT < K	 (3.2. 13) 

	

c (ll u 'liT + Il d 'IIT)	17	J
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when e E (0,eo]. Indeed, obviously, (3.2.13) is valid for ii = 0 when Eo > 0 is small 
enough. Suppose (3.2.13) holds for some v > 0 and let us consider the case ii + 1. In 
(3.2.13), the first line immediately implies the last line by taking eo > 0 small enough. 
From the definition of (K0 , K 1 ), we know that there are constants T > 0 and E o > 0, 
small enough, such that

CKT 
(Ce	II u ±,oPI + EO C I (Ko))	K0 1 

+ r o K Il u oil + E 0 C2 (K)) <K1 J	
(3.2.14) 

where K	K0 + K 1 , C 1 ( . ) and C2 ( . ) are two increasing functions given in Lemma
3.3: By taking constants T > 0 and r 0 >0 from (3.2.14), with T E (0,T0 }, and using 
Lemma 3.3, we obtain that (3.2.13) is valid for v + 1. Hence, (u''.	are bounded
in C(1l.) x C2 (0,T] and satisfy (3.2.11) and (3.2:12). 

Assertion (2): From (3.2.2), we know that (u' -	 - çCv) satisfy the
problem

e ( e	P)(	 — 

- u,u'	-u.dt('	)) =	
( 3.2.15) (u' - 4')(0, x) = 0 

(el+1 -	) ( lJ) = 0 

where
-	,	)m4" - L(u",	 (3.2.16) ± - 

and
= Ed 1('' - EV_l)[u.i_1 - 

+ [(A(u + EU) - A(u + E71"') ue] 

+J {(A(u +Euc) - A(u +Eue))ue	 (3.2.17) 

- (A(u + ieuCl) - A(u + eu_1))u_1]d. 

For F±ct and g', clearly, we have 

	

ll F ( s )ll	C (td1 ( e -	)() I + ( u	- u'v- ' ) (s)) 1 (3.2.18) 
II ±	t	Ce(jjdt(' -	 + Iuu	M1)	J 

by using the boundedness of	 01Y in C(c.) x C[0,T]. Employing (3.2.4) for
the problem (3.2.15), using (3.2.18), and setting 

	

a"(i) =	- U+'t'M1 + Iu".' - u cz M + d1('	-
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we obtain

a" (t) < C(ca' i (t) + /
	

(s) ds)	 (3.2.19) 

for any t E [0, TI. From here, we immediately obtain that there are constants T> 0 and 
o >0, small enough, such that (u,') converge in C°(Q) x C 1 (0, T] uniformly in 

EE (0,c 0 ], and their limits (u,) belong to C°(4.) x C'[O,T]. 

Assertion (3): On the other hand, as P. Hartman and A. Wintner in [6], and J. L. 
Joly et al. in [8], it can be shown that, for e fixed, Vu' and dçb' are not only 
uniformly bounded as in (3.2.11), but also equicontinuous, which implies that the con- 
vergences — u and '' -* also hold in C' and C 2 , respectively. Hence, we 
conclude that (t4,) E C'(Q4.) x C 2 [0,T] are solutions to the problem (3.1.4)1 

3.3 Study of linear problems. This subsection is to study the linear problem (3.2.3). 
Most of this part extends the investigation of P. Hartman and A. Wintner in [6], and 
of J. L. Joly, G. Métivier and J. Rauch in [8: Subsection 6.21 for Cauchy problems of 
semilinear and quasilinear systems in one space variable to the case of boundary value 
problems. 

At first, let us diagonalize the problem (3.2.3). As in the proof of Lemma 3.1, set

	

= (r 1 (u± + ei4),... ,rm(Uj + eu))	 (3.3.1) 

and

	

(T1 = ( l i (u± + EU),... , lm(U j + EtLc))	 (3.3.2) 

With {r. 1}	given in (2.1.3). By the normalization (2.1.4), it is obvious that (TIE 
is the inverse matrix of T . Set

= Ti5	 (3.3.3) 

and
= at ± ((u± +e4) — ( a +Ed t )I)o,	 (3.3.4) 

with
(3.3.5) 

being a diagonal matrix with eigenvalues as its entries. By making use of the fact 

(OT) . (Tm' = _'r . 2± 

it is easy to see that the problem (3.2.3) is equivalent to 

= (T) 1 f+

	

TIC	TIC i5 

G ( . 0 d,)(V+,	, d,) = 9e(j)	
(3.3.6) 

(0,x) =	( X) = (T)T'40(x)
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with

Gel,d,)(V+, ° 

=	
(a + t ° -	+	+ Eu)	 (3.3.7) 

+ E ((u +eu) —a _d)r(u +eu)	+([u] +E[u°])d°. 

To study the problem (3.3.6), let us first consider the diagonal problem 

Z(u,)v C =f	
1 (u,u' , d°) = g(t)	

(3.3.8) ye(o)0 
v(O,x) = 4(x) J 

where f E C'(cl 0 ) and g° E C'[0 1 To] satisfy the compatibility conditions of (3.3.8) 
up to order one. We decompose v into 

v 1 = (v ,1 .....	 and	v,11 =	. . ,	 (3.3.9) 

v ,1 = (vt,,... 	and	v11 = ( v ,1 ,... ,v)T.	(3.3.10) 

The same decompositions of (f,v ) as above are also denoted by f 11 fjj and v" IO' 

v. From the Lax entropy condition (2.1.7), we know that given u E C() and
TO 

C[O, T0 ] as in (3.2.3), when ij > 0 is small enough such that 

II±II L oo ( n+	<77	and	IIed°iIL(o,T0l	 (3.3.11) To 

holds for E E (O,col, then

{<0 when iE{1,...,j} 
(+ + eu) - a - Ed7° 

>0 when i E 	
(3.3.12)

{<0, when iE{1....,j-1} 
>0	when iE{j,...,rn} 

which implies that (3.3.8) is an initial value problem for the components V 1 , and a 
mixed one for the components V 11 . Therefore, by using the method of J. L. Joly et al. 
[8: Lemmas 6.2.1 and 6.2.2], we immediately obtain the following
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Lemma 3.4. 

(1) For any bounded u t e C(cl 0 ) and Ot E CO 3 To] satisfying (3.3.11), E 
c°(c40 ) and v 0 E C°(w"), there are unique weak solutions v 1 e C°(c4.0 ) to the 
I-part of the problem (3.3.8). Moreover, for any t E (0, To], 

ii v ,i( t )li	iiv',ii + / iif,j() lids.	 (3.3.13) 

(2) There is a constant C >0 such that if M >_ 1 +cli Vt4 lIT0, then 

w(ö, t; vj) <CeCMiw(; v') + 6 iif,j it + / CeM(t_w(6,s; f,j) ds	(3.3.14) 

where
W(6, t; u) = sup u(s, x) - u(s', x')I	 (3.3.15) 

denotes the modulus of continuity of u with supremum taken over (s, x) and (s', x') in 
c- such that i(s, x) - (s', x')l < 5. 

For the 11-part of the problem (3.3.8) 

ôtVlI + 0±,JJ(Eu , edg 0 0 )Ov Jj = f,jj	
1T C M .	v11, v_,11) = g(t) + B e (v ,j, vj) 
L (3.3.16) 

cli	 I v ,jj (0, x) = v 0 (x)	 ) 

where v 1 E C°(1) are given by Lemma 3.4, 

O ±,jj (eu , ed t cb c ) = ±(A± ,ii (u± + eu) - (a + edtc)I) 

are diagonal matrices with positive entries,, 

A+,H(u + +eu) = diag[A j + i (u + +EtL),... ,Am(u + +u)] 

A ,ii (u +eu) = diag[A i (u +eu),... ,A_ 1 (u +eu)], 

Be(v,j,v,i) =
	

+ cu') - a - dt) ri(u + + Eu,)v 

+	(a + Ed, - A(u + cu))r(u + -u' )VE 
_'i
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and the matrix 

(E u] + clu e], ((a + e• d	- A(u + + cu))r(u + +Cue+))_1 

(((u + cue) - a - cdt )r(u + Eu )T _I 

is invertible from the stability condition (2.1.10) when (3.3.11) holds with i > 0 small 
enough. 

Without loss of generality, let us investigate the component yE1 in the problem 
(3.3.16). Obviously, we know that v 1 satisfies 

51 v ,1 - (A, ( u-+ cut) - a - cd)ov 1 = i,i 

	

v ,1 (t,0) = a 1 (t)	 (3.3.17) 

v(0,x) = v_ 0(x) 

where a' , , (t) is the (m—j+2)-th component of the vector (M C ) (g e (t)+B c (v e , v,,)), 
and the compatibility conditions of (3.3.17) up to order one are valid. 

For the problem (3.3.17), similar to J. L. Joly et al. in 18], by integrating along 
characteristic curves, we obtain the following 

Lemma 3.5. 

(1) For any v 1' E C°(w ) and fe 1 E C°(cl), there is a unique weak solution 
VE E C°(l4..0 ) to the problem (3.3.17). Moreover, for any t E (0,T0], 

e,1 

	

II v ,i ( t )II ^ II a ,i It + IIv,II 
+ f If,()II ds.	 (3.3.18) 

0 

(2) If M > 1 + c II Vu lIT0 + c ll d llT0, then 

(5, t; v ,) < CeCMt (w(6 t; aCi) +w(,

(3.3.19) 
+ S ]lf-6 ,, 11t +/w(&s;fi)ds). 

Proof. Let s - (s, yc(s; t, x)) be the characteristic curve of (3.3.17) through (i, x) 
with -y,(s; t, x) being the solution of the problem 

d3 (s; t, x)	a + cd(s) - A 1 (u + euC (s,(s; t, x)))	
(3.3.20) 

y0 (t;t,x) = x.	 I
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Let s, (t, x) be the root of
(S' (t, x); t, x) = 0	 (3.3.21) 

and
= {(s,t,x) max(0,s(t,x))	s	x for (t,x) E TO 

From the theory of ordinary differential equations, we have 1,(s; t, x) E C' ( l ) . For 
TO 

(t, x) E Q + , we have two cases: TO 

Case (1): s(t,x) <0. In this case, (3.3.17) is a Cauchy problem for v' , , (t, x), and 
for its solution we have the explicit formula 

V	 (t, x) = v'b(e(0; t, x)) + / f , (s,	(s; t, x))ds.	(3.3.22) 

Case (2): .(t,x) > 0. The solution of problem (3.3.17) can be expressed as 

v e ,(t , x) = a' 	+ J f (s,(s;t,x))ds.	(3.3.23) 
.9. (ix) 

From (3.3.22) and (3.3.23), we immediately deduce the estimate (3.3.18). 
Next, we consider the estimate (3.3.19). For any 6 > 0, t E (0, To] and (t i , x i ) E 

+ (i = 1,2) with 1(i, x,) - (t 2 , xz)I < 6, we divide the estimate of v,(t i , x i ) - 
v,(t2 ,x2 ) into three cases: 

Case (cr): s(t 1 ,x) < 0 (i = 1,2). As above, (3.3.17) is a Cauchy problem for 
v ,1 (t i ,x). By using a result of J. L. Joly et al. in [8: Lemma 6.2.21, we obtain 

v(t i ,x i ) _vei(t2,x2)I 

CeCw(6,v) + 8IIf,,IIi + Imi	I	 CeC
M(t-3

)Lj( 6, S; f	ds.	
(3.3.24) 

Case (/3): s(t 2 ,x) ^! 0 (i = 1, 2). From (3.3.23), we have 
e 

V_1i 
I 

I, X l) - V_e 1,/ 2,X 

= aE1 (se(ti,xi)) -a' 1(s(t2,x2))
(3.3.25) 

t j	 12 

+	J	f ,1 (s,(s;t i ,x i ))ds -	f	fe,(s,7c(s;t2,x2))ds. 
s.(12z2) 

The definition (3.3.21) of se(t, x) implies	 . 

Ôse(t, x) = - (d3e ( e (t, x), t, x))	(3)(s(t, x); t, x)

1•	
(3.3.26) 

= (i	
+ EUC (Se, 7e( se))) - a - edi (s)) - (3)(s(t, x); t, x)
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for 0 = at or 0 = 0. Applying the estimate of	(see [8: Formula (6.2.8)]) 

CeC)	 (3.3.27) 

in (3.3.26), it follows

CeC	when s(t,x) ^: 0	 (3.3.28)
with another constant C > 0. Employing (3.3.28) for (3.3.25), it is easy to obtain 

v ,1 ( t i , x i ) - vi(t2,x2) 

< Cecmt (w(8t;a i ) + 611flI + )w(os;fi)ds)	
(3.3.29) 

Case ( .y): s(t 1 ,x 1 ) ^! 0 and s(t2,x2) <0. From (3.3.22) and (3.3.23), we obtain 
v1(ti,xi)—v1(t2,x2) 

= a ,i (s(ti,xi))	vE(yc(0;t2,x2)) 

t 	 t2	 (3.3.30) 

+	
f.	

f i (s,(s; t i , x i ))ds - 
I f—

' , I ( S , -Y. ( S ; t2, X2 )) ds. 
s(t,,z i )	S	 o 

Obviously, when (t,x 1 ) e and I(t i ,x i ) - (t2,x2)1 < 6, using (3.3.27) and (3.3.28) 
we have

0 < s(i 1 , xi) 5 s(t i , x1) - s(t2, x2) < CCCMt6\	(3.3.31)
and

0< -y(0;t 2 ,x 2 ) < y(0;t 2 ,x2 ) - 7(0;t i ,x i ) < CeC'6.	(3.3.32)
Applying (3.3.31) and (3.3.32) in (3.3.30), and using the compatibility condition ae1(0) 

el = v_ ,0 (0) of (3.3.13), it follows 

v ,1 ( t i , x i ) - 

CeC	(w(6 t; a ,1 ) + w(6, v c, I 0 ) + 6 11ff e i lit + ]w(6, s; f,1) ds) . 
(3.3.33) 

Summing the above three cases up, it concludes the result (3.3.19) I 
From Lemmas 3.4 with 3.5 together it follows 
Lemma 3.6. 
(1) For any f E C°(cl 0 ) and v 0 E C°(w) satisfying the zero-th order compati- 

bility condition of (3.3.8), there are unique weak solutions (v,cpc) e C°(cz 0 ) > C'[o,T0] 
to the problem (3.3.8). Moreover, there is a constant C > 0 such that, for any t E (0, To], 

idt(t)l + llv(t)ll	(llgdlit 
+ ll,oii 

+ / ilf()il ds).	(3.3.34)
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(2) If M > 1 + e (II Vu IITo + IIVuE IIT6 + IIIITo), then 

w(6, t; d) + .'(6, i; v" ) I	 1	(3.3.35) 
CeC	w(st;e) +w(ö,v 0 ) + llfll + Iwsi)ds. 

It is clear that if f and ge are in C' and satisfy the compatibility conditions of the 
problem (3.3.8) up to order to one, then the solutions (v, ) of that problem belong 
to C 1 () x C2[0' To]. But, the important remark in P. Hartman and A. Wintner [6], 
and J. L. Joly et al. [8: Lemma 6.2.3] for Cauchy problems can be generalized to the 
case of initial-boundary value problems as follows: 

Lemma 3.7. With the same conditions as above, if ge(j) E C'[0, To] and f E 
C°( 0 ) have the form

c 
j	= p(at a ± (A(uj + cu' - a - ed)ôz a ,i ),	(3.3.36) 

with (p ,1 , o ,1 ) E C' for any i E {1,.. .,M), them the solutions (v,coL) of the problem 
(3.3.8) belong to C'(14.0 ) x C2[0,T0]. 

This result can be proved in a way similar to [8: Lemma 6.2.3]. Moreover, as J. L. 
Joly et al. shown, estimates of (Vv', dp) in L°° and of the modulus of continuity of 
(Vv,d) in C°(cl 0 ) can be obtained as in P. Hartman and A.Wintner[6]. 

Proof of Proposition 3.2. Assertion (1): Let us turn to the study of the problem 
(3.2.3). As in the discussion at the beginning of this subsection, it is sufficient to consider 
the diagonal problem (3.3.6), which is solved by the iteration scheme 

- ±U±,P 1V	—k ±1 J± 

+ 

,d,4) 
( jev+l je&+l , d cpe1) = gc(t)	 (3.3.37) 

ev+ 1 (0) = 0 
E,L'+I(fl \ - E ( v±	,XI_V±OkX 

with the first approximate solution (peO, 3'°) E c[0, T] x C() constructed in a way 
similar to Proposition 3.1. Under the assumption of Proposition 3.21(1), by employing 
the estimate (3.3.34) for the problem (3.3.37), there is a constant C > 0 such that, for 
any v0 and tE(0,To], 

Id''(t)l + ll'(t)ll 

I	 (3.3.38) 
C ( gCj +	J (lIf( s )II + .MIIt3'(s)ll)ds 

0
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with M	1 + e (II Vu jITo + II Vu Jft0 + I d IITo ). By induction on v for (3.3.38), it
follows that ço" E C'[0, To] and i3' E C°(1l.0 ) are bounded with the estimate 

dt(t)I + II(t)II	CcCTMt (get 
+ I,olI + / 11f( s )II ds)	(3.3.39) 

for any ii > 0 and any t E (0, To). Moreover, by employing (3.3.34) for the problem of 
(j ev+1 - j)et	e,v+1 -

- v±' ) =	 - 

  ')) = 0 }

	

(3.3.40)

=0 on t=0 

we obtain

ev)(i) +	- 

<CMJ (M' - '')(s)II + I(' - ds 
0 

which implies

v)(t) + I(", + 1 - CU)(t)M	(CMt) 
(II'°IT. + II V- lIT0) (3.3.41)ii! 

by induction on v. From (3.3.39) and (3.3.41), and the uniqueness of weak solutions 
(i5, dtcae) in LOO for the problem (3.3.6), which is a simple consequence from the estimate 
(3.3.34) in (3.3.6) with (f,gc,u0) = 0, we immediately deduce that the sequences 
i'' and	converge in C°(c24) and C'[0, To] uniformly in C E (0,Eo), the limits O 

1D E C°() and w6 e C [0, T0 ) are the unique weak solutions of the problem (3.3.6), 
and they satisfy the estirciate 

dt(t)I + II()II	CeCTMt (119 6 11, + II,OII +
	

IIf(s )II ds /) 

for any t E (0,TOJ.. 

Assertion (2): Suppose the assumptions of Proposition 3.1/(2) are valid. The right-
hand side of the iteration equation (3.3.37) is of the form (3.3.36). By applying Lemma 
3.7 in (3.3.37) we conclude that (i', p') E C 1 (c 0 ) x C 2 [0, To] are bounded sequences 
for fixed e. As J. L. Joly et al. in [8], a lemma resembling Lemma 3.6/(2) applied to 
Vi'' and d" shows that, for e fixed, the families {7i3", d ev } VEN are equicon-
tinuous. Therefore '' - i3f in C I (Q4) and	in C'10, To]. Going back toO
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the problem (3.2.3), it follows that, for each fixed e E (O,eo], the solutions (v , ça e ) of 
the problem (3.2.3) belong to C 1 ( 0 ) x C2[0,To]. 

To estimate Vv and d.pe, by setting 4 = eôjt4 and cI = edpe and differentiating 
(3.2.3) with respect tot, we obtain that (4,) satisfy the problem 

re f e JC\ C — 

;Z —"* 

G(,.	 ( Z+, zC dtcI) = C(j)	 (3.3.42) 

4(O,x) = 40(x) 
where

4 ,0 (x) = ef(O, x) 9 E(A(U± + et4) - ( + edt q)I) (0, x)dtz 0 (x)	(3.3.43) 

and
Q = ef — VAj (u + eu)(eau,A . (ef - 4)) 

+ed, .(ef —4) 
with

= (A(u i + eu) - (a + edtc5e)I) 

and
g E ( t) = edt g e - 1e9tud1	— edcbe[evC] + [VA(u + eu C )(eau C , eve ) ] .	(3.3.45) 

Applying the estimate (3.2.4) in the problem (3.3.42), it follows 

dt(t)I + 114(t)II	CeCTMt (iiceiit + II4,II +J IIQ)II ds).	(3.3.46) 

From (3.3.44), we have 

IIQ(s )Il < C (II eôtf(s )II + eMflf(s)II + M114(s)II).	(3.3.47) 

Obviously, (3.3.45) gives rise to 

IIcdII t	IIed t gdII t +	+ C(IIevIIt + kv e_ lit))	 (3.3.48) 

which implies

	

< edjg C j + ECMeCMt ( llellt + 11t4,oll + J llf)ll ds)	(3.3.49) 

by using (3.2.4). Substituting (3.3.47) and (3.3.49) into (3.3.46), and using Gronwall's 
inequality, we obtain 

ldj(t)l + 114(t)ll	
Cexp(CMteCMt)(Iledtgdllt + 

lI ef(0)lI + lIedzu,olI 

+	+ lIu,oll) +J (ll eôtf s ll + eMllf(s)lI)ds). 

The estimate of ô1v can be easily obtained from the equation in (3.2.3)1
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4. Existence of profiles 

4.1 Construction of approximate solutions. Under the assumption of the compat-
ibility conditions of the problems (2.1.25) and (2.1.30) up to order one being valid for 
the initial data U,o e we immediately get the existence of 0 E C2[0,To] 
from the problem (2.1.30). 

With the functions m 0 ' E C(w) determined in the proof of Lemma 3.1, we still 
denote U ,0 to be the proper extension of (J o in w such that U ,0 e C'(w R) satisfy 
the asymptotic property

M± 0 1 f 	- U± '0 (x, ) = o(1)  
in C(w) when e - 0. Let U° E C 1 (l R2 ) be unique solutions to the linear problem 

1t' ITO - ITO 
- Uj 

(a ± (A - aI)ô)LJ = 0	 (4.1.2)

U I g=,.o = Uj,o(x,9). 

Then we have the following 

Proposition 4.1. Suppose that u' 0 E C(1) are the approximate solutions con-
structed in Lemma 3.1. Then the asymptotic property 

u°(t, x) - U° (t, x; , ) = 0(1)	 (4.1.3)

in C() is valid, when e - 0. 
Proof. In this proof, we will always use 0(1) to denote any infinity small quantity 

when c - 0. Obviously, to prove the assertion (4.1.3) is equivalent to prove 

v'°(t,x)_V(t,x;!,
it ) =o(1)	 (4.1.4) 

i	 O	—leo in C (1+ ) where v t =	u, are solutions to the problem (3.1.13) and V o (t, x; r, 9)
satisfy

v±o 

(a, (A - aI)81 )V° = 0 

= U± ,o(x,9) = T'U±,o(x;9) 

with the mean value operator

	

	being defined in (2.2.6) and T = (r,.. . , r )T. FromiE  
the zero-th order compatibility condition (2.2.1) of (2.1.18), we have 

dt t t0 (0)[u] - (A - oI)mt(0) + (A_ - aI)m O t(0) = o(1) 

which is equivalent to 

dt 0t0(0)[uj - (A - cyI)T^it(0) +(A_ - cxI)T_fit(0) = o(1)	(4.1.6)
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by setting ne = T;'m°. By applying the stability condition (2.1.10) in (4.1.6), and 
using (4.1.1), it gives rise to 

d'0 (0) =	, ?,	, n) (0) + 0(1)
(4.1.7) 

= A(U)o,...,Umo,Uo,...,Uo)(0,0)+o(l) 

where A() is a linear function with constant coefficients. From (3.1.12), we have 

	

m ± (A -	= +B±(m,ed1rn) ± Ed j'°(0)dm + o(1) 

which is equivalent to 

nY ± (A - 

	

=Bj ( 7	, edz e ) ±	 + 0(1)	 (4.1.8) 

+o(1) 

by using (4.1.1) and (4.1.7), where the bilinear form B( . ,) is defined in (2.2.6). Em-
ploying the theory of classical linear geometric optics (see, e.g., J. L. Joly et al. in [8: 
Formulas (6.1.10) - (6.1.16)]) for the problem (3.1.13), we obtain 

	

v°(t,x) - V°(t,x; , ) = 0(1)	 (4.1.9) ± 

in L°°(Q) by using (4.1.8) and the obvious fact

=0 

where V° E C'(Q : R 2 ) is the unique solution to the problem (4.1.5). 

It remains to verify that 

EV (t,Z) (V e± O (t,X) - V°(t,x; ,	= o(1)	 (4.1.10) 

in L°°(cl). From the equality (3.1.10) 

m(x) =	+ Ern(x)) - (a + Edt cbe(0))I)dxrn0±e(x) 

we have
(m(x) ± (A - aflO1(U±,o(x, f))) = o(1) 

in L(w) which implies 

Ern(x) = :F,-(A± - aI)31(U±,o(x, )) + 0(1)	 (4.1.11)
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in L(w). Applying this in the expression (3.1.14)

z 
v'(t, x) =	'(x) ±	 f	dT 

we can easily obtain 

eôtv(t,x) =	- a)(ea) 1U' ( ± (a -	x ±(a_A)i)) +(1) 
I"	,o 

and
côv(t,x) = ( E -9. ) (C:i O (X (a -	

)t, x ± (a— A)t)) 
+ 0(1) 

in L(cl-), which is equivalent to the assertion (4.1.10) I 

With V° e C'(	: R2 ) given in (4.1.5), from the zero-th order compatibility
condition (2.2.8) of the problem (2.2.6), we have 

x(O,T) = M' ((At —a)rV+,(O,0;(a - AflT) 
j=1	 (4.1.12) 

+	(a —A)r V , (0,0; ( A Z - a)r))) 

where
M = ([u], {(a -	 {(AZ - a)rZ })	 (4.1.13) 

is an invertible matrix from stability condition (2.1.10), and the solution V0 k(t,x;r,9) 
of the problem (4.1.5) is regarded as a function of (t,x;9R(A _a)T), which is written 
as V° k (t,x;OT(A — a)r) for each k E {1,...,m}. 

According to (4.1.12), let x°(t,r) E C'([O,T] : R) ((T,0) E Il) be the function

X°(t,T) = IF, M- ' ( (A - a)r V, , (t,0; (a - At)-r)

(4.1.14) 
+ ( a—A Z)rZ V , (t , 0 ; ( A Z _a)r)). 

Then, as a simply consequence of (4.1.3), we have the following result. 

Corollary 4.1. Suppose that (u'°,'°) E C(l) x C[0,T] are the approximate 
solutions g iven in Proposition 3.1, and (U,°) e C'(l : R 2 ) x C 1 ([0,T] : R) are 
constructed at above. Then

d1 ' 0 (t) - X°(t, fl 1,1,[0,71 
= o(1)	 (4.1.15)
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when e —i 0. 

Proof. From (3.1.22), we have 
dtçbeO(i) = ë'i (li c (t)) 1 

x (E9c +
	-	+	-	)rv)(t0)	

(4.1.16)
E(At

1=) 
where ge is bounded in C' [0, T0 ] and 

	

Mc (t) = (Eu] + E[u(t)], {(a - A)r } m	(A— a)r }).	(4.1.17) 
I	I 

By comparing the equalities (4.1.16) with (4.1.14), and using the simple consequence of 

v(t,0) - v±0,1 (to; 
±(a -	)t) = o(1) 

in C '[0 , T] we immediately obtain the assertion (4.1.15)1 

4.2 Proof of Theorem 2.1/(2). In the remainder of this paper, without loss of 
generality, we suppose that A is the diagonal matrix 

	

A = A = diag[A,. . . ,A].	 (4.2.1)

For this diagonal case, the stability condition (2.1.10) implies that the matrix 

	

(o
il ... ,ej_i,[u],ej+i .... ,em ) T	 (4.2.2) 

is invertible where e = (0,.. . ,0,1,0,. 	0) ' with the z-th slot element being one is the 
standard basis. 

With UO E C 1 (l : R2 ) and x° E C'([O,T] IR) given by (4.1.2) and (4.1.14), 
respectively, we solve the nonlinear problem (2.1.25) by the iteration scheme 

T1' TTP+l	TTP+I 
± u ± _u± 

aU;-'- ' ±(A —aI)ôU1 

F!E(xaou 1 _B±(o9u1,u)) =0

	

	 (4.2.3)

onx=9=0 

U Itro = U±,o(x,O). 
It is easy to verify that the compatibility conditions here up to order one are valid for 
each ii > 0. 

For any fixed k E {1,... ,in}, let us define the mean value operator !E in the same 
way as lE by replacing P(ô,Oo) = 8,- ± (A - a)8e for the operator P(3,-,89 ) in 
(2.1.24), i.e. for any u(t,x;r,9) e C o (Q + : 2), 

(Eu)(i, x; T, 9) = lirn	fu (t, x; r + s, 9 ± (A ±  a)s) ds.	(4.2.4) 

As J. L. Joly et al. in [8: Proposition 6.3.11, at first we have the following
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Lemma 4.1. For any (uj ,v) E (C'(1 : R2 )) 2 satisfying 

E± U± = u j	and	lEjvj = v,	 (4.2.5) 

if we denote by B (u, v) the bilinear fOTM 

B(u,v) = (B(u,),. . . ,B(u,v)) T 

with B(u,v) =	b'u' '_ ij v, then 

EB(Oeuj ,vj ) = y(vj )ô9u +_(u±,a9v)	 (4.2.6) 

where

= E(b' kv)	 (4.2.7) 
 IMI 

and

= ll?. (
	

7kU±V±)	 (4.2.8)
;^k,Ik 

with
± 

— b'	 .	 (4.2.9) 
k	i 

- Proof. From the definitions, we have

Tn 

=	b,kE(aOUV).	S	 (4.2.10) 
i,l=1 

We split the right-hand side herein into three parts: 

Case (1): i = k. Since E±u± = u, it is obvious that u can be regarded as a 
function of (t, x; 0 (	- o)T), hence 

E(aouv =E(v)ôou.	 (4.2.11)

Case (2): i 54 k *  = k. By using Ev = v we obtain 

	

E(ôeuv) = E(ôou)v	0.	 (4.2.12)

Case (3): z 54 k and I 54 k. From the definition (4.2.4) of E, we have 

E(aouv) - -	-	E(uô9i).	 (4.2.13) - k 

Substituting these three cases into (4.2.10), the conclusion (4.2.6) follows I
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Employing Lemma 4.1, we know that the problem (4.2.3) is equivalent to the fol-
lowing one:

± ±,k 1 XUj' ± (7(U)— iEox")ôeV' ±E(U,a9 U)= 0
(4.2.14) 

xv+ h Eul + (al - A + )U' —(al -	= 0 on x = 0 = 0 
u±v+I I 1ir0 = U±,o(x,O)	J

where X = a ± (A - o)9 are scalar operators for each k E {1,. .. ,m} and 

+p 

(oX)( t ) = urn	IX(tr)dr. 
P 0°

-p 

To study this problem, let us first consider the linear problem 

IEU±,k=U±,k (1km) 

XU±k±((V±)—EoK)agUj,k±(U±,oeV±)=Ef±k	
(4215) 

x[u]+ (al —A+)U+— (al —A4U	0 onx=6=0 

= U±,o(x,0) 

where, for any fixed T0 > 0, K E C'([O,Tol : R), V E C'( : R2 ), f E C'( : R2) 
and U ,o E C 1 (w : R) satisfying the compatibility conditions of (4.2.15) up to order 
one.

In the remainder of this section, we will use II U( t )II and II U ( t )IIi = II U ( t )II + IIVU(t)II 
to denote the L00 (w x R2 ) and WI00(w x R2 ) norms, respectively, of U(t,.). Anal-
ogously, we will use liulit and II U lIi,i to denote the L00(cl x R 2 ) and WI00(c^ x 2) 

norms, respectively, of U(). Further, C and M will denote constants depending only 
UPOn (II V± llL°°(O 0 xL')' ll K llL[oT0Jxu) and (II VV± ll L( ><L2)' Il VK llL o UoTo] xR)), 
respectively, and C1 denote a constant independent of any function appearing in the 
problem (4.2.15). Each notation of x is similar to that of U. 

For the linear problem (4.2.15), we have the following results, the proof of which 
will be given in the next subsection. 

Proposition 4.2. 
(1) With the above assumptions, there exist unique solutions U	C'	: 2)

and x E C'([O,To] : R) to the problem (4.2.15). Moreover, for any t E [0,T0], 

llx( t )ll + IIU±(t)ll	C,eC1MI (i±oii + / ii±sii ds)	(4.2.16)
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and

IIx( t )IIi + IIU±(t)II1 
< Cexp(CMteCMt)

(4.2.17) 

( u±01 + I v+(o)IIi Iu±,011 + IIf±(°)II + / IIf±s)IIids). 

(2) There is a T > 0 depending upon I V±IIw, ''(	<R2) and II'iIW'.°°([OTo)xR) such
that, for any i E (0, TI, the estimate for the modulus of continuity of (U±, x) 

w(8,t;x) + W(6' t; U) 

<CeCTMI (w(6 U , o) + 6 111± lit + 6M(IlU±0I1 + ] llf±( s )ll ds)) 
0	 (4.2.18) 

+ CeCMt J ('(6, S ; f±) + (I U±,oII + s lIf± I1s) w ( 6 , s ; O9V±))ds 

holds where w(8,t;u) is defined in a way similar to (3.3.15) 

	

W(6, i; u) = sup I u(s, x; T, 9) - u(s', x'; r', 9') 1	 (4.2.19) 

with the suprernum being taken over (s, x; r, 9) and (s', x'; T I , 9') in	x R2 such that 
(s, x; r, 9) - (s' x'; T', 6')	8. 

As J. L. Joly et al. in [8[, by using (4.2.18), we also can establish a similar estimate 
on the modulus of continuity of (VU±,V) for the problem (4.2.15). 

Theorem 4.1. For the iteration scheme (4.2.3), there is a constant T > 0 such 
that the solution sequences {U,"} are convergent in C'(1 P 2 ) x C'([O,T} : R), and 
their limits (U±, x) E C' ( T R2 ) x C' ([0, T] : R) are unique solutions to the problem 
(2.1.25). 

Proof. From the above discussion, we know that it is sufficient to discuss the 
iteration scheme (4.2.14). Applying the estimates (4.2.16) and (4.2.17) in the problem 
(4.2.14), we obtain that, for any v > 0 and t E (0, To], 

llx' ( t )ll + IU" (t)lI	C i ed tM Il U±,ll	 (4.2.20) 

and

lIx'( t )lI, + Il U ' ( t )lIi <Cexp	 (1+ II U±,oll)	(4.2.21) 

where C, > 0 is a constant, and

ii	± ii,,t, IIx v Il i,t ) C' = C (lI U ' lit, llflI)	and	M' =
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are two positive increasing functions with respect to their arguments. Let us choose 
two constants K 2 II(J±,oII and K 1 2 II(J±oIIi large enough, and a constant Ti E (0,To] 
small enough, such that

	

Cie CIM(K1)TIIIU±,oII	K

	

 

C(K) exp (TI C(K)M(K i ) eTIC(K)M(Kt) )IIUj,oIl i ( 1 + II U±,oII)	K '.	
(4.2.22) 

From (4.2.20) and (4.2.21), by induction on ii, it is easy to verify that {U, X L } are 
bounded in C'( , : R2 ) x C'([O,T] : R). Set w = - U and = x' - xv. 
From (4.2.14) we know that M, f) satisfies 

-	 Ewk=wk (i<k<m)i 

XW ,k ± ((u) - EO x v )aOw k + (w,OoU) =	 I (4.2.23) 
=0 onx=9=0 

= 0	 J 

where
=(E B(ôeU,w') — IEOXoOU±k) 

which implies, for any t E (0,T1], 

	

G(t)I! < 1<2 (IIw'(t)II + It' (t))	 (4.2.24) 

with K2 depending only upon the uniform bound of U± 11 	}. Applying the estimate
(4.2.16) in the problem (4.2.23), and using (4.2.24), the convergence of {U,"} in 

x R2 ) x L°°((0,T1 ] x R) follows immediately, and the limits are in 
R2 ) x C°((0,T1 ] : IR). As J. L. Joly et al. in (8), we can prove the existence of a constant 
T2 E (0, T1 ] such that the derivatives of U and are equicontinuous on c 2 x R2 and 
[0, T2 ] x R, respectively. Therefore, the convergence of U and x" holds in C 1 on any 
compact subset of	x R 2 and [0, T2 1 x R, respectively. From [8: Proposition 4.1.2], we 
conclude that the limits (U±, x) of {U, xv } are inC1 (4 : R2 ) x C'(10, T2 1 : IR). Finally, 
by using the same argument as in [8], we obtain that (Ui , x) E C'(l4.2 R2)xC1([0,T2] 
IR) are unique solutions to the problem (2.1.25)1 

4.3 Study of linear problems. Before studying the linear problem (4.2.15), at first, 
let us consider the diagonal systems

EU±,kU±,k (1km)'i 

XU±,k ± (7(v±) — EO K)0O U, k =	 I
x[u]+ (al —A+)U+—(aIA)U=0 onx=9=0 

	

Uto = U±, 0 (x,8)	J
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where the notations are the same as in (4.2.15), K E C'([0, T0 ] : R), V E C' (Q + : R2) TO 
f	 : R2 ) and U,o E C'(w : IR) satisfying the compatibility conditions of 
(4.3.1) up to order one. As in (3.3.9) and (3.3.10), decompose U into 

U+ , i = (U,. .. , U+, )	and	U+,ij =	. , U,)'r	(4.3.2) 

U , j = (U , ,.. . , U ,m )T	and	U ,ij = (U ,1 ,... ,U,_1)T.	(433) 

The same decompositions of f and U,0 as above are also denoted by f,j, f,jj and 
U 1 0 , U,'0 , respectively. 

From the Lax entropy condition (2.1.7), we know that (4.3.1) is an initial value 
problem for the components U±,i and a mixed problem for U ,1j. Applying the result of 
J. L. Joly et al. [8: Lemmas 6.3.2 - 6.3.4] in the I-part of the system (4.3.1), we obtain 
the following 

Lemma 4.2. 
(1) Suppose K E C 1 ([0,To] : IR), V E C 1 (1 : R2 ) and f,j E C°(c^4. : 1R2). 

Then there exist unique weak solutions U , j E C°( 0 : R2 ) to the I-part of the problem 
(4.3.1). Moreover, we have 

II U±,i( t )II	IIU,oII 
+ / IIfi,z( s )I ds.	 (4.3.4) 

(2) For the modulus of continuity of U ,i , we have 

w(8, t; U , j)	CeCMIW(6, U 0 ) + IIf±,jIIi + / CeCM O_w(b, s; f,j) ds.	(4.3.5) 

(3) If we have the additional regularity f , , E C'(	: R2 ), then the weak solutions 
U,j obtained in Part (1) belong to C'(Q 0 : R 2 ) and satisfy 

IIu±,i(t)IIi	CeCMuIIUo!i + IIf±i(°)]I + 0  

CeCM5)Ilf±,i (s)II i ds.	(4.3.6) 

Let us study the 11-part of the problem (4.3.1). From the stability condition (4.2.4), 
we know that the boundary condition in (4.3.1) can be reformulated as	- 

M ((t, T), u,11, u,11)T = B(u+,1 , U ,i )	 (4.3.7) 

where the matrix 

M= ([u],(a—Aj+i)ej+i....,(a_)em,(A _a)ei,...,(j_i_a)ej_i)
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is invertible and

	

B(U,,j,U,j) =	- a)Ue +	- 

Hence, from (4.3.1) we know that U , jj and x satisfy the problem 

Ek = 

X U±,k ± (y(Vj ) - EOK)ÔOU±,k = Ef,k 

U±,klz=o=o = a±,k(U+,J, U ,1 )(t, T)	(4.3.8) 

X(t,r) = a(U+,J,U_J)(t,T) 

U±,iiI10 = U'0(x,9) 

where a( . ) and a,k() are linear in their arguments, k E {j + 1,.. . ,m) for "+" and 
k E {1,.. . ,j - 11 for "-". For this problem, similar to J. L. Joly et al. in [8], by 
integrating along characteristic curves we obtain the following 

Lemma 4.3. 

(1) For any given K E C '([O , To] : R), V E C'(140 : R2 ) and f, C°( 0 : R2), 
there are unique weak solutions U , jj E C°(c14.0 : R2 ) and x E C°([O,T0] IR) to the 
problem (4.3.8). Moreover, 

	

11x( t )11 + II U±i,( t )II	C1 II U±1111 + IU0I 
+ f I!f±,u(s)II ds.	(4.3.9) 

0 

(2) For the modulus of continuity of (U± ,jj,), we have 

w(6, t; x) + (6, t; U , j1 )	CeCMt (w(5, t; Uj) + w(6; U'0)) 

+ C1 8 IIf±,iiIIt + c) eCMO_w(ö, s; fj,ij) ds.	
(4.3.10) 

0 

(3) If we have the additional regularity f E C'(4.0 : 1R 2 ), then the solutions 
(U± ,ij,) obtained in part (1) belong to C'(4 0 : R2 ) x C'([0,To] R) and satisfy 

Ix( t )Ih + II U±,ij( t )IIi !^ Ce'"1 0I u±1II1, + IIU0II1) 

+ CilIf±,jj(0)II + f CeCM_3) IIf fj (s)II i ds.	
(4.3.11) 

0 

- Proof. All results of X(t,T) are clear. It is-sufficient to discuss U 11 . From 
Ek U, , ,. = U,t, we know that U±,t can be regarded as a function of (t, x; 8(.\ _a)r),
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which can be written as U f ,k( t , x; 9(A — a)T). Similarly, the functions Efj,k depend 
only upon (t, x; 9 :F (A —a)r), which can be written as E f±,k F±,k(i, x; 9( _o)r). 
Therefore, from (4.3.8) we know that U±k(t,x;9) satisfy 

	

XU±k±(1(Vj)—!EQK)ôeUjk=F±k	'I 

	

U±,kIo = bj,k(t,9) I	(4.3.12) 

U±,klt=o = Uo(x,9) 

where b±,k( t , 9) = a,k(t, ±(°A±)) are almost periodic in 9 E R. The characteristic 
curves of X ± (7(V±) - !E 0 K)Oe are 

S —* (S i x +/ik(s;t,x,9);9+/ik(s;t,x,9)) 

where tL,k and	are solutions to the problem 

dS/i , k(s ) t , x , 9 ) = ±(A — a)	
1 

dS4k(s) t, x, 9) = ±(7(V+ ) — Eo K) (s, x + p ,k (s); 9 +	, k (S)) >	(4.3.13) 

p±,k(; t,x,9) =	k(t; i,x,9) = 0	 J 

which immediately implies

	

,L± , k(s; t, x, 0) = ±(.X — a)(s — i).	 (4.3.14) 

Set
= {(s;t,x) 1 0< s <t,(t,x) E TO 

Since /tk are independent of 9, -y are linear in V, and V are almost periodic in 9, 
as J. L. Joly et al. in [8: Lemma 6.3.21, we can obtain that the problem (4.3.13) admits 
unique solutions /2 k e C 1 (l 0 : R), and they satisfy 

CeCMIt 	 (4.3.15) 

The solutions U,k of the problem (4.3.12) are given as follows: 

(i) When i = t 0, then 

U,k(t,x;9) = b,k(17,9+p(r7)) 

+ f F±,k(s, x +k(s);9+k(s))ds.	
(4.3J6)
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(ii) When t	<0, then 

Uj,k(t, x; 9) = U ,0 (x + PI, k (0),9 +	k(0))

(4.3.17) 
+	F±,k (, x + I , k(S ) 9 + /i,k(s))ds. 
/  

Here I±k() = 1L±k(S;t,X,9). From (4.3.16) and (4.3.17), we immediately conclude 
that U , jj belong to C°(Sl ; R2 ) and satisfy the estimate (4.3.9) by noting that a are 
linear in (4.3.8). By applying the estimate (4.3.15) in (4.3.16) and (4.3.17), and using 
the compatibility conditions of (4.3.12), it gives rise to estimates (4.3.10) and (4.3.11) U 

Taking together Lemmas 4.2 with 4.3, it follows 
Lemma 4.4. 
(1) For any given K E C'([0,To] : R), 14 e C 1 (1. : R2 ), f E C°(14 : R2 ) and 

O 
U ,0 E C°(w	R) satisfying the zero-th order compatibility condition of (4.3.1), there 
are unique weak solutions U E C°(Q	R2) and x E C°([0, T0 ] : R) to the problem
(4.3.1). Moreover,

Iix( t )H + ii U±( t )ii	c1 (iiu±0i 
+ / 

11f±(s)II ds).	(4.3.18) 

(2) For the modulus of continuity of (U± , X ), we have 

w(, i; x) + w(5, t; U) 5 CeCMt (L"(6'U±'0)+bIIf±IIt+ I w(b, s; f,) ds).	(4.3.19) 

(3) If we have the additional regularity f E C 1 (12 0 : R2 ) and U ,0 e C'(w + R) 
satisfying the first order compatibility condition of (4.3.1), then the solutions (U, x) of 
the problem (4.3.1) belong to C'(c4. : R2 ) x C'(10, To] : R) and satisfy 

ilx( t )iii + i U±( t )iii	Cet (ii u	ii + iIf±(°)Ii +
	

iif±()ili ds).	(4.3.20) 
/  

Now, let us study the linear problem (4.2.15). 
Proof of Proposition 4.2. We solve the problem (4.2.15) by the iteration scheme 

fF4 Uj 1 = Uj 1 (1 <k <m) 

Xuj' ± (y(V) - E0K)a0uj'

= lF4f±,k	 (4.3.21)

x'[u]+(aI—A+)U'— (al —A4U ' =o onx=8=O 

U±' + ' I i=,=o = U±,0 (x1 9) 

with U.0 given by (4.1.2). It is sufficient to consider the part of U, because all properties 
of XI and its limit x E C' ([0, T] : R) can be easily deduced from the boundary condition 
in (4.3.21). We divide our proof into the following three lemmas.
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Lemma 4.5.	The sequences {U} are convergent in C° (Il 4.	: R2 ), and the limits 
U	are unique weak solutions of the problem (4.2.15). Moreover, we have 

IIU±(t)II <CieCIM (iu±0i +
	

IIf±(s )II ds) 
/

(4.3.22)  

with M = max(IIV+II1,T0,IIV_III,To). 
Proof. Obviously, we have 

II(U± , a8 v )(t)	C1 II V±(t)IIi II U±(t )II . (4.3.23) 

Applying (4.3.18) in (4.3.21), it follows 

II U ( t )II	C1	11 U± '011 + / (iij± s ii + II V±(s )IIi IIU(s)II)ds) 

which implies, by induction, 

II U ( t )II	C1eMt (Ilufoll +
	

11f± (s)II ds) (4.3.24) 
/ 

for any u	0, where M = max (II V+IIl,T0JI V_ 11iT0 ) .	Clearly, the last estimate gives 
rise to the boundedness of {U} in C°(Q 0 : R2). 

From (4.3.21), we know that w' 	U' - U	satisfies the problem 

EW , k = 

X, w k ± (y(V) - Eo.K )38w , k ±	(w,8eVj ) = 0
(4.3.25) 

'[uj + (cii - A + )w	- (cii - A_)w	= 0	on x =0=0  

= 0

with (t, r) = (x' - X v )(t, r), which immediately implies the convergence of {U } in 
TO R2 ) by applying (4.3.18) in (4.3.25) and using (4.3.23). Obviously, the limits 

U of {U} in C°(.0 R2 ) are unique weak solutions to the problem (4.3.15), and they 
satisfy the estimate (4.3.22) by using (4.3.24) I 

Lemma 4.6. There is a constant T > 0 depending upon II V±lIw l , 00 and IiKlIwi,00 
such that, for any t E (0, T], we have the estimate 

U.' (6, t; U) 

CeCMt(,Uj,o) + llf± lit + SMIIU±oli + 6M 	iif±(s)iIds 
0	 /	(4.3.26) 

+ CeCMt /

	
((s,s;aev±)(iiu± oil + s iif±113) + w(ö,s; f±))ds 
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on the modulus of continuity of the solutions U to the problem (4.2.15). 

Proof. At first, from the definition we have the fact 

w(8, s;	o9V±)) < C1 (c,(o, s; 3oV)U, 11., + W 07 s ; U±)ljOe V 113) .	(4.3.27) 

For the problem (4.2.15), by removing the term	(U,ô9 V) to the right-hand side
and using (4.3.19), we have 

W(6' t; U)

((s, U , o) + öllf±iit + 6 0 V iItiiU±lit) 

+ CecMt J (w(s,s;fj ) + w(ö,s;ôoV* )iiUlis + w(,s; U±)iiaeV±113)ds 

• CeCTMt (" (6 , U ,o) + iif* lit + 6MIIU± ,0 Il + 5M I 11f± (s)II ds) 

+ CeCMt J (w(,s;f±) + ( II U±oii siifj114w(8,s;O9V±) 

+ Mw(S,s;Uj))ds. 

This implies that when T > 0 satisfies 

CMTeCMT 
<)
	 (4.3.28) 

then we have the conclusion (4.3.26) for any t e (0,T) I 

Lemma 4.7. The solutions U of the problem (4.2.15) belong to C'(40 1R 2 ) and 
satisfy 

ilU±(t)lii < Cexp(CMteCMt) 

/	 \  
x	lU , oll i + I1 V±(0 )Ili II U±,oil + llf±(°)ll + J 	ds	

(4.3.29)
) 

0 

Proof. From Lemma 4.5, we know that U are the limits of {U} defined by 
(4.3.21). As J. L. Joly et al. in [8], from the definition (4.2.8) of E k we have 

( U±, a9 V±)( t )11 1	C1 II V±( t )Il1 II U±(t )Ili	 (4.3.30) 

which implies U E C'(114.0 : R2 ) for each ii 0. Applying (4.3.20) in (4.3.21), it follows 

ilU(t)lli	CeCTMt (u± 01 + lIf±(o )ll + ll v±(0 )II1 IlU±,011

(4.3.31) 

+J 0If± s 111 + MiIU(s)lIi)ds).
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From here, by induction on L' we obtain that {U} are bounded in C 1 ( 140 : R2 ), and 
for all ii > 0, the estimates 

IIU(t)IIi < Cexp(CMteCMI) 

(u±0i1 + II V±(0 )IIi II U±,oII + IIf±(°)I + / If±()II ' ds)	
(4.3.32) 

are valid for all t E (0,T0 ]. Applying (4.3.20) in (4.3.25), we can easily deduce the 
convergence of {U} in C'(1l 0 R2 ), with limits U E C'(14.0 : 2 ) being the solutions 
to the problem (4.2.15). Obviously, from (4.3.32) we know that U satisfy the estimate 
(4.3.29)1 

5. Asymptotic properties 
This section is devoted to the study of the asymptotic property of exact solutions 
(u,) to the problem (2.1.18), which gives the proof of Theorem 2.1/(3). 

Let 7' > 0 be the smaller one between those obtained in Theorems 3.1 and 4.1. In 
this section, we will always use o(1) to denote any infinite small quantity when e -40. 
At first, we claim that the asymptotic property (2.2.18) of (t) can be easily deduced 
from the property (2.2.17) of u, which is stated as the following result. 

Proposition 5.1. Suppose that (u,) e C'(1l) x C[0,T], (Uj ,) E C'(14 
R2 ) x C'([O,TJ : R) and 0 E C2 [0,T] are the unique solutions of the problems (2.1.18), 
(2.1.25) and (2.1.30), respectively, and u satisfy the asymptotic property 

It4(t,x) - Uj(t,x; ,	= 0(1)	when e - 0.	(5.1) 

Then
d(t) - X(t, ) L,l,(O,T) - 0(1)	

(5.2) 
e(t) - c/(t)L,[O, = 0(1) 

when e - 0. 
Proof. The proof of the first result in (5.2) is the same as in Corollary 4.1, and 

the second result in (5.2) is similarly obtained in [18: Theorem 5.2]. So we omit their 
proofs here I 

Now, let us establish the asymptotics (5.1). From (3.2.2), we know that the exact 
solutions (u,) of (2.1.18) are the limits of (u',4') in C( l) x C[0,T] with 
(u &F , ev+1) satisfying 

ôtu' t' - ' ± (A(u± + Eu') - (a +	 =	
1

dt ''[u] + (cii - A)u .""' - (cii - A_)u' = EgCV
(5.3) I 

u' 1 (0, x) = 40(x) J
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where (u°, 0) are the approximate solutions constructed in Proposition 3.1, and 

= dt ' 1'[u' - U e , v+ i ] - d v [ue] 

+ J [v 2 i(u + cu)(u , ueI -	
(54) 

0 

i	 Ct' is bounded in C [0, Tj for all v > 0. Moreover, the convergence of (u± ,	) in 
C°() x C'[O,Tj is uniform for all C E (0,eO]. 

On the other hand, from (4.2.3) we know that the leading profiles (Uj ,x) are the 
limits of (U, xi in C'(	: R2 ) xC' ([0, TI R), where (U 1 , xt') satisfy the problem 

	

E±U P± +	± = Ut'+i I

	

0,U + ' ± (A - aP Ut'1	 I 

±	 I (x t'aou 1 - B±(a9 u t' u	= o	(5.5) ±	' ±))	 I 

onx=9=01 

± li=r=o = U±,0(x,9)	J 

with (U±°,°) E C'(cl. : R2 ) x C'([O,T] : R) being constructed in Subsection 4.1. The 
proof of (5.1) is to make use of the ideas in J. L. Joly et al. [8: Subsections 6.4 - 6.8], 
and to extend their results to the case of boundary value problems. That is to say that 
the proof of

	

u(t,x) - U±(t,x; ' ) IlL(+) = o(1)	 (5.6) 

is to use the argument of simultaneous Picard iteration, which means that, for any 
u > 0, we wish to prove 

Iu't'(t,x) - Ut'(t,x;, flIL() = o(i)	 (5.7) 

which is valid for v = 0 by Proposition 4.1. By taking advantage of the uniform 
convergence of {u' t'} in C°(cl), we can conclude (5.6) from the assertion (5.7). The 
asymptotics of derivatives of u is studied from the nonlinear problem (2.1.18). 

The existence of u and U to the following each problem can be obtained in the 
same way as in Sections 3 and 4, so we only give our whole attention to the asymptotics 
of U '± * 

As the first step, let us consider the linear diagonal problem 

at U, ± (A(u± + ev) - (a + edt )I)ôt4 = f 

	

d [u] + (cii - A)u - (cr1— A_)u =	on x = 0	(5.8) 
= 0 

u(0,x) =
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where
- A(u) diag[\i(u),... ,)m(U)] (5.9) 

and A = A(u). For the problem (5.8), suppose that v, f, V, gC and t4. are 
bounded in C'(c), Ce°(cl), C ' [ 0 , T], C,[0, T] and C°(w), respectively. There are 

V:l: E C 1 (c14.: 1R2 ), F E C°(cl4 : 2m) K C°([0,Tj : R), U± , o e C°(w	R) 

such that
lEV = V±	 (5.10) 

and, in L°°(1l4),

v(i,x) — Vj(t,x; , ) = o(1) 

f(t,x)_Fj(t,x; ),(!,)) = o(i) 

d(t) - K(t, fl = 0(1)	 (5.11) 
u 0 (x) - U±,o(x, ) = 0(1) 

= 0(1) 

when c —' 0, where
-í	i\_f ±1	\ 

with	(r, 9) = 9 (	— a)r for all i E {1. . . , m}. Furthermore, we suppose that the
zero-th order compatibility conditions for the problem (5.8) as well as the problem 

E± U = U 

XU,k ± (7(v) - IEO K)OOU±, k = lEF,k	
(5.12) 

x[u]+(il—A+)U+—(aI—A_)U_=0 onx=9=0 

= U±,o(x,9) 

are valid, where X = O ± ( — o)ô, and 

'In 
•k (V) = Ek	 _(u±)V±).	 (5.13)avp 

Then, we have the following result. 

Proposition 5.2. Under the above assumption, 

u(t,x)— U±(t,x; ;, x)	
0(1)1	 (5.14) 

d(t)—(t,) =o(i)J 

in L°°(cl) when e — 0.
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Proof. As in Proposition 5.1, it suffices to consider the first line of (5.14). The 
proof is to use the method of integration along characteristic curves. At first, let us 
investigate characteristic curves for (5.8) and (5.12). 

For the problem (5.8), fix any (t, x) E Q., let E(s) = x±(A — a)(s —t), and let S - 

(s, (s)+ey(s; t, x)) be the characteristic curves of 3t ±(.\ k(u, +ev)—(a+edt))ôr 
through (t, x), which means that yk(; t, x) satisfy 

dS y k ( s ; t, x) = ±e' (k (-I+ CIA, (s, a(s) + EYk( s ))) 1 

-A' - edt(s))	 (5.15) 

± Ye, k ( t t, x) = 0.	 J 
For the problem (5.12), fix any (t,x,8) E Q+xR, and lets - (s,(s),8+Yk(s;t,x,O)) 
be the characteristic curve of at +(. —a)51 ± (-y , (Vj )— !E0 K)Oe through (t, x, 8), where 
Yk ( s ) satisfies the problem 

dS Yk (s ; i , x , 8 ) = ±((v±)(s,(s),9+Yk(s)) - E0K(s)) }

	
( 5.16) 

Yk ( t ; t , x , O ) =0. 

For any k E 11,. . . ,m}, denote by c. the set 

{(s,t,x)I 0	s < t ((t, x) E 
- I - j {(s,t,r) max (0,t ±	s	t 

I
{1,...j}	forthecase"+
 {j,...,rn} for the case" -

where

for k E I 

((t x)E)J for kEll T 

and	II={1,...,m}\I 

as given in the decompositions (3.3.9) and (3.3.10). 

For the problems (5.15) and (5.16), we quote a result from J. L. Joly et al. [8: 
Proposition 6.4.21 as follows. 

Lemma 5.1.	are bounded in C'(), Y E C'(4. : R), and 

Ye,k(; t, x) - Y (s; i, x,	 = 0(1)	 (5.17) 

in L(4.) when c -+ 0. 

Now, we turn to prove the first line of (5.14). For any k e I, both (5.8) and (5.12) 
are the initial value problems for Uk and U±, k, and by using J. L. Joly et al. [8: 
Proposition 6.4.1] we immediately obtain the result (5.14).
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Let us discuss the case k E II. As before, it is sufficient to investigate the component 
u 1 (i,x). For any (t, x) E 4, let s(i,x) = p— + t, and s. = s(t,x) be the root of 
the algebraic equation

X - (.\ j -	- t) +	(s; t, x) = 0. 

That is to say that (se(t,x),0) and (s(t,x),0) are the intersection points of the char-
acteristic curves of 

	

Oj_ (.\j(u_+ev)—(a+EdtV))ô	and	X =3—(Aj —a), 

respectively, at the boundary {x = 01. Denote 

= (t, X) E 1 I s(, x )	o} 

= (t, X) E clfl(t,) <o} 

T,2T\T,1 

fl+	fl+\fl+
T, _ 2 - T \ T,1 

Obviously, we know that, for any (t, x) in Q + , ,and	(5.12) and (5.8) are Cauchy 
problems for U_ ,1 and uI,1, respectively; and for any (t,x) in	and Q4. 2 , ( 5.12)
and (5.8) are boundary value problems, respectively. 

When (t, x) (-=Q+ , n Q, by using the result of [8: Proposition 6.4.1] again, we 
obtain the asymptotic expansion (5.14) for u 1 (t,x). For any (t,x) E T,2 
from (5.8) and (5.12) we have 

uI,1(t,x) =uci(se,0)+Jfei(r.(r)+eyi(r))dr	(5.18) 

and
U_,i(t,x,9)=U_i(s,0,6+Y1(s;t,x,O)) 

+ fEF ,i (r,(r);9 + Y(r))dr	
(5.19) 

where s = s(t,x) and s = s(t,x). Let 

	

s , ( t , x) - s(i, x) = E77, (t, x).	 (5.20)

Then from the definition of s(i,x), we have 

77, (t, x) =	1	
(s(t, x) +	x); t, x) = -_1	(s(t, x); t, x) + 0(1) I_ a	 I—a 

which implies

(t, X) = A
	

y1 (s(t,x);t,x, x + (A l	a)t) 
+0(1)	(5.21)
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by using Lemma 5.1. By employing this and the asymptotics of the components uj 
for the boundary conditions in (5.8) and (5.12), we obtain 

u 1 (s,O) = U ,i (seo; (A _)Se) +0(1)	
(5.22) 

	

=U,I(s,O;O+Y(s;t,x,9))Z+(A-..	+o(1). 

Let us consider the integral terms on the right-hand sides of (5.18) and (5.19). 
Without loss of generality, we assume .s(t, x) < s(t, x). By using the hypothesis (5.11) 
and s(t, x) - s(t, x)I = o(1), we obtain 

) i	
+ EYi(T))dT 

3'	

t	
(5.23) 

= JL,i (r,(r);± (rr)) +Y1(T))dr+o(1) 
3 

-	 -	 z+(Aj —a)i	-	 - where Y1 (r) = Y1 (r;t,x,	) and e 1 (r)	x - ( A 1 - o, )( 7-- t). Applying 
the result of the non-stationary phase in J. L. Joly et al. [8: Theorem 4.4.2] to the 
right-hand side of (5.23), it follows 

)f1 + eyi(r))dr 
Se	

1	 (5.24) 

=+(A-)t +o(1). 
3 

Substituting (5.22) and (5.24) into (5.18) and (5.19), it immediately follows that, for 
any (t, x) E T,2

u,1(t, x) - U ,1 (t, x; r+	_a)t)	
0(1).	 (5.25) 

For any (t, x) E 1	2' the solutions of the problems (5.8) and (5.12) can be
expressed as

u(t,x) = u,(s,O) + J 
f (r,(r) + EY ,i (T))dT	(5.26) 

and
U,i(t,x,O) = U ,	X + (A - a)i,6 + Y(0;t,x,6)) 

-	 t -	 (5.27) 
+JEFi(r(r);o+Yi(r))dr.
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Since s(i, x) — s(t, x) = ri(t, x) with s(i, x) > 0 and s(t, I) :5 0, we have 0 < .s(i, x) 
c77(t,x), which implies Is(t,x)I = o(1). Hence, by the same argument as in (5.24), we 
obtain

+y1(T))d 

= J EF ,i (r,(r);9 + YI(T;t,x,6))d7-	+ 0(1)	(5.28) 

= 
fEl F (T, (r); 6 + Y1 (r; t, x, 6))dT	r+(ç -	+ 0(1). 
0 

From 0	—s(t, x) ei(t, x), we have Ix + (A - a)tj	(X - a)s(t. x)l = o(1) which
implies

u,0(x+ ( - 

= u 1 (S " ' 0; 6 + Y(0; t, x,6))	
^-	, + 0(1)	

(5.29) 

by using the zero-th order compatibility condition of (5.12). 

On the other hand, from the definition of s, (t, x), we have 

(__- 7)S = X + (	- a)t + 
y1(s;t,x) 

6 

= (9 + Y1 (o t, x, 9)) 	+ 0(1) 

which gives rise to 

U 1	0; 9 + 1 - (0; t, x, 9))	 = U ,1 (s e , 0;	+0(1)	
(5.30)

= ui(s(t,x),0) + 0(1) 

by using the boundary conditions in (5.8) and (5.12). 

Combining (5.29) with (5.30), it follows 

ui (S' (t, x), 0) 

= 

	

U 1 ,O (x + (A - a)t, 9 + Y1 (0; t, x, 6))	, +0 1). 	(531) 

By substituting (5.28) and (5.31) into (5.26) and (5.27), we obtain the same result as 
in (5.25). 

For the case of (t, x) e T,2 fl , we can get the conclusion (5.25) in the same 
way as above. In summary, for any (t, x) E 114,, we obtain the asymptotic expansion 
(5.14) for the component u ,1 (i,x) I
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Let us consider the semilinear problem with linear diagonal principal part 

t3jU ± (A(u± + ev) —(a + 

+mj (ev,w)u + Q(ev,t4) = f 

d j [u] + (ci - A + )u - (al - A_)u = g on x = 0	(5.32) 

u(0,x) = 40(x) 

where every notation and assumption are the same as in (5.8), 

rn j (v,w) =	m,i(v)wi	and	Q(v,u) =	Q'k(v)uiup,	(5.33) 

rn j (v,w) are linear in w and Q±(v,u) are quadratic forms inn, with m±,, and (Q1±k)lp 
being (ni x m)-matrices. Suppose that w are bounded in C(Q) and satisfy the 
asymptotic property

w(t,x) - w (t,x;+(,	(;, ;)) = o(1)	 (5.34) 

in L(QT) where W(t,x;8) E C°(	R2m). For the problem (5.32), we have the
following 

Proposition 5.3. Suppose that the zero-th order compatibility conditions for the 
problem (5.32) and the following problem (5.36) are valid. Then there is Ti E (0,T] 
such that, in

u(t,x) - Uj(t,x; , ) = 0(1) }

	

( 5.35)
d 1 (t) - X(t, fl = o(1) 

where (Ui , x) e C°(Q4 : 1R2 ) x C°([0, T1 ] : R) are the unique solutions to the problem 

XU±, k ± ( ( v±) - EOK)88U±,k 

k kp +E (
	

i1W±,tU±,p +	Q±,iU,Jj±p) 
I ' P	 11P 

X [u] + (ci - A + )U+ - (ci - 

U t=r=O

= U± 

=	 (5.36) 

=0 onx=O=0 

= U,o(x,6) 

with every notation being the same as in (5.12), Wi k, l = rn± , ,(0) and	',k = Q,k(0). 

This result can be easily obtained by using Proposition 5.2, and the idea of the 
proof can be found in J. L. Joly et al. 18: Proposition 6.5.11. Of course, this propositon 
can be generalized to the case of m and Q± depending upon (i, x) also.
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Consider the linear problem with non-diagonal principal part 

OtU ± (A(r± +ev) - (a +ed)I)au 

+m±(ev,w)i4 =f 

dt cb c [u] + (al - A + )u - (al - A_)u =g E on x = 0	(5.37)
C() =0 

	

•	u(O,x)=40(x) 

where all hypotheses are the same as in Propositions 5.2 and 5.3. Moreover, let 

v', (t,	V (t, x; , ) = o(1)	in ''1ci 

	

'-'a Ti	 (5.38) 

with Vj (t,x;r,8) e C'(	: R 2 ) being the same as in (5.10): IEV = V. As before,
are assumed to be the diagonal matrices A±. 

Proposition 5.4. Under the assumption of the zero-th order compatibility condi-
tions for the problem (5.37) and the following problem (5.40) being valid, we have 

i 
I 

	

u, (t, x) - U	) (t, x; ,; = 0(1) } 

de(t) - X(t, ) = o(1) 

in L°°(cl), where (U±,) E C°(	: R 2 ) x C°([0, T] : R) are the unique weak solutions
to the problem

lEU = Ui 

XU±k ± (Bi(ôeU± V±) - KÔOUfk 

±	 -	 (5.40) 

x[u ] + (cxl - A + )U+ - (cxl - A.4U = 0 on x = 8 = 0 

U±Ii=T=o = U±,0(x,8). 

Proof. Suppose that T±(v) are the diagonalizers of A(u j + v), 

T'(v)A(uj + v)T(v) = A(u i + v).	 (5.41) 

Obviously, T± (v) can be easily computed from the right eigenvectors {rk(u)} 1 of A(u), 
and T±(0) I. By performing the transformation 

= T'(v)u	 (5.42)



Nonlinear Geometric Optics for Shock Waves II	911 

in the problem (5.37), we know that ft' satisfies 

± (A(u j + Ev) - (a + + ñiü 1 = 

djtuJ + (al -	- (al - A_)ü . = o(1) on x = 0
(5.43) 

= 0 

ü(0,x) = ü ,0 (x) : = T'(Ev)u,0(x) 

where f = T;-'(Ev: )f±E and i4 = T'(Ev)mj T±(cv) + ñ, with	 - 

=
(5.44) 

± (A(u± + Ev) - (a + EdfI)T±1(EVe±)5XT±(EVe±). 

For any 5 = or S = O, we have

m ST 
8T(cv) =	—(0)(e5)v	+ o(i).	 (5.45) 

p=I 

Substituting (5.45) into (5.44), and using the assumption (5.38), it follows 

ñ(t,x) = N (t, x; , ) + o(1)	 (5.46) 

in L°°(cj.) where N = (N)mxm with 

172	 5T!C	 _________ 

	

N' = ±(A - A) ± (0)39 V ,  t ' X; 
x (A - a)t) 

+0(1).	(5.47) 
P=1 

Here, we still regard V±,(t,x;r,9) as functions of (t,x;9 (A - a)r). 

Employing Proposition 5.3 for the problem (5.43) with the case Q, = 0, we have 

ü(i, x) - U (t, x; 1, ) = 0(1) }

	
( 5.48) 

dc(t) - x(t , ) = o(i) 

in L°°(4.), where (U±,) E C°(	: R2 ) x C°([0 , T I : R) are the unique weak solutions 
to the problem

E U = Ui 

Xk U±,k E (_Y(V) - IEOK)59U±,k 

+E (
	

(N P +	 =	 (5.49) 

x[u l + (al - A + )U+ - (cii -	=0 onx=O=0 

U±Itrro = U,o(x,9).



912	Ya-Guang Wang 

Obviously, we have
(t,x) - u(t,x) = 0(1)	 (5.50) 

in L°°(cl) by making use of T(0) I. 

By comparing the problems (5.40) with (5.49), and using Lemma 4.1, we know that 
it suffices to verify

E

 k (

rn 

N kp U
 'P = ±(U±,a9 V).	 (5.51) 

P=1 

From (5.41), we have

'9 
= - . (0)A± - A-(0) + ôvj 

which implies

521k(u) = it (0) A- (0) + 6k —(u±) ÔV * ÔVI	OVI	 ôv, 

by using the fact A = Vf = ( ) mxm Hence, the coefficients b k of the bilinear 
forms B( . ,.) given in Lemma 4.1 have the expressions

oAk 'it	± 0±,k = ---(0)(A - A) + 5k(U±) avi Ovj 

which implies

(U±,O9 V) = E (
i?6k,10k	

bu±o9V1
 i	k

(5.52) 

I: ( A k ± - k±

(0 k,i96 k 
-	 I 

by using (4.2.8). By noting the basic fact E(39V±) 0 for any p 54 /c, and using the 
expression (5.47) of Nt', we immediately obtain the assertion (5.51) 1 

Now, let us consider the asymptotics of derivatives of solutions to the linear version 
of the problem (5.3): Study the linear problem 

Ojiz ± (A(u j + Ev) - ( + &d1)flOu = f 

dt [u] +(crl - A + )u . –(cr1– A.)ii =	on x = 0
(5.53) 

u(0,x)=40(x)
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where vi-have the same property as in (5.38), f, V, gC and u 0 are bounded in
C'(Q), C2 10, T], Ce' [0, T] and C (w), respectively, and have the asymptotic properties 

(t, x) - Fj (t,x;ç+(,	 )) = o(1) 

d(t) - K(t, fl = o(i)
(5.54) 

u , (x) - U,o(x, ) = o(i) 
g e (t) = o(i) J 

in C, where F E C'(4' : R2m) K E C'([O,Tj : R) and U ,0 E C 1 (w : R). Further- 
more, we suppose that the compatibility conditions of (5.53) and the problem 

E U = U± 

XU±,k±E(B(5OU±,V±)—KaOU±,k)=E±F,k	
(5.55) 

[u]+(aI—A+)U+—(aI—A)U=0 onx=9=0 

Uj t=,.o = U±,o(x,O) 

up to order one are valid. 

Proposition 5.5. Under the above assumptions for the problems (5.53) and (5.55), 
we have that (u,) E C(cl4.) x C[0,TI are bounded, (U+,) E C'( : R2 ) < 

C 1 ([0,T] R) and
(t, X) - U±(t,x; , fl = 0(1) 

d1 4(t) - x(t , ) = o(i) 

in C(Q4.) when e - 0. 

Proof. At above, we have obtained the asymptotics (5.56) in L°°(14.). If we can 
prove

Eôtu±,k(t,x) ± (	- a)(ÔOU±,k)(t,x;	
_t) = 0(1)	(5.57) 

in Ll4.) for any k E {1,... ,m}, then the asymptotics of eôt4 can be easily deduced 
from the equations in (5.53) and (5.55). Hence, it is enough to consider the estimate 
(5.57). 

Set 4 = CÔLU and A'± = (A(u± +ev) -( +edj)I). Then 

	

A(t,x) - (A - aI) 1 = o(1)	 (5.58) 

in C(cl.) and 4 satisfy 

at4 ± (A(u± + ev) - (ci +	 = 

cd[u] + (al - A)4 - (cii - A4z e = Edf g C on x = 0	(5.59) 

4(0,x) = ±(aI—A±)(ô9U±,o)(x,)+o(1) in L°°

(5.56)
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from the problem (5.53), where 

	

= cf + Bj (c8jv, A4) -	 + o(1)	(5.60)

in L(). We note that the problem (5.59) - (5.60) has the same form as (5.37), with we = (Ed c,eotv) and 

mj(ev,w)z = A(ed)z - Bj (e3t v,Az).	 (5.61) 

Set mj (v,w) =	..ornj,j(v)wj, with m , j = (rn?,)k,p being an (in x m)-matrix. By
simple computation, we deduce that 

_kpkp	I ( - aY' 8k	if I = 0
(5.62) = m1(0)	

(a - A±)_1blP	if I = 1,... ,m P ,k 

where b1p is the coefficient of B k defined by B(u, v) = >.j b'' k u 1 vp . Applying 
Proposition 5.4 to the problem (5.59), we get 

4(t,x) —Z+(t,x;,) = 0(1)1 
Ed 20e(t)- (t, fl = o(1) 5	

(5.63) 

in L°°(4.), where (Z±, e) E C°(	: R 2 ) x C °([0 , T 1 : R) are the unique weak solutions 
to the problem

= z+ 

X,Z±,k ± E ( B(a9 Z±, V) - K30Z±,k 

+ 1:' - A' 
 

b?ka8V , lZ±P) = (VeF± k . d)	 (5.64) 

e[uI+ a1—A +) z+ — (aI—A )z =0 onx=O=0	I 

Z± l t = r= o = ±(aI - A)(ôoU±,o)(x,6) J 

by using
Eôtf(t, x) - V0 F (t, x; ç (,	(' )) . = 0(1) } 

/	x (A-oi\ 

	

e5tv±k(t, x) ± ( A - a)aeVj,k (Si, x;	
) 

= 0(1) 

and
1E((9rKZk,k) = 0	for all k e {1,... ,rn}, 

with ® E R"n being the last 2m variables of F and
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To prove the assertion (5.57), it remains to verify that 

Zj ,k = U±,k(t,x;r,O)	±(a - ±)(3oU±k)(tx;r8)}	
(5.65) 

= arx(t,r) 

satisfy the problem (5.64), where U and x are the unique solutions of the problem 
(5.55). From that problem, it is easy to verify that the boundary and initial conditions 
in (5.64) are satisfied by (U,arx). On the other hand, from the definition of B, it 
can be checked that 

(a -

= ± (k(a0Z,' V) +
- 

a -	
bPka8V±lZ±P)	

(5.66) 

I'P

a  

which implies that U satisfy the equation in (5.64) by acting the operator 3, on the 
equation of (5.55). Thus, we obtain the assertion (5.65) U 

By applying the above propositions in the problems (5.4) and (5.6), it immediately 
gives rise to the following result. 

Theorem 5.1. Suppose that (u',") E C(l4.)xC[O,T] and(U,") E C'(1l 
R2 ) x C' ([0, T] : R) are the solution sequences of the problems (5.4) and (5.6), respec-

tively, for each u 0. Then

± u"(t, x) - (J' (t, x; , fl	o(1)	
(5.67)

d(t) - x (t, fl = o(1) j 

in C(l4) when e - 0. 

By using Theorem 3.1/(3), the uniform convergence of (u', q") in C°(l) x 
C'[O,T] with respect to E E (0,eoj, as a simple consequence from Theorem 5.1 we 
obtain the following 

Corollary 5.1. Suppose that	E C (Q) x C[0,T1 and (U±,) E C'(4. 
R2 ) x C'([O,T] : R) are the unique solutions of the problems (2.1.18) and (2.1.25), 
respectively. Then we have the asymptotic properties 

u(t,x) - U±(t,x; , ) L(0	= 0(1) 

}
(5.68) 

01Idi(t) -	, flIL[o, fl = o(1) 

when E -p 0. 
To finish the proof of Theorem 2.1/(3), it remains to prove that 

EV(t,z)( tL ( t , X ) - U±(t,x; ,	- z))	
()j 

	

ed(d(t) - X(t, )) = o(1) f	
(5.69) 

in L°°(). As before, by using the equations and boundary conditions in (2.1.18) and 
(2.1.25), it is sufficient to verify the following
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Theorem 5.2. With the same notations as in Corollary 5.1, there is a constant 
T >0 such that, for any k E  

-at U ' 	± ( A - a)(ÔOUj,k)(t,x;	t) = o(1)	(5.70) 
in L°°(S) when e - 0. 

Proof. By performing the transformation 
4(t,x) =	 (5.71) 

in (2.1.18), with T±(v) being the diagonalizer of A(u + v) as in (5.41), we know that 
4 satisfy the problem 

5j4 + (A(u±+E ) — ( a +edt)I)aZ4+Q±(EU e± ,Ed e ,Z) =0 

edcbe[uj + (al - A)z - (cii - A_)z = o(1) in L	 (5.72) 

4(0,x) = ±(aI - A±)(edu0)(x) + 0(1) in L 
where

= (T;'(eu)5T±(eu) ± (A(u± +eu)

ZE - (a + 

—T'(cu)(at A(u f +eu) _eddI)AT±(eu)4 

with A = (A(u + cu e ) - (a + E dt cb c )I)' . Obviously, we have 

= : aT±(0)44 - (A - cii)	ôT(0)	- a)144 

+ ed(Af - aI 1 z - B± (z, (A + afl_14) + 0(1) 

in L°°(c1). The problem (5.72) has the same form as (5.32). By applying Proposition 
5.3 in the problem (5.72), and using (5.73), we obtain 

4(t,x) - Zj(t,x; , ) = o(1)j	
(574) 

ed(t)—e(t,) =0(])J 

in Lc (4) , where (Z,) E C°(114. : R 2 ) x C°([0, T] : R) are the unique weak solutions 
to the problem

E± Z± = Z± 

k XZ k ± (. (u±) - x)oez±,k 

+ (M 1 z± 1 +(A _aY'Z±k)	
(5.75) 

Ek B± k ± (z, (A - aI) 1 z± ) = 0 

eEuJ + (cii - A + )Z+ - (cii - A4Z = 0 on x = 0 = 0 

= ±(aI - A±)(O9U±,0)(x,0) J
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with	
A -A T'(0) 

	

m ki
	 (5.76) =	

t9v ,, 

	

±	 A 
p^k	' 

To end the proof of (5.70), as in (5.65), it remains to verify that 

	

Z±,k = U±,k(t, x; r, 9) =	- A)(3OU* ,k) (t, x; r, 9)}

	
)

e=arx(t,r) 

satisfy the problem (5.75), where U and  are the unique solutions of the problem 
(2.1.25). From here, it is easy to see that U and a,.x satisfy the boundary and initial 
conditions in (5.75). As in the proof of Proposition 5.5, it is a direct computation to 
verify that U and arx also satisfy the equation in (5.75) by acting the operator 9,. on 
the equation of (2.1.25) and using the expression of B. Thus, we have completed the 
proof of (5.70)1 

Note in the proof. After the finish of this work, the author was informed that a 
similar problem had been investigated by A. Corli in [3]. 
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