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Nonlinear Geometric Optics for Shock Waves
Part II: System Case

Ya-Guang Wang

Abstract. In this paper we investigate the nonlinear geometric optics of a stable shock wave
perturbed by high frequency oscillations. for quasilinear hyperbolic conservation laws in one
space variable. We obtain the existence of the oscillatory shock wave and its leading profiles,
which are solutions to a boundary value problem of integro-differential systems. Furthermore,
the asymptotic properties of the oscillatory shock wave as well as the shock front are justified.
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1. Introduction

This.paper is devoted to the study of rapidly oscillatory waves for quasilinear hyperbolic
conservation laws in one space variable

(1.1)

du+0:f(1)=0 (z€R,t>0))

ule=0 = uo(z)
when the initial data uo(z) are thcvpérturbation of a shock wave by small amplitude,
high frequency oscillations. Usually, the interesting points of this problem are focused on
the formal analysis of leading profiles for oscillations, the proof of existence for leading
profiles and the exact oscillatory solutlons ina domam independent of high frequencies,
and the rigorous Justlﬁcatlon for the asymptotics of oscillations. The problem (1.1) was
investigated by A. Majda and M. Artola [14] in the formal analysis even for the case of
several space variables.

Under the assumption of the unperturbed shock wave being stable in the sense
of A. Majda [12], we study the rigorous justification of asymptotic expansions for the
rapidly oscillatory shock wave for the problem (1.1). After the free boundary problem
of oscillatory shock wave and shock front is transformed into a fixed boundary problem,
we prove the existence of the rapidly oscxllatory shock wave in a domain independent
of frequencies of oscillations by extcndmg the classical theory of Cauchy problems for
one space dxmensmna.l quasﬂmear hyperbolic systems into the case of boundary value
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problems. Similar to A. Majda and R. R. Rosales in [15] and other references in the case
of Cauchy problems, the leading profiles of the oscillatory shock wave satisfy a mixed
problem of integro-differential systems. We discuss the asymptotics of the shock front
as well as the shock speed. The justification of the asymptotics is established by the
idea of the simultaneous Picard iteration, which has been adopted in some references
(see, e.g., [8]). That means to estimate

u*(t,z) - U(t,z; ¢, 2)

Yere
for each v with u** and U" being the convergent sequences to exact solutions u® and
profiles U, respectively. We use the usual Picard iteration for the boundary value
problem of profiles to construct the solution sequence U¥. As A. Majda in (13], the
problem of the shock wave is studied by using the Picard iteration for the nonlinear
equation, and the Newton iteration for the nonlinear boundary condition to construct
the solution sequence u®”. Moreover, in order to make the above estimate of the
asymptotics valid for the case v = 0, we must properly construct the zero-th order
approximate solutions of u® as well as U for boundary value problems, which is different
from the case of Cauchy problems.

The present paper is a continuation of the study in [18], where the scalar conserva-
tion law was investigated. In the scalar case, the coupled problem of the shock state and
shock front can be decoupled into two problems, which makes us possible to use some
existing results directly, the rigorous justification of the asymptotics for the rapidly os-
cillatory shock wave in the scalar conservation law was established there. As in {18], it
is observed that the leading term of the shock front does not oscillate, and oscillations
are only appeared in the leading term of the shock speed. For the motivation of this
problem we refer to the introduction of [18].

There is a rich literature devoted to the constructions and applications of weakly
nonlinear asymptotic expansions for rapidly oscillatory waves. Most of the rigorous
justifications are given in the setting of smooth solutions. See papers of J. L. Joly, G.
Métivier and J. Rauch (8, 9] and references therein for Cauchy problems, and those of
J. Chikhi [2] and M. Williams [19, 20] for mixed value problems with fixed boundaries.
In recent years, there also have been a lot of works devoted to the rigorous study of the
formal analysis in the setting of bounded variation solutions. We mention the interesting
works of C. Cheverry [1], R. DiPerna and A. Majda [5], S. Schochet [17] for initial value
problems, and that of M. Sablé-Tougeron [16] for the boundary value problem. The
asymptotic analysis of nonlinear hyperbolic waves had also been investigated by Y. He
and T. B. Moodie in [7] and references quoted there.

The remainder of this paper is arranged as follows. In Subsection 2.1, we formulate
the problem of the oscillatory shock wave as well as that of leading profiles by using the
method of multiple scales. In Subsection 2.2, we discuss the compatibility conditions of
these boundary problems, and state the main results. The problem of the oscillatory
shock wave is studied in Section 3, which contains three subsections in the construction
of the zero-th order approximate solutions, the analysis of linear problems, and the
proof of the convergence of solution sequences. Section 4 is devoted to the study of
the problem of leading profiles by a procedure similar to Section 3. Finally, in Section
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5 we prove the asymptotic properties of oscillations, which concludes the result of the
nonlinear geometric optics.

2. Formulations of problems and main results
2.1 Formulation of problems. For the m x m conservation laws in one space variable
Su+0:f(u)=0 (2.1.1)

we assume that they are strictly hyperbolic in t for each u € R™, i.e. if A(u) = f'(u) is
the Jacobian of f(u), then the algebraic equation

det |A\] — A(u)| =0 (2.1.2)
admits m distinct real roots
M) < A(u) < o0 < Am(u).

Let 74(u) and lx(u) be the corresponding right and left eigenvectors of A(u) with respect
to Ax(u) for each k € {1,...,m},

el — A()ra(u) =0 and  L(u)(Ael — Aw)) =0, (2.1.3)

with normalization

0 ifi#k
Liu) -re(w) = 6ix = 214
() alw) ) {1 ifi=k ( )
for any u € R™ and 7,k € {1,...,m}.
For a fixed j € {1,...,m} we assume that Aj(u) is genuinely nonlinear,

VAj(u) rj(u) #0 (2.1.5)

for any u € R™, and let u,,u_ and o be constants such that
_{u+ if z > ot 916
“Flu. ifz<ot (2.1.6)

is the j-th shock wave solution of (2.1.1), which satisfies the Lax entropy condition (see

(11])

AP <o <A} and Ajop <o <Ay (2.1.7)
and the Rankine-Hugoniot condition
olu] = [f(u)] (2.1.8)

where we denote A} = A\;(u,) and A\] = Ai(u_) for each 1, Aj_; = —oo when j”=_ 1,
Al4 = +oo when j =m, and denote by [u] = u, —u_ the jump across the shock front.
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We assume that ' :
the plane shock (2.1.6) is stable (2.1.9)

in Majda’s sense [12], which implies that the matrix (see [12: Proposition 3.1])
(rl',...,r;_l,[u],rjﬂ,...,rj;l) is invertible (2.1.10)

where 77 = rj(u_) and r} = ry(u;). As A. Majda in (12], it is easy to see that, under
the genuinely nonlinear assumption (2.1.5), the stability condition (2.1.10) is satisfied
when the shock (2.1.6) is weak enough.

Let us study the following Cauchy problem for (2.1.1) with initial data being a‘ small
perturbation of the plane j-th shock (2.1.6): ’ '

QU +0:f(U)=0 (t>0,z€R)

U(0,2) = uy teufofz) ifz>0 (2.1.11)
0,2) = u_+eul o(z) ifz<0

where € > 0 is small enough, and u§ o € C'. Since the shock (u4,u_,0) is stable, as
A. Corli and M. Sablé-Tougeron in [4]; we can assume that when ¢ € (0,€0] is small
enough, and u§ (z) satisfy some compatibility conditions, which will be given precisely,
the initial value problem (2.1.11) determines a local shock around the origin.

Before giving assumptions on the problem (2.1.11), let us first introduce some no-
tations. Given a small closed neighborhood w C {t = 0} of the origin, suppose 0
is the closure of a determinacy domain of w for the Cauchy problem (2.1.11) when
|U® —u4| < 7. The space C*(R) is the usual one of functions whose derivatives of order
less k are continuous in . Equip this space with a family of norms

lulle,k0 = Z elol|0%ul| ooy

lel<k

A family u® € C¥(Q) (e > 0) is bounded in Cf(Q) if the family of norms ||u®||c k0 (¢ >
0) is bounded, and a family {¢¢}. is bounded in 5:[0,T] if $° € C*[0,T) and the
family of norms ||dt¢‘||€,k_1’[0,7-] (¢ > 0) is bounded for ¥ > 1. Obviously, we have
C2Q) = C°(Q) N L=>(Q).

Let CJ(RY) be the space of continuous almost periodic functions in 6 € RY (see
Y. Katznelson [10]). Denote by C°(2 : R?) = C°(Q : C(R?)) the space of continuous
functions from Q into C3(RY). For k € N, define the space C¥(Q : R9) of those functions
U € C°(Q : RY) whose derivatives 93, z.0)U belong to C°(Q : RY) for any |af < k.

For the problem (2.1.11), we assume that there are U, o(z,8) € C'(w* : R) such
that ' '

|ug o(z) = Us o (z, D, 10 =0(1) (2.1.12)
when € — 0, where w* = w N {z > 0} and w~ = w N {z < 0} (we use the notation “+”

to mean two cases according to the’upper‘and lower signs, and it will be used in this
whole paper):- Obviously, from (2.1.12); we have that u§ ¢ is bounded in C}(w?).
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The aim of the present paper is to study the local existence of the shock wave
solution U*¢ to the problem (2.1.11), and the asymptotic expansions of U¢ and its shock
front {z = ¥,(t)} with respect to ¢.

Now, let us simplify the problem (2.1.11), and deduce the problem of leading profiles
of U¢ as well as the shock front {z = ¥.(¢)}.

As in (18], let

uy +eul(t,z) if 2> ot +e¢%(2)

Ut(t,z) = { (2.1.13)

u_ +eut(t,z) if r < ot4ed(t)

be the shock wave solution of the problem (2.1.11), ie. (ug, ¢%) satisfy

O(uy +eul) + 0:f(uy +eul) =0 if = >0t +eg®(t) ( )
: 2.1.14
O(u_ +eul)+0: f(u_ +eu®)=0 if z < ot +e¢d®(t)
which is equivalent to
Buul + Auy +eus)dut =0 if z > ot'+ed(t)
CRT TR T (2.1.15)
O’ + A(u_ +euf)du® =0 if z <ot+ edt(2) .
and satisfy the Rankine-Hugoniot condition
dee\ | '
(a +e ;; ) (eluf]) + [u]) = [f(u + eu®)] » (2.1.16)

on {z = ot +€¢*(t)} with [u®] = (u§ —ul)(¢,0t +e¢°(2)).

At this stage, both of functions u§ and ¢° are unknown. Thus, (2.1.15) - (2.1.16)
is a free boundary value problem. In order to transform this problem into the fixed
boundary case, we perform the tranformation

t=t
E=1z—ot—ed(t)

in (2.1.15), and obtain that @5 (f, ¥) = us (¢, z) satisfy

&

07 + (A(uy + €1f) — (0 +ed¢*))0za5 =0 if

>0
(2.1.17)
0;ii® + (A(u +ei®) — (0 + edy*))0zii% =0 if # < 0.

» By taking the transformation =

———
8 e~y
1|
|
8
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in the second line of (2.1.17), we know that (u%, ¢%) satisfy the coupled problem with a
fixed boundary

Ouul % (A(us +eul) = (0 +edid*))0,ul =0 ((t,2) € Q¥)
(0 +eded®)(efu’] + [u]) = [f(u +eu)] (z =0)
¢°(0) =0
uz(0,2) = u o(2)

where the tilde and bar of notations are dropped for simplicity, 2* = QN {z > 0}, and
[f] = fy — f_ is the jump on {z = 0} for any function f.

| (2.1.18)

Suppose that the solutions (uf, ¢¢) of the problem (2.1.18) have the forms

ui(t,l’) Ui(t;zy535)+svi(t’z’ 5’£)+O( )} (2119)

¢°(t) = 6(t, 1) + e(t, ) + O(e?)

where Us(t,2;7,0), Vi(t,z;7,0), ¢(t,7) and ¢(t,7) are almost periodic in (7,8) € R2.
Let us formally deduce the problem of (Uy, ¢) from (2.1.18).

Set 7 = £ and § = £. Plugging the formal expressions (2.1.19) into the equations
in (2.1.18), expanding A(us + eu$) by Taylor’s formula at u; and grouping each power
of ¢, it follows that the term of “e=!" is

.Uy + (As — (0 +8,6)1)8Uy =0 (2.1.20)
with Ay, = A(uy), and the term of “e%” i

agU* + 6,Vi + (A:t —'(0' + ar(ﬁ)l)(azU* + aavi)

- (2.1.21)
+ B;(0sUs,Uy) F (019 + 0rp)0U; =0

with By = V2f(u.) being the Hessian of f at u,. Similarly, the “c°” term of the
boundary condition in (2.1.18) is

(0 + 8- 8){u] = [f(u)]

which implies :
8,4=0 (2.1.22)
i.e. ¢ is independent of 7 = { by using (2.1.8) and [u] # 0, the “c!” term of the
boundary condition in (2.1.18) is

(0 + 0r)u] + (6 — A)U] =0. C(21.23)

Deﬁﬁing the operator
Py(0;,08) = 0r £ (Ay — 01)Dp
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and denoting its symbol by p, (A, @), it is easy to see that charPy = {c(F(Af—0),1)|c €
R, i=1,...,m}.

Let the operator E; be the extension in C°(Q2* : R?) of the following action on the
space of trigonometric polynomials:

]E*u(t, x)ei(z\r+a9) - { Hi(’\va)u(tvx)ei(’\r-*-QO) if (/\,Q) € char P:t (2_1.24)

0 otherwise.
Here, for (A, a) € charPy, I14(), a) is the projector in C™ on the kernal of p4 (A, a)
with respect to the decomposition

C™ =sp(ri)® - @sp(ry.),

with r¥ = r;(uy) given by (2.1.3) and sp(r) being the span of r¥. Then, as J. L. Joly
et al. in [8, 9], on C!(Q* : R?), we have the following:

(1) ELU = U is equivalent to Py(9,,05)U = 0.

(2) For any V € C}(Q* : R?), E4 P4(8-,05)V =
Acting the operator E; on (2.1.20) - (2.1.21) and using (2.1.22), it follows that the
leading terms of (u$, ¢¢) satisfy

E Uy, =Us
E. (6.U* + (Ay — 01)0,Us + Bo(86Us,Us) F xaoui) =0
x[u]+ (eI = AWU]=0 (z=6=0)
Ugli=r=0 = Us o(z,6)

(2.1.25)

where x(t,7) = di¢ + Or¢p.
Let us analyse the problem (2.1.25) in detail. Define

+pt+p

Egu(t z;7,0) = u(t,z) = lxm (2p)2 //u(t z;7,6)drdf

D =e=p
to be the mean value operator of u € C°(Q* : R?) in (7,8). For any fixed k € {1,...,m},

let Ef be the extension, similar to E*, of the operator

Efu(t, z)e'Ar+e® = {H:u(t,x)ei(«\r-fao) - when (},a) = (F (O -o),1)
0 otherwise

where ¢ € R\{0} and II§ is the projector in C™ on the kernal of pt( (A —o),1).
Obviously, we have . '

= Z E: + Eo (2.1.26)
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and, for any (A, a) = ¢( F (A —0),1) with c € R\{0},
Hfu(t,z)ei(’\’+"9)_= (l,fu(t,a:))ei(’\_’+°o)r§

by using (2.1.4).

Let U; be the functions determined from (2.1.25), U, x = lE U, and Ui =EyU,.
Then from (2.1.26) we have

U:t = ]E*Ui = ZUi’k +U:§.:
k=1
The fact U, x = Ef Uy shows that U, «(t,z; 7,0) can be viewed as a function of (t,a:,ﬂq:

(Af —o)7), from which it follows that therc is a scalar function of(t,z,0) almost periodic
in 8 € R such that

Ush = MUk = (GUs p)rg =0k (82,0 F (O - &)T)r,f. (2.1.27)

This implies )
BUs =Y of (t,z;0 F (A\f —o)r)rf . (2.1.28)
k=1 ' ' ' " C

with a,f' denoting the derivative of o (t,2;6) in 6 € R.

On the other hand, it is obvious that
Ef = I Mf = 2T
where ‘

p
MEu(t,z;7,0) = plgrolo% /u(t,x;r + 5,0 £ (Af —a)s)ds

is the mean value operator in the direction (7,6) ="(1, £(Af —0)) for any k € {1,..:,m}.
Therefore, by using (2.1.28) we have

E* ((ded + 8-)3pU )

= Z Ef ((ded + 3,9)0U.)

k=1 .

> M ((dg¢+6r99)20 tz9¥(/\ — o)7)r} >

k=1 i=1

Z M ((dz¢ +8,0)0 (t,z;0 F (/\t - a)r))rf

k=1

3

(2.1.29)

Il
3

Ma

d ¢a,fl (t,z;6 F (A —o)r)rf

x
il

1

(d1¢eU. )

I
=
i3
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Acting the operator Eq on (2.1.25) and using (2.1.29), we obtain that (U, ¢) satisfy
6(0*212(14&‘“01)6:?*2'0 (t,x>0)
dedlu] + (eI —A)U)=0 (z=0)
T 4(0)=0
Ui(o, 1:) = Ui’o(x)

(2.1.'30)

with -

+p
— X 1
U:t,O(-T) = ‘171—1.1(1) z \/Uiyo(.‘r,o)da

As A.Majda and R.Rosales in [15], we can easily reformulate the problem (2.1.25)
as an integro-differential system for ¢ introduced in (2.1.27).

2.2 Compatibility conditions and main results. Let us study compatibility con-
ditions for the problems (2.1.18), (2.1. 20) and (2.1.30). Since (2.1.30) is deduced from
(2.1.25) with x(¢t,7) = d¢¢ + 8-, it is obvious that the compatibility conditions of
(2.1.30) immediately follows from those of (2.1. 25)

Since the bounda.ry condition in (2.1.18) must be valid at {z = t = 0}, the zero-th
order compatlblllty condition for the problem (2.1.18) is
(o + eded(0))(eluug) + [u]) = [f(u + cug)] = 0 (2.2.1)

with [ug] = u§ (0) — u 4(0). It is well-known (see, e.g., P. D. Lax [11]) that the shock
speed o + €d;#°(0) and the state ahead of the shock, u, + eu§ ¢(0), define a unique
state behind the shock, u_ + eu? ((0), so that the zero-th order condition (2.2.1) is

satisfied. Moreover, when (d;¢%(0), u% ((0)) are bounded in € € (0,¢o], we also have the
boundedness of u¢ 0(O) in € € (0,€o].

Dlﬁ"erentlatmg the boundary condltlon in (2.1.18) with respect to ¢, and evaluatmg
the result at z =t = 0, we obtain

d} 6°(0)(e[ug) + [u]) + (o + ed¢®(0)) [Beu|i=0] — [A(u + eué)@,u‘lmo] =0. (22.2)
On the other hand, from the equation and initial data in (2.1.18) we have
. 0w§(0,0) = ;(A(ui +eul o(0)) — (o + ed,¢=(o))1) dulo(0).  (2.2.3)

-Substituting (2.2.3) into (2.2.2), it follows the first order compatibility condition for the
problem (2.1.18):

&26-(0)elug] + [ul) + (04 eded (O) L= Aluy + 08, (0))) s o(0) 22
+ (0 +edig (@)L - Alu- +eu ‘0(0)))2dzu‘_ o(0) =
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In order to deduce compatibility conditions for the problem (2.1.25), let us first
diagonalize this problem. Set

T, = (r,...,r%) (2.2.5)

with 7§ = r;(u;) determined from (2.1.3) by setting u = uy. From (2.1.4), it is obvious
that T, ' = (1F,...,1%)T with If = [;(u,). Define

(7* = T;IU*.

Then by the same computation as from (2.1.20) and (2.1.21) - (2.1.25), we deduce that
(Ug, x) satisfy the problem

EsU, =U, <= (9, £ (As — aI)3)T; =0
O Us £ (Ay — or)f),ﬁi +E, (Ei(ao?t,m) — x3U) =0 (226)
xlu) + (oI — AT, U, — (eI —A)T.U. =0 on 2=6=0
Uslimr=o = Us o(z, 8) := TS U, o(z, 6)

where E, is defined similar to E; in (2.1.24) with IT11 (), @) replaced by ﬁi(/\,a), the
projector in C™ on the kernel of (A, @), the symbol of P (8,,8s) = 8, + (A —0I)ds
with Ay = diag[A},..., A%], and the bilinear form By (i,%) equal to Ty ! By(Ty i, Ty ).

Let U, = ((7;, ,(7;")T. From the first and last lines of (2.2.6) we get
U3(0,2;7,0) = Us (2,8 F (AF — o)'r‘).
For simplicity, we denote
Us(0,2;7,6) = Us (2,8 F (As — oI)7)

_ _ . (22.7)
= (Ui,o(:c,f) FOE—0)r),. . Ul (z, 6 F (A% — a)r))

Evaluating the boundary condition in (2.2.6) at £ =t = § = 0, we obtain the zero-th
order compatibility condition for the problem (2.2.6)

x(0,7){u) + (o - A+)T+(7+,0 (Oa (oI - A+)T) (2.2.8)
(eI —AT.U_o(0,(A. —aD)r) =0 o
which easily implies the zero-th order compatibility condition for the problem (2.1.30)

did(0)u} + (0 — AL)U 4 0(0) = (0 — A_)U_(0) =0 (2.2.9)

by taking the mean value of (2.2.8) with respect to 7 € R.
Differentiating the boundary condition in (2.2.6) with respect to ¢, we have

duxlu] + (oI = AT, 80, — (oI —A)T.8U.=0 on z=6=0.  (2.2.10)
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From the second line of (2.2.6), it follows
8Uslizo = F(As — 01)3, Uy o F Es (E*(aeﬁi,o, Uso) - x(O,‘r)aoﬁi,o) (2.2.11)
with ﬁi,o(x,r, 0) = 6&,0 (2,0 F (As — oI)r) given by (2.2.7). Substituting (2.2.11) into

(2.2.10) at t = z = § = 0, it immediately follows the first order compatibility condition
for the problem (2.2.6)

al X(Ov T)[u]

+(0d — ATy (o] = A)8 U, 0(0, (0 — Ay)r)

+ (oI — A )T (o1 — A_)3,U_(0,(A_ — oI)r) (2.2.12)
- {(a{ - A+)T+[E+ ((§+(3o(7+,o, fj+,o) - X(O,T)60ﬁ+,0))
+ (ol - A)T-E. ((E—(aoﬁ—,o’&-:o) - X(O’T)a"ﬁ"o))}lﬁho =0

with x(0,7) determined from (2.2.8).

Similarly, we can deduce higher order compatibility conditions for (2.1.18) and
(2.2.6). As A. Majda in [13: Proposition 2.2}, we have the following

Proposition 2.1.
(1) Suppose that u§ 4,(0) = aj o and d¢¢°(0) = o satisfy the zero-th order condition

(2.2.1) with {a5 9,0%}ec(0,e0) being bounded, let P; and P? be the projectors in C™ on
the spaces

sp{rj+1(u+ + Eai,o), coyrm(uy + eaiyo)}
and :
sp{rl(u_ +eal o)y 5mim1(us + eaf,o)},
‘with respect to the decompositions
..m ' m

Cc™ = @ sp(ri(us +easp)) and C™ = @ sp(ri(u- +ea o)),

k=1 k=1
respectively, with sp(@) being the span of @. Assume constants g5 € C™ satisfying
P{gi =0 and {eg] }ee(0,e0) being bounded. Then, there are (u;,o(z),gé‘(t)) bounded in
Cl(w*) x C2[0,To] such that
u;,o(O) = ai,o, ¢¢(O) =0, d‘¢5(0) =0°, (I - P;)dzu;'o(O) = gi,
and the first order compatibility condition (2.2.4) is satisfied.

(2) Let P, and P_ be the projectors in C™ on the spaces sp{rfii,-..,rh} and
sp{ry,..- ,r;_l} with respect to the decompositions : C

C™ = @ sp(ry) and Cc™ = @sp(r; ),
k=1 . k=1
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respectively. For any given Vi(8) € C)(R) and W, (9) € CS(IR) satisfying P,Vy; =0
and Py Wy = 0, respectively, there are

(Uiyo(z,G),x(t,T)) € Cl(u.)+ :R) x Cl([O,To] :R)
su;h that
(I = P3)U 0(0,8) = V.(8) and (I- Pi)azUi,o(O,é) = W.(9),

and the compatibility conditions for the problem (2.1.25) up to order one are satisfied.
Proof. Assertion (1): Let us diagonalize the condition (2.2.4). Set

T = (7'1 (us +eaio)- - rm(us + 50';,0))'

Obviously, from the normalization (2.1.4), we have

e\—1 € & T
(7)™ = (h(us +2a5 ), Im(s + €5 )
By taking. the transformation
vi0(2) = (T5) ™ ug o(2)

in (2.2. 4), it 'follows that (2.2.4) is equivalent to tha.t (d v§ 0(0),d'f¢‘(0)) sa.txsfy the

condition
dfdf(o)([u} + €lag))

+ kzl (0 +£0° = Ax(us +caf ) ooy 5 (O)ra(uy + et o) (2.2.13)

+Z(0+60 —/\k(u +ea’ 0) d v (O)Tk(u +£a 0)—0

The hypotheses (I — P; )dz.ui,o(O) = g5 give rise to

zd vy O(O)rk(u+ + ea’, )

k=1

Zdv O(O)rk(u +eaf o).

k=j

(2.2.14)

By applying the stability condition (2.1.10) in (2.2.13) we know that, for any given g¢,
(2.2.13) defines uniquely d?$(0) and

Ve = {df5(0), .., devt57 (0), ds w55 0), . s o RIS
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Moreover, when {€g5}.¢(0,e,] is bounded, we have that {ed}¢*(0),eV*}ce(0,c) is 2lso
bounded.

It remains to construct (u§ o(z), ¢°(t)) bounded in C}(w*) x C?[0, Ty), such that
u§ o(0) = a% o, ¢°(0) = 0, di¢*(0) = 0%, and (d,uiyo(O),t{fzﬁ‘(O)) are determined as

above. For simplicity, let us only discuss the case ¢“(t). For instance, by setting

# = é/ (o(e't +e71%) — iedzgt(O)(e'* — 7)) ds

it immediately follows ¢¢ € C2[0, Ty] satisfying all demands for any To > 0.

Assertion (2): As in (2.2.6), set U, = T;'U, with Ty given in (2.2.5). The hy-
potheses

(I — P,)U,0(0,6) = Va(8) and (I — Py)d,Uy0(0,8) = Wy (6)

imply
i ) J _
V.(6) = Ut ,(0,6)rf W.(8) =Y 8:0%o(0,8)r}
kzl and ,::l (2.2.15)
V_(8) = > _U*o(0,8)r; W_(8) = > 8:U% (0,6)r;.
k=3 k=j

By substituting (2.2.15) into (2.2.8) and (2.2.12), and using the stability condition
(2.1.10), we immediately get the functions

(U:t,O(O’ 9)1 X(O)e)) € C}l:(]R) a‘nd (axU:t,O(Oye)a atX(01 0)) € C}())(R)
Similar to the proof of Assertion (1), it suffices to construct x(¢t,7) € C!((0,T] : R)

with x(0,7) and 8;x(0, 7) being the functions determined from (2.2.8) and (2.2.12). Let
x(0,7) = a(7) and G, x(0,7) = b(7). It is easy to verify that the function

T+t
X(t,‘r) _ a(T + t) '; a(T - t) + % / b(s) ds € Cl([O’ TO] . R) (2216)

is the one we look for B
The main assumption of this paper is the following one:

(MA) Given the initial data u§ o(z) € C'(w*) satisfying the compatibility condi-
tions (2.2.1) and (2.2.4) for the problem (2.1.18) for any € € (0,€0], there
are Uy o(z,0) € C'(w* : R) satisfying the compatibility conditions (2.2.8) and
(2.2.12), such that we have the asymptotic property (2.1.12).
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- Remark 2.1. When u§, € C'(w*) and Uy o € C'(wt,R) satisfy the asymptotics
(2.1.12), u§ 4(0) = 9;uf o(0) = 0, and U4 ,0(0,8) = 9:U; 0(0,8) = 0, the assumption
(MA) is obviously valid.

Now, we can state the main result of this paper as follows.
Theorem 2.1. 'Under the above assumption (MA), we have the following.

(1) There are constants T,eq > 0 such that the problem (2.1.18) has unique solutions
ui and ¢ bounded in C}(2}) and C2[0 T}, respectively, for any € € (0,e0], where
=Q+tn{t<T}. '

(2) There are unique solutions U, € C'(2% : R?), x € CY([0,T] : R) and ¢ €
C?[0,T] to the problems (2.1.25) and (2.1.30).- - .

(3) For the above solutions (us,¢*), we have the asymptotic properties
lui(t,2) = Us(t2: 1, D), 0p = o(1) (2.2.17)
and

dyd® - x(t, !.' ‘= o1
[|des*(t) — x( s)“e,l,[O,T] ()} (2.2.18)

l%(t) — ¢(t)llLeofo, 1y = o(1)
when € — 0.

Remark 2.2. From the results in (2.2.18), we can easily obtain the asymptotic
property of the shock front {z = ot + e¢°(t)}.

3. Existence of oscillatory shock waves

‘Thls section is devoted to the proof of Theorem 2. 1/(1) which gives the ex1stence and
uniqueness of the exact solutions (u§, ¢?) to the problem (2.1.18).
3.1 Construction of approximate solutions. Introduce the notations

L5 (ug,6%) = Bk (Alus + eug) — (0 +cdig®)1) 0, (3.1.1)
.and Z :
G*(ul,us,dg®) = %((a +edig®)(e[u] + [u]) — [flu+ su‘)]). (3.1.2)
The function f(/ut + euf ) admits Taylor's expansion at the constfa.nt state uy as

1 : ) .
Flus +€us) = flus) + Au(eus) + &2 / (1= n)V2 f(uy + neus)(uS, us) dr.
/ |
This implies . )
Gt ded?) = dig*(elut] + [u)) + (oL — A)uc]

' s o - 3.1.
S ()L PR R ) P S
0 — .
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by using the Rankine-Hugoniot condition (2.1.8), where [-] denotes the jump of the
related function on {z = 0}. Obviously, the problem (2.1.18) can be written as

L5(u5,¢%)us =0 (¢, >0)
G (us,us,di¢?) =0 (z=0)
¢°(0)=0
u$(0,z) = uf o(2).

Under the assumption (MA) in Subsection 2.2, we try to construct approximate solutions
(u5®, ¢5°) of this problem, which are bounded in C}(92*) x C?[0,To} ((To,0) € ) and
satisfy .

(3.1.4)

L5 (u®, 67" )uilizo = 0
dfGe(us®,u®®,dd*%)i=0 =0 (k=0,1)
| $-°(0) =0
u3°(0,2) = u§ o(2).

Set m%(z) = 85u$%(0,z) for k € {0,1}. The initial condition in (3.1.4) implies that
m%e(z) = u§ o(z) are bounded in C}(w*). From the compatibility condition (2.2.1),
we immediately obtain that the sequence {d:¢*°(0)}.¢(o,,) is bounded when gg > 0 is
-small enough, such that, for any € € (0, 0],

(3'.1.5)

|e(u$ 0(0) — 92,0(0))| < Huy —u_|. . (3.1.6)

From the equation in (3.1.4), we deduce m}*(z) € C%w*) and em}*(z) are bounded
in C%(w*) by using the boundedness of £9;u% o(z) in CH(w*).

Let us construct the approximate solutions u? of (3.1.4) by the following lemma.

‘Lemma 3.1. Given functions m3* € Cl(w*), Erﬁ;’e € C(w*) and the sequence
{ded°(0)}ee(o,e0) bounded as above, there are functions u%? bounded in C1(*) such
that

ui’o(o, z) = moi"(:z:) a'n,d agU;'O(O,I) = mi"(:z:) to (31.7)
Ot (Alus + eul?) - (0 +cdid*(@)1) 005" =0 ont=0  (318)

end ' -
s + (Ay — 0O us®  bounded in CJ(QF). (8.1.9)

Proof. The conclusion (3.1.8) is a simple consequence from (3.1.7) and the choice
of my®. It is sufficient to construct bounded u$® in C}(Q2*) satisfying (3.1.7) and (3.1.9).
Denote the extensions of mg’.‘ in w still by mi“, with m3¢ € CHw). Set

mbi®(z) = q:(A(ui +em%e(z)) = (o + Edt¢‘(0))I)d1mg’e(l’)~ (3.1.10)
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Obviously, we have that emy *(z) are bounded sequences in C%(w) and that m}’ (z) are
extensions in w of mY’ “(z) = uy® (0,z) obtained from (3.1.5).

Let us solve the linear Cauchy problem of u$° in Q

Quy® + (A — oI)0;ul® = my© £ (Ay — oI)d,m%*
(3.1.11)

u’(0,2) = my*(a)
from which the conclusions (3.1.7) and (3.1.9) are obviously valid by using the fact that

my* £ (As — oD)dimy® = Ay — Auy +emd*) + ed,¢=-°(0)1) d;ml¢  (3.1.12)

are bounded in CJ(€2). Hence, it suffices to verify that the solutions u$° of the problem

(3.1.11) are bounded in C}(2*). As J. L. Joly et al. in [8], it is obvious that u%° are
bounded in C?(2*) by using (3.1.12).

To check that e Vu5? are bounded in C2(Q2*), let us diagonalize the problem (3.1.11).
Set Ty = (r},...,r%) as in (2.2.5) and define -

— T 1 us 0.
Then v5?° satisfy
Ows® £ (Ay —0D)Bv5° = Ml £ (Ay — ol)d.m mye
* o : (3.1.13)
vy (0,2) = my*(z)
where mys = =T, Im}® and mY© = T, 'mY*. Obviously, the same assumptions as those

of m%*(z) are still valid for m% ‘(x) with 7 € {0,1}. It is easy to see that the solutions
v5? of the problem (3.1.13) can be expressed as

z
~ 1 -
vyt z) = L) £ 7 / my4(r)dr (3.1.14)
' :i(a—;\f)t
for any z € {1,...,m}. From here, we immediately obtain that eVv5® are bounded in

C2(2*) which is equivalent to the boundedness of eVu$® in C2(Q+) B

Set a. = di¢°(0) and b. = d?4°(0). From the compatibility conditions (2.2.1) and
(2.2.4), we know that the sequences {ac}.e(0,co] and {ebe}ee(0,co} are bounded when
(3.1.6) holds. Define the approximate solution ¢*:° € CZ(0, Tp) of (3.1.4) by the following
lemma.

Lemma 3.2. Let u$° € Cl(Q*) be the approzimate solutions of (3.1.4) given as

above. Then there is a ¢*° bounded in C2[0,Ty) for € € (0,€0], with g9 > 0 small
enough, such that

dfGe (ui’o,‘Ui'o, dt¢€’0)|t=0 =0 (k=01 } (3.1.15)

¢7°(0) =0, di6"°(0) =a., dj¢=°(0) = b..
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Proof. The compatibility condition (2.2.1) can be written as

d¢*(0)([u] + €[u*°(0)) + (o] — A,)ui®(0,0)

(3.1.16)
— (o — A_)u°(0,0) = €¢°(0)

where [u¢0(t)] = u5°(t,0) — u=°(¢,0), and

0°(t) = o5 { e+ eus®) = flus) = eAus?

(3.1.17)
— flu_ +eu®) +f(u_)+£A_u‘_’°}(t,0)

is bounded in ‘C}[0, Ty], by using the Rankine-Hugoniot condition (2.1.8), the bound-
edness of u§° in C}(Q*), and Taylor’s expansion of f(uy + eu$®). As in the proof of
Lemma 3.1, performing the transformations 05 = T;lui’o in {3.1.16), it follows

deg*(0)([u} + [ut(0)]) + (o1 — A,)T,v5°(0,0)

(3.1.18)
— (oI — A_)T_v%°(0,0) = £¢°(0).
Obviously, from the stability condition (2.1.10), we have that the matrix
€ €, _ 111
Me(t) = ([u] +elw @) {0 = A, {7 =T VD) (3.1.19)

is invertible when € € (0, o], with g9 small enough. Hence, (3.1.18) gives rise to
d1¢5(0) = &, - (M*(0))"1G*(0) (3.1.20)

where €1 = (1,0,...,0) and

GE(t) = eg(t) — Z(a = At 0) - Z(A - o)r;v=%(t,0). (3.1.21)

Let us solve the initial value problem

dg=0(t) = & - (M*(£))"'G°(%) }

59(0) — 0 (3.1.22)

The existence of a solution d)"o € C?0,Ty] is clear for this problem. B)ll using the
boundedness of g*(t) and v§°(¢,0) in C[0,Tp], we obtain that ¢*°(t) is bounded in
C?[0,To]. On the other hand, from the above discussion, we know that the solution ¢¢°
of the problem (3.1.22) satisfies di¢*°(0) = a. and G* (u+ ,ut® dge0) Wi = 0. If we
“can verify that ¢ also satisfies

d?¢*°(0) = b,, (3.1.23)
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then from the definition of 4., and the first order compatibility condition in (2.1.18), we
immediately have

d(Gz(u 50 dg¢z 0)| =0.

Let us prove the assertion (3.1. 23) as follows. Differentiating the equation in (3.1.22),
it follows

d7¢*°(0) = & - (M*(0)) ™ dG°(0) + &, - di(M€(0)) ™1 G(0). (3.1.24)
From the definitions of M*(t) and G¢(¢) in (3.1.19) and (3.1.21), respectively, we have
deMe(0) = (e[0,u®°(0)],0,...,0)  and  (M*(0))7'G*(0) = (ac,*)T  (3.1.25)

by using d;¢°(0) = a., where * is an 1 x (m — 1)) vector the exphc1t expression of which
we do not nced. By subst1tutmg the formula

de(M*(0))™" = —(M’(O))_ (deM*(0))(M*(0))~"
into (3.1.24), and using (3.1.25), we obtain
dj$*°(0) = & - (M*(0)) ™! (d:G°(0) — ea.[B:u®*(0))). (3.1.26)
On the other hand, from (2.2.2) we have
be([u] + elu™*(O)]) + (o] = A(w)) 9u"°(0)] |

= [((Aw + eut®(@) - A(u) - ca.)Beus2(0)] (3.1.27)

= edig*(0) — eac [0u""(0)]
with g¢(t) defined in (3.1.17). In a way similar to (3.1.20), from (3.1.27) we deduce

be = & -(M‘(O))“(d,g‘(o) — ea,[0,u®°(0)]) . (3.1.28)

where G*(t) is defined in (3.1.21). Comparing (3.1. 26) thh (3 1. 28) it concludcs the
assertion (3.1.23) B :

Summing up, we have the following

- Proposition 3.1. Under the assumption (MA) in Subsection 2.2, there are approz-
imate solutions (u$®, $%°) to the problem (3.1.4), such that (u$°, ¢°°) are bounded in
CHQY) x C%0,Ty), and satisfy

L5 (5,6 )ug im0 = 0
G, d )| _ =0 (k=0,1)
$7°(0) =0
ug’(0,2) = ug o(2)

(3.1.29)
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3.2 Iteration scheme and. proof of Theorem 2.1/(1). From the definition (3.1.2)
of G, it is easy to see that the Fréchet derivative of - G* with respect to its arguments
at (vy,v_,dip) is

G(u+,u‘ ,ds ) (v+’v—7d!‘r°)
(3.2.1)
= ([u] + e[uD)dep + (0 + did*)[v] — [Alu + eu)ol.

As A. Majda in [13], given approx1mate solutions (ui ,65°) by Proposition 3.1, we
solve the problem (3.1. 4) by the iteration scheme

By, ¢ = 0 | ‘
Gur aponm Uy ded*H) = —G* (5", dig™)
+ Gl g pem) (85" did™”) (3.22)
g +1(0) = 0
uy*t(0,2) = uj o(z),

i.e. we use the usual Picard iteration for the equation, and the Newton iteration for
the boundary condition. The zero-th and first order compatibility conditions in (3.2.2)
for any v > 0 were verified by A.Majda in [13: Section 3] even for case of severa.l space
variables by using (3.1.29).

To study the problem (3.2.2), let us ﬁrst éonsider the linear bfoblem
Li(ug, ¢y = f
Gf;;ﬂu‘_ .d:d")(via v ) dt‘pe) = ge(t)
¢*(0)=0

v5(0,2) = uj o(2)

(3.2.3)

where {u } and {¢°} are bounded in C}(Q, ) and C2(0, Ty), respectively, f¢ € Cc'(9r,)
and ¢¢ € C'[0, Ty] satisfy the compatibility conditions of (3.2.3) up to ‘order one.

. To alleviate the burden of notations, in the remainder of this section, setting w} =
QN {t = s} we use |lu(t)]| and [[u(t)|ly = [Ju(t)l + [|[Vu(t)| to denote the L(w;")
and W!*(w}) norms, respectively, of u(t,-). Analogously, we use |luf|¢ and [[ulf1,; to
denote the L=(9f) and W1°(Q}) norms, respectively, of u(-). For any ¢ € L*[0,T},
the norm ||@|| Leo[o, is also denoted by llo|l¢, for any t € (0,T).

For the problem (3‘.2.3), we have the folldWing results, the proof of which will be
given in the next subsection.

Prop051t10n 3 2.

(1) Suppose that the fa.mzlxes f:t CO(Q}O) and g‘-_G.C'O-[O-, Tb]hai‘é bounded and
satisfy the zero-th order compatibility condition of the problem (3.2.3)., Then there ezist
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unigue weak solutions (v, %) € C°(Q,) x C'[0,Ty] to the problem (3.2.3). Moreover,
there is a constant C > 0 such that

et ()] + o ()] < CeCM (”f”t + [l oll + / 1751 ds) (3.2.4)
0

for any t € (0,To], where M 2 1+ e(|[Vullln, + [|Vul|r, +||d?¢°||7,)

(2) If (f5,9°) have the additional regularity (f3,9°) € C' and satisfy the first
order compatibility condition of the problem (3.2.3), then the unique solutions (vs,¢%)
of (3.2.3) obtained above belong to C'(QF, ) x C?(0,Ty). Moreover, we have the estimate

ledi o ()] + [V (1,0yv5 (1)l

< Cexp(CMteCM')<IIEd:9‘IIz +lledzug ol + lle f£(O)]] (3.2.5)

t

+eM(|lg*]le + [lu olf) +/(6M||f§(8)|| + Ileazfi(S)II)dS>

0
for any t € (0,To).

For any v, given (ui’", ¢**) bounded in C}(Q+) x C2[0, T}, let us study the iteration
scheme (3.2.2). Fix ’

M2 1+ [,y 0f + 127N, 1 0t + 14 lle1,0,7

and
n>e(luslir + Julir + 4™ |ir)

with n < ll;;“—l Then we have the following result.

Lemma 3.3. There are a constant C(n) depending on 7, and two increasing func-
tions Cy(-) and Cy(-) such that, for any t € (0,T),

[deg® D1+ fug* T (O < CeM (jugigll +Ca (Il + 1des™ 1)) (3.2.6)

and
|€df¢€’"+l(t)| + ||€vu;,u+l(t)”

< Cexp(CMte™*)(lledsug ol + M5 ol (3.2.7)
+eCa(lus”ll, s s + 146 e 0.0))-

Proof. By applying the estimate (3.2.4) in the problem (3.2.2), we obtain

Jdeg= ()] + e (D)) < CeCMH(lug ol + 9"l (3.2.8)
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where

9 = —GH Uy, did™) + Gl gy (3", 408

1

| (3.2.9)
=edi¢" [u"] + / [(A(u + neu®?) - A(u + 6u""))u""] dn.
0
Obviously, we have an increasing function C;(+) such that
llg®*lle < eCr(llug”lle + [1ded™*|e)- (3.2.10)

Substituting this estimate into (3.2.8), the estimate (3.2.6) follows immediately. Simi-
larly, by employing the estimate (3.2.5) for the problem (3.2.2), and using (3.2.9) and
(3.2.10), we get the conclusion (3.2.7) 1 : .

The next result is devoted to the iteration scheme (3.2.2), from which we immedi-
ately obtain the conclusion of Theorem 2.1/(1).

Theorem 3.1. There are constants T > 0 and €¢ > 0 such that, for any e € (0, €0,
the iteration scheme (3.2.2) defines a sequence (uy”,¢%) € CH(Q5)xC2(0, T) satisfying
the following conditions.

(1) There is a constant 1, 0 < n < 15%‘—'—1, such that, for any v and € € (0,0},
one has

”u::,v”e,l,ﬂ; +1lded " Nenjor) < K (3.2.11)

and
e(luglr + lldeg®*liT) <. (3.2.12)

(2) For each fized € € (0, €], the sequence (uy”, ¢%") converges in C'(Q24)xC?(0,T)
to solutions (us, ) € C'(2%) x C?[0,T) of the problem (3.1.4).

- (23) Moreo(ver, ]ui" — uf in C%(0}), and ¢ — ¢° in C[0,T] as v — oo, uni-
formly in e € (0,¢&0].

Proof. Assertion (1): Choose
Ko > C(n) ([l oll + Iu ol + 1) + a5l + llded™ i,

and
K, > C(’I)(”“i,o”e,l,w*r + |Iu‘_,o||¢,1,u+ + 1) + “Ui'oug,l,n;o + ||dt¢€'0||e,1,[o,To]

with C(n) > 0 being the constant in (3.2.6) and (3.2.7). Then, there are constants
T > 0 and €¢ > 0 such that, for any v > 0,

g lir + lded* I < Ko o
leVug”lir + lled? 6|7 < K, | (3.2.13)
e(llus” iz + lldeg®Ilr) < 7
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when € € (0,¢0]. Indeed, obviously, (3.2.13) is valid for v = 0 when €0 > 0 is small
enough. Suppose (3.2.13) holds for some v > 0 and let us consider the case v +1. In
(3.2.183), the first line immediately implies the last line by taking ¢ > 0 small enough.
From the definition of (Kp, K1), we know that there are constants T > 0 and g > 0,
small enough, such that :

Ce KT ([lus oll + £0Ci(Ko)) < Ky |
‘ ' ' : ' (3.2.14)
C exp(CKTe KT (ug gllen wt + oK lu oll + 0Ca(K)) < K,

where K = Ko + K, Ci(-) and Cy(-) are two increasing functions given in Lemma
3.3." By taking constants T > 0 and £¢ > 0 from (3.2.14), with T € (0, Ty], and using
Lemma 3.3, we obtain that (3.2.13) is valid for v + 1. Hence, (uf?, ) are bounded
in C2(Q%) x C2(0,7] and satisfy (3.2.11) and (3.2.12).

Assertion (2): From (3.2.2), we know‘ tﬁat (yi’"“ —uyl, govtl — ¢"”)Vs'atisfy the
problem

LE(ug¥, ) (ug "M — ug?) = P2

' Wl , W+l €, w1 e, __pew
Gl aporny (8571 =P — w7741 - g)) = G

(3.2.15)
(et =) (0,2) = 0
(¢e,v+l _'¢¢,u)(0) — 0
where
FoY = Li(ud” ™ ¢ us — L;(u;"’,¢€"’)ui"’ (3.2.16)
and . ) . '
g:,u — €dz(¢z", _ ¢e,v )[uc,u _ ue,v]
+ [(A(u +eu®?) - A(u + 6u"””))ﬁ""]
. .
. 3.2.17
+ / [(A(u + neu®’) — A(u -i-eu"”)) u®? ( )
0 . . .
- (A(u + neu®r 1) — Alu + eu""_l))u""_l]dn.
For F{'* and G3", clearly, we have ,
. !
IF* ()l < C (Jde = ¢+ =)o) + |(ug” = ug” "))

o : .(3.2.18)
165 * e < Ce(fldu(o= — g )|, + flug” —ug* ™) :

by using the boundedness of {uy",¢**} in C}(Q%) x 53 [0,T]. Employing (3.2.4) for
the problem (3.2.15), using (3.2.18), and setting :

a"(t) - “ui,u-ﬂ _ ui,u”l + “ue_,u+~l _ ui,u”t +.||dt(¢e,u+l _ d)s,u)“t,
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we obtain

a"(t) < C (ea"_l(t) + /a”_l(s) ds) (3.2.19)

for any t € [0, T]. From here, we immediately obtain that there are constants 7' > 0 and
€0 > 0, small enough, such that (u%”, ¢*¥) converge in C°(2%) x C*(0,T) uniformly in
€€ (0,60, and their limits (uf, ¢*) belong to C°(Q%) x C'[0,T)].

Assertion (3): On the other hand, as P. Hartman and A. Wintner in (6], and J. L.
Joly et al. in [8], it can be shown that, for ¢ fixed, Vuy” and d?¢** are not only
uniformly bounded as in (3.2.11), but also equicontinuous, which implies that the con-
vergences uy’ — uf and ¢ — ¢° also hold in C! and C?, respectively.- Hence, we
conclude that (u§,¢¢) € C'(Q%) x C?[0,T] are solutions to the problem (3.1.4) B

3.3 Study of linear problems. This subsection is to study the linear problem (3.2.3).
Most of this part extends the investigation of P. Hartman and A. Wintner in [6], and
of J. L. Joly, G. Métivier and J. Rauch in [8: Subsection 6.2} for Cauchy problems of
semilinear and quasilinear systems in one space variable to the case of boundary value
problems. )

At first, let us diagonalize the problem (3.2.3). As in the proof of Lemma 3.1, set

Ts = (ri(us +eul), o rm(us + eus)) (3.3.1)
and - T
(T5)™ = (B(us +eus) o Im(us +2u8))

with {r;,[;}7, given in (2.1.3). By the normalization (2.1.4), it is obvious that (Te)~!
is the inverse matrix of T¢. Set

(3.3.2)

vt = TE5¢ ©(33.3)
and _ '
Io(us,¢5) =0 £ (A(ui teus) — (o +edid*)) 0, (3.3.4)
with _
A(u) = diag[Ai(u), ..., Am ()] (3.3.5)

being a diagonal matrix with eigenvalues as its entries. By making use of the fact -
(8T5) - (T9)™' = -T¢ - A(T5)™,
it is easy to see that the problem (3.2.3) is equivalent to
L5 (us, 695 = (T 7+ (Bl 6)(T) ) 1505
éf;i,u‘_,d,¢‘)(ﬁi’6i’dl‘p5) = ge(t)v '
' v*(0) =0

5(0,2) = 35 o(2) = (T5) ™" o(2)

(3.3.6)



880 Ya-Guang Wang

with

Gy e gy (95 7%, i)
m

= Z (a +edid® — Ai(uy + Eui)\)r.-(m +eul)vs (3.3.7)

=1

+ 3 (M- +eut) — o —cdig ¢ )rius +eut )it + ((u] + elu])dip".

=1
To study the problem (3.3.6), let us first consider the diagona.l.problem
L5 (ug, 605 = f
f:;;_,u‘_ ,de d")(vi’ vi s dl(pc) = ge(t)
#*(0) =0

(3.3.8)

v3(0,2) = v§ o(z)

where f¢ € C‘(Q+ ) and ¢¢ € C'[0,Ty] satisfy the compatibility conditions of (3.3.8)
up to order one. We decompose v§ into

T T
vy =(vi,1,...,vi,j) and vi’uz(v:’j“,..., V5 m) (3.3.9)

vi = ... v )T and o= (08, )T (3.3.10)

The same decompositions of (f£, v{ o) as above are also denoted by fi. 1 fi g and vi 0,
) ¥ From the Lax entropy condition (2.1.7), we know that given u¢ € C}(Q%,) and

¢¢ € C2[0, Tp) as in (3.2.3), when 17 > 0 is small enough such that
||Eu;||L‘,,(Q;D) <n and ledeg®l Loojo, 1) < 7 (3.3.11)
holds for € € (0,¢0], then

<0 whenie {1,...,5}

A/\i ) o ed gt
(us +eul)—o E'd){>0 whenz e {j +1,...,m}

(3.3.12)
<0, whenie{l,...,7 -1}
’\i _ ey — ed,d¢ :
(u-teul)—o—edsg {>0 when 7 € {3,...,m}
which implies that (3.3.8) is an initidl value problem for the components Vi and a

mixed one for the components V¢, ;. Therefore, by using the method of J. L. Joly et al.
[8: Lemrnas 6.2.1 and 6.2.2], we 1mmed1ately obtain the following



Nonlinear Geometric Optics for Shock Waves | 881

Lemma 3.4.

(1) For any bounded u§ € C:(Q}o) and ¢° € 53[0,TO] satisfying (3.3.11), f1 , €
C°(Q%,) and v o € COw*), there are unique weak solutions vi ; € C°(22%,) to the
I-part of the problem (3.3.8). Moreover, for any t € (0, To],

t
oS 1)1 < llvfol +/|lf§,1(5)|ld5« (3.313)
0

(2) There is a constant C > 0 such that if M > 1 +€||Vullir,, then

t
w(b,t;v5 ;) < CeCMbu(8;v50) + SIIf5 1lle + / CeCMU=Dy(6,s; f5 )ds  (3.3.14)
0

where
w(é,t;u) = sup Iu(s, z) — ufs', x')l (3.3.15)

denotes the modulus of continuity of u with supremum taken over (s,z) and (s',z') in
QF such that |(s,z) — (s',2")] < 6.

For the II-part of the problemv(3.3.8)
Bs 11 + Ox mr(eul,eded*)0:v5 11 = fi u
M- (dt‘Pev”i,n:UiJl)T = g°(t) + Bz(vi,lvvi,l)
©*(0)=0

gl
v (0,2) = vy (2)

(3.3.16)

where v§ ; € C°(Q*) are given by Lemma 3.4,

0. 1r(eus ed¢) = i(A,,,,,(ui teut) - (o + ed,q&‘)I)'

are diagonal matrices with positive entries,.

Agruy +eus) = diag[)\j+1(u+ teut), . Am(uy + wi)]

A_p(u. +eu’)= diag[/\,(u_ +eut),. .., Ajo(us +eut )] ,

j
BE(vS,1,050) = 3 (Milus + eus) = 0 — eded riluy +eu s,
=1

+

s

(a +edid® — Ai(u- + eu‘_)) ri(u_ +eul ) ;

7
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and the matrix
M = ([u] + g[uf], ((a + E_dtdf = Mi(uy + eul))ri(u, +-eu‘+)) o ,
: 1=)+1,...,m

(utun 4 eut) = o = edigrifu +euc)) )"

i=1,..,j~1

1s invertible from the stability condition (2.1.10) when (3.3.11) holds with n > 0 small
enough.

Without loss of generality, let us investigate the component v¢ 1 in the problem
(3.3.16). Obviously, we know that v* , satisfies

azvf,l— (/\l(u_ +eut)—o —edid ) ‘ _f_ |
ve(8,0) = af (t) (3.3.17)

v-,l(o)z) - U O(I)
where a¢ (1) is the (m— ]+2) th component of the vector (M*)~!(g¢ (£)+B(v5 f,v¢ ,))
and the compatlblhty conditions of (3.3.17) up to order one are valid.

For the problem (3.3.17), similar to J. L. Joly et al. in [8], by mtegratmg along
characteristic curves, we obtain the following

Lemma 3.5.

(1) For any vi”lo € C%w*) and fe, € CO(Q,}O), there is e unique weak solution
v¢ | € CO(2E. ) to the problem (3.3.17). Moreover, for any t € (0,Tp],
)1 To/ ™ .

. . t
v LI < Nlas e + oS5 + / 1£2 1)l ds. (3.3.18)
0 o .
(2) If M 21 +¢€||[Vul |1, +elldi ¢° |75, then

w(6, ;08 1) < CeCM! (w(&,t;a’_,l) +w(8, vf”:))

t . ‘ (3.3.19)
OISl + w(5,8;ff,;)ds>.
i [

Proof. Let s — (s,7.(s;t,2)) be the characteristic curve of (3.3.17) through (¢, z)
with v.(s;t, z) being the solution of the problem

(3.3.20)
Ye(t; t,z) = z.

dsVe(s;t,z) = 0 + edp®(s) — A (u_ +ecu® (s,;)?(s; t,z))) }
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Let s.(t,z) be the root of :
Ye(se(t,z);t,z) =0 (3.3.21)
and _
Qf = {(s,t,x)‘ max(0,s.(t,z)) <s <z for (t,z)€ Q}o}.
From the theory of ordinary differential equations, we have ve(s;t,z:) € C‘(()»} ). For

(t,z) € QF,, we have two cases:

Case (1): sc(t,z) <0. In this case, (3.3.17) is a Cauchy problem for v¢ ,(t,z), and
for its solution we have the explicit formula

'v‘;‘l(t,z) = vf',lo('ye(O; t,z)) + /_ff,l (s,’ye(s;t,:z))ds. (3.3.22)
0

éase (.2):' se(t,z) > 0. The solution of problem (3.3.17) can be exéressed as
¢
v \(t,z) = af j(sc(t,z)) + / £E1(s,7e(s;t, 7)) ds. (3.3.23)
se(t,z)
From (3.3.22) and.(3.3.23), we immediately deduce the estimate (3.3.18).

Next, we consider the estimate (3.3.19). For any § > 0, t € (0,To] and (¢;,z;) €
Qf (¢ =1,2) with |[(t1,21) — (t2,22)| < §, we divide the estimate of v¢ |(t1,21) —
ve 4(t2,22) into three cases:

Case (a): se(ti,zi) < 0 (¢ = 1,2). As above, (3.3.17) is a Cauchy problem for
vf’l(t- z;). By using a result of J. L. Joly et al. in [8: Lemma 6.2.2], we obtain

ot 1(t1a$1) - vl l(tz,:cz)l

3.3.24
< CeMiu(8,v5) + 8|1 f¢ ,||.+/ceCM“ Dw(8,s; f€,) ds. ( )

Case (B): se(ti,zi) 20 (i =1,2). From (3.3.23), we have

vi,l(tljxl) - vi,l(t2,¢2)

= at , (se(t1,21)) — a2 1 (se(t2,22))
) | L | (3.3.25)
+ / ff,l(s,n(s;tl,zl))ds— / 55 1 (5, 7e(s3 t2, 72)) ds.

o se(ty,21) s.(t2,22)

The deﬁmmon (3.3.21) of s.(t,z) implies

as,(t, z) =— (d,‘y,(se(t, z),t, :1:)) T (87e) (se(t, )3 t, 7)
. (3.3.26)

- (AI(J_ + e (e, 7e(5e))) — 0 = ed,¢;(s;))"l(a5¢)(s,('t;z); t,z)
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for @ = 9, or & = 8. Applying the estimate of v, (see [8: Formula (6.2.8)])
|02 7e(s3 2, 2)| < CeCMUE=2) (3.3.27)
in (3.3.26), it follows
|0, 2y5¢(t,2)| < CeMt when s(t,z) >0 (3.3.28)
with another constant C > 0. Employing (3.3.28) for (3.3.25), it is easy to obtain

|Uf,1(tl,11) - Uf,;(tz,xz)l

< CefM! (w(é,t;a‘_,l)wuff,ﬁh +/w(6,s;ff,])ds) ) (3:3.29)

0
Case (7): se(t1,z1) > 0 and s,(t2,2,) < 0. From (3.3.22) and (3.3.23), we obtain

ve 1 (t1,21) = vy (t2,72)

= a1 (se(t1,21)) = v20 (7e(0; 82, 22))

) . (3.3.30)
+ / £ 1 (5, ve(si 1y 21)) ds — / £5 1 (5,72 (53 t2, 22)) ds
3:(‘lyzl)

Obviously, when (ti,z:) € Qf and [(t1,z1) — (t2,22)| < 6, using (3.3. 27) and (3.3.28)

we have
0 < se(th,z1) < seth,z1) — se(ta, z2) < CeCMté\ (3.3.31)
and ’
0 < 7e(0;t2,22) < 7e(0;2,22) — 7e(0; 81, 7,) < CeCMis. (3.3.32)

Applymg (3.3.31) and (3.3.32) in (3.3.30), and using the compatibility condition a 1(0)
= 0(0) of (3.3.13), it follows

|vf,1(f1,21) - v¢ (2, 72))|

. t
3.3.33
< CeoMe (w(é,t;ai,l)+w(6,vf’,i))+5||ff,1||z+ / w(6,8;ff,1)d5)~ (33:33)
0

Summing the above three cases up, it concludes the result (3.3.19)1
From Lemmas 3.4 with 3.5 together it follows
Lemma 3.6.
(1) For any f¢ € CO(Q;‘O) and v§ 4 € CO(w*) 3étisfying the zero-th order compati-

bility condition of (3.3.8), there are unique weak solutions (vS, %) € C%(Q4,)x C'[0, Tp)
to the problem (3.3.8). Moreover, there is a constant C > 0 such that, for anyt € (0,T],

ldep*($)] + Il ()l < € (Ilg‘llz +IvE oll +/I|fi(5)||d5) . (3.3.34)
g :
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(2) I M > 1+ ¢(||Vusllz + IVl + i ¢°llT,), then

w(b,t; dip®) + w6, t;v3)

t
3.3.35
SCeCM‘{w(s,t;g=)+w(6,v;,o)+6uf;|h+ /w(é,s;f:)ds}. (3:3.35)
0

It is clear that if f¢ and ¢¢ are in C! and satisfy the compatibility conditions of the
problem (3.3.8) up to order to one, then the solutions (v§,*®) of that problem belong
to C*(92%,) x C?[0, Ty]. But, the important remark in P. Hartman and A. Wintner (6],
and J. L. Joly et al. [8: Lemma 6.2.3] for Cauchy problems can be generalized to the
case of initial-boundary value problems as follows:

Lemma 3.7. With the same conditions as above, if g°(t) € C*[0,To} and f§ €
C°(Q%,) have the form

Fra= p5a(B0% s £ (Nlus +eug) — 0 — edid) B:0% ), (3.3.36)

with (p§ ;,05 ;) €C! foranyi € {1,... ,m}, then the solutions (v§,p°) of the problem
(3.3.8) belong to C*(02},) x C*[0,T).

This result can be proved in a way similar to [8: Lemma 6.2.3]. Moreover, as J. L.
Joly et al. shown, estimates of (Vv5,d?y) in L° and of the modulus of continuity of
(Vve,d?p) in C°(2%,) can be obtained as in P. Hartman and A.Wintner [6].

Proof of Proposition 3.2. Assertion (1): Let us turn to the study of the problem
(3.2.3). Asin the discussion at the beginning of this subsection, it is sufficient to consider
the diagonal problem (3.3.6), which is solved by the iteration scheme

e (us, 0)0y ! = (T) 7' £ )
+ (L4 (us, 6°)(TE) ) Te 55"
Clug e gy (871,02 dp®H1) = 6°(t) (3.3.37)
P+ (0) =0 |
55+1(0,2) = 7 o(2) )

with the first approximate solution (¢, 5%°) € C2[0, T x C1(2%) constructed in a way
14 4 € T

similar to Proposition 3.1. Under the assumption of Proposition 3.2/(1), by employing
the estimate (3.3.34) for the problem (3.3.37), there is a constant C > 0 such that, for
any v >0andte€ (O,To],

dep®**(B)] + (1552 (D)

; .3.38
<C (Iiy‘lle +Igol+ [ (3ol + Mnﬁ;-"(s)u)ds) (3.3.38)
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with M > 14 £-:(||Vu‘+||T0 + Vel |, + ||d?¢l||T°). By induction on’ v for (3.3.38), it
follows that =¥ € C'[0,Tp] and 33" € C°(92%,) are bounded with the estimate

|dep=*(8)] + |53 (t)I| < Ce“M* (Ilg‘llz +119% oll + / ||fi(s)||ds) (3.3.39)
0

for any v > 0 and any t € (0, Ty]. Moreover, by employing (3.3.34) for the problem of
.(5i,ll+1 _ -;,U’(pe,u-f-l _ (Pt’") )

L5 (ug, 6%)(32"F = 99%) = (LS (us, ) (TE) ) TE(®S — 59+71)
Gt e g (B3 F1 = 597,57 %1 — 50, d (it — ")) =0 (3.3.40)

<p""+l — oY = z")i’"'“ -39 =0 on t=0
we obtain

|d¢(<pz'"+l _ (pe,v)(t)| + ”(6;,v+1 _ ﬂi’u)(t)“
t

<o [ (@5 = ol + 62 - 52+ )e)] s
0
which implies

~EV ~Ev CMt Y ‘ & . - ~ &
e = o))+ [l65°+ — 9530l < AL a0z, + 19500 (3.3.41)

by induction on v. From (3.3.39) and (3.3.41), and the uniqueness of weak solutions
(9%, dep®) in L™ for the problem (3.3.6), which is a simple consequence from the estimate
(3.3.34) in (3.3.6) with (ff,¢%,u$ ) = 0, we immediately deduce that the sequences
73 and @*¥ converge in C°(Q4,) and C'[0,To) uniformly in € € (0,¢0), the limits
9 € C°(2%,) and ¢ € C'[0, Tp) are the unique weak solutions of the problem (3.3.6),
and they satisfy the estirhate

t
ldep® (2)] + [|55(2)]| & CeCM? (Ilg‘Ih + 1195 oll + / (FHOI! ds)
0

for any ¢ € (0, Tp].-

Assertion (2): Suppose the assumptions of Proposition 3.1/(2) are valid. The right-
hand side of the iteration equation (3.3.37) is of the form (3.3.36). By applying Lemma
3.71n (3.3.37) we conclude that (53", %") € C1(Q2%, ) x C?[0, Ty are bounded sequences

for fixed €. As J. L. Joly et al. in (8], a lemma re;embling Lemma 3.6/(2) applied to
V43" and dZ¢®¥ shows that, for ¢ fixed, the families {V53", d?¢p®¥},cn are equicon-

e,v

tinuous. Therefore 93¥ — 5 in CY(Q4,) and ¢ — ¢° in C?(0,Ty]. Going back to
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the problem (3.2.3), it follows that, for each fixed € € (0,€o), the solutions (vg,¢®) of
the problem (3.2.3) belong to C!(Q%,) x C*[0, To).

To estimate Vv§ and d?¢°®, by setting 2§ = €,v and &¢ = ed,° and differentiating
(3.2.3) with respect to t, we obtain that (z5,®°) satisfy the problem '

L5 (5,495 = @}
Gt o725, de8%) = G50 (3.3.42)

2;(0, I) = zi,o(z)

where

25 o(2) = ef5(0,2) F e(A(us +eus) = (0 +edid?)) (0, 2)dsul ofz)  (3343)

and
Q% = cBufs — VAu(uy +eus)(e0us, A% - (ef5 - 22)) 5340
+ed?gt AL - (efs —25)
with
-1
A = (A(ui +eul) = (o +edig)])
and .
GE(t) = edig® — [€0,u®)®° — ed? ¢ [ev®] + [VA(u + eu‘)(e@m‘,ev‘)]. (3.3.45)
Applying the estimate (3.2.4) in the problem (3.3.42), it follows
t .
|d @ (t)] + |25 ()| < CeM! (IIQ‘II: + 25 oll + / 1QL(s)Il dS) ~ (3.3.46)
J .
From (3.3.44), we have »
15 () < C(lledefs ()l + eMIFE ) + Mz (). (3.347)
Obviously, (3.3.45) gives rise to
16° e < Nedag®lle+ M (1&°Il: + Clllews e + llevZ 1) (3.3.48)
which implies
t
IG¢lle < lledeg®|le + eCMe“M! (Hg‘llt + llugoll + / I ££ ()l dS) (3.3.49)
0

by using (3.2.4). Substituting (3.3.47) and (3.3.49) into (3.3.46), and using Gronwall’s
inequality, we obtain

de@e(t)] + Iz (DI < Cexp(CMteCM')<l|€d:g‘llt + NefL (Ol + lledzug ol

t

+eM(lgtlle+ g ol) + [ (ledufz(l + eMuf:(s)u)ds).
. _ 0
The estimate of 8;v¢, can be easily obtained from the equation in (3.2.3) 8
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4. Existence of profiles

4.1 Construction of approximate solutions. Under the assumption of the compat-
ibility conditions of the problems (2.1.25) and (2.1.30) up to order one being valid for
the initial data Uy,0 € C'(w* : R), we immediately get the existence of ¢ € C2[0, 7o)
from the problem (2.1.30).

With the functions m$* € C}(w) determined in the proof of Lemma 3.1, we still
denote U, o to be the proper extension of U, 0 in w such that U, o € C'(w : R) satisfy
the asymptotic property

m3“(z) — Uy o(z, 2) = o(1) (4.1.1)

in C;(w) when € — 0. Let U € C!(Q* : R?) be unique solutions to the linear problem
(O £ (As —01)3,)US =0 (4.1.2)
U:|¢=r=o = Ui,o(:l:,a).
Then we have the following

Proposition 4.1. Suppose that u5° € CH(Q*) are the approzimate solutions con-
structed in Lemma 3.1. Then the asymptotic property

w2t 2) - U3(t, 75 £, 2) = of1) 1)

in CH(Q*) is valid, when € — 0.

Proof. In this proof, we will always use o(1) to denote any infinity small quantity
when € — 0. Obviously, to prove the assertion (4.1.3) is equivalent to prove

viot,z) = V2 (t,z; 4, 2) = o(1) (4.1.4)

ee

in Czl (Q+) where v5° = T;lu;’o are solutions to the problem (3.1.13) and V2(t, z; 7, 9)
satisfy N o

(O£ (As —0D)3,) V2 =0 (4.1.5)
Vli=r=o = Uso(2,8) = T U, o(2,6)

with the mean value operator IE* being defined in (2.2.6) and Ty = (r},... ,r# )T. From
the zero-th order compatibility condition (2.2.1) of (2.1.18), we have

di¢°(0)[u] — (A4 — o D)m$4(0) + (A — oT)m®(0) = o1)
which is equiva.lént to A

de¢**(0)[u] — (A4 — o D)T,m54(0) + (A~ — o I)T_2%(0) = o(1) (4.1.6)
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by setting my¢ = = T7'm%*. By applying the stability condition (2.1.10) in (4.1.6), and
using (4.1.1), it gives rise to

dgt0(0) = A(F2, ... A0, WY, %5 ) (0) + o)
.. . (4.1.7)
= A(0 g0 U7, Ul - 2 06)(0,0) + 0(1)
where A(:) is a linear function with constant coefficients. From (3.1.12), we have
m&_’s + (Ak — oI)d,m%* = FB,(m%*,ed,my®) £ ed¢*°(0)d:md* + o(1)
which is equivalent to
AL+ (Ay — oT)d, 7
= FB, (Mm%, ed,mY) + €d,¢°°(0)d, Mm% + o(1) (4.1.8)

= [ Ba(Ts0,000s.0) — AT ..., UL o)(0)36T0]| _, +0(1)

by using (4.1.1) and (4.1.7), where the bilinear form B.(,-) is defined in (2.2.6). Em-
ploying the theory of classical linear geometric optics (see, e.g., J. L. Joly et al. in [8:
Formulas (6.1.10) - (6.1.16)]) for the problem (3.1.13), we obtain
0ot z) — VI (t,z; 4, 2) = 0(1) (4.1.9)
in L>°(Q*) by using (4.1.8) and the obvious fact
Et ( 5 By (Us 0,0004,0) £ AT ... ,171,0)(0)300*,0) =0

where V2 € C!(Q : R?) is the unique solution to the problem (4.1.5).

It remains to verify that
eV (0 (V500 2) — VR (6,7 £, 2)) = o(1) (4.1.10)
in L°°(Q2*). From the equality (3.1.10)
mle(z) = ;( (us +em%%(z)) — (0 +€dt¢‘(0))1)d,m‘i"(z)

we have

e(mi*(a) £ (4s = o1)2: (Vs =, £))) = o(1)

in L°°(w) which implies

emy(z) = Fe(Ay — 01)8: (Us o(, £)) + 0(1) (4.1.11)
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in L*°(w). Applying this in the expression (3.1.14)

T
1
,0 ~0, ~1,
s =A@ [ Ao
' zx(o-AF)t

we can easily obtain A
0wt ) = #0t = o)ed.) (T (2 0 - A0 L";*—)t)) o))
and
c0.053(02) = (e00) (Do (24 (0 -2, 22220 4o
in L*°(Q2*), which is equivalent to the assertion (4.1.10)

With V) e C'(Q* : R?) given in (4.1.5), from the zero-th order compatibility
condition (2.2.8) of the problem (2.2.6), we have

o x(0,7) = & M (Z(,\f ~ )iV, i(0,0;(0 — At)r)

=1

m (4.1.12)
£ (0= AV (0,0, - a)r)))
where . ‘ 3
M = ([ul, {( = A YL A7 o) 110)) - (4113)

is an invertible matrix from stability condition (2.1.10), and the solution Vet z;7,0)
of the problem (4.1.5) is regarded as a function of (t,z;6 F (A\f — o)7), which is written
as V) (t,2;0 T (\f — o)) for each k € {1,...,m}.

According to (4.1.12), let x°(¢,7) € C'([0,T] : R) ((T,0) € ) be the function

J
X, r)y=aM™! (Z(Af — o)}V, (t,0;(0 — A})7)
i=1

- (4.1.14)
+ Z(a — A7)} V_,i(t,O; (A7 = U)T)).

Then, as a simply consequence of (4.1.3), we have the following result.

Corollary 4.1. Suppose that (u§°, %) € CH(Q*) x C2[0,T) are the approzrimate
solutions given in Proposition 3.1, and (U2,x%) € C(Q* : R?) x C*([0,7T] : R) are
constructed at above. Then

™) = X* (& )l jo.ry = o) (4.1.15)
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when € — 0.
Proof. From (3.1.22), we have
d¢°(t) = e“1(M‘(t))_l

x (eg +Z(A+—a)r+ €°+Z(a—x Y ‘°)(t 0)

i=j

(4.1.16)

where g is bounded in C}[0, To] and
Me(t) = (ful + @ {(0 = XD} {0 = 0 1Y) (4.1.17)

=1

By comparing the equalities (4.1.16) with (4.1.14), and using the simple consequence of

(4.1.4)
— A3t
6,0 - v2, (0 X2 — o)
in C!{0,T] we immediately obtain the assertion (4.1.15)

4.2 Proof of Theorem 2.1/(2). In the remainder of this paper, without loss of
generality, we suppose that A, is the diagonal matrix

Ay = Ay =diag[A}, ... L] (4.2.1)
For this diagonal case, the stability condition (2.1.10) implies that the matrix

T
(el,...,ej_’[,[u],ej+1,...,em) (4.2.2)

is invertible where e; = (0,...,0,1,0,..., 0)7 with the i-th slot element being one is the
standard basis.

With U2 € C'(Q* : R?) and x° € C!([0,T] : R) given by (4.1.2) and (4.1.14),
respectively, we solve the nonlinear problem (2.1.25) by the iteration scheme

IEi U;+l = U:+l W
AU £ (Ay — 0B, ULT
FE, (X" 06U - Bu(BUL,UN)) = 0 | (4.2.3)

X't ul+ (oI =AU — (eI =AU =0 onz=6=0
U:‘t’+l|t=r=0 = U:k,O(I79)'

It is easy to verify that the compatibility conditions here up to order one are valid for
each v 2 0.

7/

For any fixed k € {1,...,m}, let us define the mean value operator Ef in the same
way as E; by replacing P (8-,09) = 0r £ (A — 0)0 for the operator P*(a,,ao) in
(2.1.24), i.e. for any u(t,z;7,0) € Co(Qt : R?),

+p

1
(EXu)(t,z;7,0) = Ier;ao % u(t,z:;'r + 5,0 + (A} — a)s) ds. (4.2.4)
2 : :

As J. L. Joly et al. in [8: Proposition 6.3.1], at first we have the following
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Lemma 4.1. For any (us,vs) € (C'(Q* : R?))? satisfying
Eiuy = uy and Eivy = vy, (4.2.5)
if we denote by B, (u,v) the bilinear form
B.(u,v) = (BL(w,0),..., B (u,v))"

with BX(u,v) = 3" _, b Lu'v!, then

i,i=1"%,
EX BX(Opus,vs) = 75(v2)0uk + =X (uy, Bpvy) (4.2.6)
where
¥ (vy) = EX (z bk ,‘vi) (4.2.7)
and .
Z5(us,vs) = Ei( Z 'y* KUY vi) (4.2.8)
ik, I#k
with AE -
7:‘El,k = b;:l k3x & /\:k )‘:k (429)
- Proof. From the definitions, we have
EX BX(Bpuy,vy) = Z b:,k]E;(aguivi). ‘ (4.2.10)
i,i=1 '

We split the right-hand side herein into three parts:

Case (1): ¢ = k. Since Eyuy = ug, it is obvious that u} can be regarded as a
function of (i z;0 F (A —0)7), hence

E! (agu vi = EX (v})dput. (4.2.11)
Case (2): i # k,l = k. By using Ef vk = v* we obtain
EX (pu’vk) = EX (Bpu’ 1ok = 0. S (4212)
Case (3): ¢ # k and I # k. From the definition (4.2.4) of EX, we have

/\t

Ef (Bpulvl) = - ' IE" X (ut0pl). (4.2.13)

Substituting these three cases into (4.2.10), the conclusion (4.2.6) follows il
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Employing Lemma 4.1, we know that the problem (4.2.3) is equivalent to the fol-
lowing one:

IEk UU+1 — Uv+l

+ %,k

XEULE £ (v5(U2) — Eox*)8eUL Y £Z(UYT,8,U2) = 0

(4.2.14)
X“F ) + (oI = AL )UYH — (6T = A)U** =0onz =6 =0
Ui e=r=0 = Us0(z,6)
where X = 8, £ (A\f — 0)8; are scalar operators for each k € {1,...,m} and
+p
Eox)(t) = Jim 5= [ x(t,7)ar
-p
To study this problem, let us first consider the linear problem
EiU.k=Usx (1Sk<m)
XiUs k£ (75(Ve) —EoK)OpUy x £ =X (U, 06Vy) = EX fu s (4.2.15)

xu]+ (eI =AU, —(6I —A)U_=0 onz=6=0
U:tlt:r:O =Ut,0(I,0)

where, for any fixed Tp > 0, K € C'([0,To] : R), V; € C'(Q, :FIRZ), fz €CH(QF, - R?)
and Uz o € C'(w* : R) satisfying the compatibility conditions of (4.2.15) up to order
one. o

In the remainder of this section, we will use ||U(t)|| and |[UQ®)|], = [U®I+ VU
to denote the L®(w; x R?) and Wi, (w} x R?) norms, respectively, of U(t,-). Anal-
ogously, we will use ||U||, and ||U||;,« to denote the L=(Qf X R?) and W' =(Q} x R?)
norms, respectively, of U(-). Further, C and M will denote constants depending only

upon (”V:”Loo(n;o xR?)? | K ||L°°([0,7‘o]><1R)) and (”VV&:”Loo(Q;oxmz), VK ||L°°([0,To]xR))
respectively, and C, denote a constant independent of any function appearing in the

pp g
problem (4.2.15). Each notation of x is similar to that of U.

For the linear problem (4.2.15), we have the following results, the proof of which
will be given in the next subsection.

Proposition 4.2.

(1) With the above assumptions, there ezist unique solutions Uy € C'(Qf, : R?)
and x € C'([0,To] : R) to the problem (4.2.15). Moreover, for any t € (0, Tp),

Xl + 11U (DI < Cw“’"'(ll@,oll +/|lf¢(8)|| d5> (4.2.16)
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and

Ix@)h + U]l
< Cexp(CMteCMY)
t (4.2.17)
x <|lUx,o||1 V(O llUs oll + 11 £ (O] +/”fi(5)“lds>.
0

(2) There is a T > 0 depending upon ”Vi”Wl-w(Q; R?) and || K|[ws.co(j0, 1) xR) SuCh
that, for any t € (0,T), the estimate for the modulus of continuity of (Uy, x)

w(é,t;x) +w(8,t;Us)

< Cec“'(w(& Us 0) +6"fi"¢+6M(“Ui,0” +/”fi(5)” dS))
0

(4.2.18)
¢
+ 0N [ (6,5 £2) + (Vs all + sULull (6,506, ) ds
0
holds where w(b,t;u) is defined in o way similar to (3.3.15) :
w(é,t;u) = sup Iu(s,:c; 7,0) — u(s', z'; T',G')l (4.2.19)

with the supremum being taken over (s,z;7,8) and (s',z';7',6") in QF x R? such that

I(s,'x;T,O) - (s’,x’;r’,e’)| <6é.

As J. L. Joly et al. in [8], by using (4.2.18), we also can establish a similar estimate
on the modulus of continuity of (VUy, Vx) for the problem (4.2.15).

Theorem 4.1. For the iteration scheme (4.2.3), there 1s a constant T > 0 such
that the solution sequences {UY, x"} are convergent in C'(Q} : R?)'x C'([0,T] : R), and
their limits (Uy, x) € C1(Q% : R?) x C1({0,T] : R) are unique solutions to the problem
(2.1.25). : .

Proof. From the above discussion, we know that it is sufficient to discuss the
iteration scheme (4.2.14). Applying the estimates (4.2.16) and (4.2.17) in the problem
(4.2.14), we obtain that, for any v > 0 and t € (0, To],

Ix“H @Ol + UL @)l < € eCHMI||U L o (4.2.20)
and

lix* Ol + UL ()l < CF exp (107 MY 'S M) U olls (1+ W 0ll) - (4:2:21)
where Cy > 0 is a constant, and |

Cr=C(IUNeIx"l)  and MY = MU0 lix I
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are two positive increasing functions with respect to their arguments. Let us choose
two constants K > ||U, o|| and Ky > ||Us o||: large enough, and a constant Ty € (0, To]
small enough, such that

CleClM(Kl)Tl”Ui,()" <K

(4.2.22)
C(K)exp (TyC(K)M(K,)eTWCEIMEDNN 1, ofly (1 + ||Usoll) < K. }

From (4.2.20) and (4.2.21), by induction on v, it is easy to verify that {U¥,x*} are
bounded in C'(Q2%, : R?) x C'([0,T] : R). Set wf = Uy*t! —UY and x* = x**' — x".
From (4.2.14) we know that (w, x") satisfies

CEjwii=wi, (1Sk<m)

Xiwl £ (12(UY) — Box*)dpwy x + L (w}, 0UY) = GY 4

(4.2.23)
X“[u] + (6 —A)wh — (oI —A_)w” =0 onz=6=0
w;|(=r=0 =0
where
Lo = 7 (BEBEOOUL, wi™) ~ Box* ™ 00U )
which implies, for any t € (0,T)],
IGL I < K2(lwi™ (Ol + X"~ (D) (4.2.24)

with K3 depending only upon the uniform bound of {||U||, 1,}. Applying the estimate
(4.2.16) in the problem (4.2.23), and using (4.2.24), the convergence of {UY,x"} in
L=(Qf, x R?) x L=([0,Th] x R) follows immediately, and the limits are in C°(Q4, :
R?) x C°([(0,T1) : R). As J. L. Joly et al. in [8], we can prove the existence of a constant
T, € (0,T] such that the derivatives of U{ and x” are equicontinuous on QF, x R? and
[0,T2] x R, respectively. Therefore, the convergence of U? and x” holds in C?! on any
compact subset of Q7. x R? and [0, T3] x R, respectively. From [8: Proposition 4.1.2], we
conclude that the limits (Uy, x) of {U},x"} arein C'(Q], : R*)xC'([0, T2] : R). Finally,
by using the same argument as in [8], we obtain that (Us, x) € C'(2}, : R?)xC'([0,T] :
R) are unique solutions to the problem (2.1.25) B

4.3 Study of linear problems. Before studying the linear problem (4.2.15), at first,
let us consider the diagonal systems

EiUsh = Usx (1<k<m)
XiUpk £ (7¥(Ve) = EoK)OUs k = EL fux
xlu]+ (I =AY, — (eI =A_)U.=0 onz=60=0
Uilit=r=0 = Us,0(z,6)

(4.3.1)
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where the notations are the same as in (4.2.15), K € C'([0,T] : R), V, € CI(Q+ R?),

f: € CY(Qf, : R?) and Ui € C'(w* : R) satisfying the compatibility conditions of
(4.3.1) up to order one. As in (3.3.9) and (3.3.10), decompose U, into

Upi= U, U+,j)T and Uit = Uy 415, U+,m)T (4.3.2)
Ui=@U_j,....U-m)T  and "U_.p=U_,, ..,U_;-)T. (43.3)

The same decompositions of fi and Uy o as above are also denoted by f s, fy ;1 and
UI

£.00 Ui o, respectively.

From the Lax entropy condition (2.1.7), we know that (4.3.1) is an initial value
problem for the components Uy ; and a mixed problem for U, j;. Applying the result of
J. L. Joly et al. [8: Lemmas 6.3.2 - 6.3.4] in the I-part of the system (4.3.1), we obtain
the following

Lemma 4.2.

(1) Suppose K € C!([0,To) : R), V, € CI(Q,}O : R?) and fy € CO(Q.}0 . R?).
Then there ezist unique weak solutions Uy 1 € C*(Q, : R?) to the I-part of the problem
(4.3.1). Moreover, we have :

WU (Ol < U2 o) + / 1fa.1(s)ll ds. (4.3.4)
0

(2) For the modulus of continuity of Uy 1, we have
w(8,t;Us 1) < Ce“M'w(8,UL o) + 6l| fu1lle + /CeCM('_’)w(é,s;f*J)ds. (4.3.5)

(3) If we have the additional regularity fy 1 € C'(Q, : R?), then the weak solutions
Uy, obtained in Part (1) belong to C'(Qf, : R?) and satisfy

s, i ()l < CeMYUL ol + || fe, 1 (O] + / CeMU=If, 1(s)hds.  (4.3.6)

Let us study the II-part of the problem (4.3.1). From the stability condition (4 2.4),
we know that the boundary condition in (4.3.1) can be reformulated as

M- (X(tyT)vU-hH’ U—,H)T = B(U.*.’[,U_,I) (437)

where the matrix

. T
([u] (0 — J+1)61+1 (0= An)em, (AT —a)er, .., (M), —O')Cj—l)
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is invertible and
i m
B(U,,,U. 1) =Y (At —o)W,uei + Y (0 — A )U- ;e

i=1 =y

Hence, from (4.3.1) we know that U, jr and x satisfy the problem

EXUL 6 = Us i )
XigUsn £ (75(Ve) — EoK)OpU, & = EX f &
Us klz=0=0 = as x(Uy,1,U_ 1 )(¢,7) (4.3.8)

X(t’ T) = a(U+J: U—,I)(t: T)

Us itlt=r=0 = U{'o(,8)

7

where a(-) and a; «(-) are linear in their arguments, k € {j + 1,...,m} for "+” and
k € {1,...,5 — 1} for ”—". For this problem, similar to J. L. Joly et al. in [8], by
integrating along characteristic curves we obtain the following

Lemma 4.3.

(1) For any given K € C1([0,T,]) : R), V; € Cl(9Q%, : R?) and f, € Co(Q%, : R?),
there are unique weak solutions Uy, ir € C°(Q%, : R?) and x € C°([0,Ty] : R) to the
problem (4.3.8). Moreover,

t
XN+ 1Us, u®l < CrllUs 1l + 1T +/||f:t,11(3)|| ds. (4.3.9)
0

(2) For the modulus of continuity of (Uy 11, x), we have

w(8,65X) +w(6,5Us 11) < CeEM(w(8,65U. 1) + w(5ULL,))

f (4.3.10)
+ Cibll el +C / eCMU= (8,5 fy 1) ds.
4]

(3) If we have the additional regularity f, € C‘(Q}o : R?), then the solutions
(Us,11,x) obtained in part (1) belong to C‘(Q,}.o : R?) x C1([0, Ty] : R) and satisfy

Ix(Oll + 1Ua,m()h < Ce“M (|10 1ll1,e + 11U ol11)

t
4.3.11)
+ Cull e (Ol + [ CeEMIN T, (o)l ds (
) 0

" Proof. All results of x(t,7) are clear. It is:sufficient to discuss U. ir- From
EXU, x = Us x, we know that Uy x can be regarded as a function of (t,z;0F(AF —0)7),
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which can be written as Uy i (¢, z; 0 F (A} —o)7). Similarly, the functions EX f, x depend
only upon (t, z; 6F(Mf —o)r), which can be written as EX ok = Fux(t,z; 6F(\E —0)T).
Therefore, from (4.3.8) we know that Uy x(t, z;8) satisfy
XiUsh £(v5(Va) = BoK)OsUs k = Fi
Ui klz=0 = bs x(t,6) (4.3.12)
Uix"’":O = U:,O(xve)

where by x(t,0) = ai,k(t, ﬂ:(o—i,\i_)) are almost periodic in § € R. The characteristic
k
curves of X# + (vX(Vy) — EoK)0s are

s — (s,z +pl,k(s;t,1:,0);9+;A";’k(s;t,z,0))

where pi’k and ,ui,k are solutions to the problem

dopy 4(sit,2,0) = £(Af —0)
dsp} k(sit,2,6) = +(vi(Ve) - EoK)(s,z + pi x(s); 0 + 113 &(s)) (4.3.13)
ph(tit,2,6) = ph x(4t,2,6) =0

which immediately implies

py (st z,0) = £(AF —o)(s —t). (4.3.14)

Set

~

s = {(s;t,x)l() <s<t(tz)e€ Q;o}.

Since pi,k are independent of 8, 'y’; are linear in Vi, and V, are almost periodic in 6,
as J. L. Joly et al. in [8: Lemma 6.3.2], we can obtain that the problem (4.3.13) admits
unique solutions yi,k € CI(QD}-o : R), and they satisfy

|V (sst,z, 0015 | S CeCMIETL (4.3.15)

The solutions Uy i of the problem (4.3.12) are given as follows:

(i) Whennp =tz 73— 20, then
x -2

U:t,k(ta z, 0) = b:t,k (77’9 + I‘i,k('l))

t

+ /Ft,k (s,:c +ph k(s); 0+ #i,k(S)) ds.

n

(4.3.16)
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(i1)) When t ¥ =5 <0, then
k

Ui k(t,2:6) = Ug o(z + pk £(0),8 + 12 (0))

t

+ / Fyx (s,:z: + piyk(s);G + ,ui,k(s)) ds.

0
Here p} ,(s) = y;,k(s;t,a:,G). From (4.3.16) and (4.3.17), we immediately conclude
that Uy i1 belong to CO(QD}O; R?) and satisfy the estimate (4.3.9) by noting that a, x are
linear in (4.3.8). By applying the estimate (4.3.15) in (4.3.16) and (4.3.17), and using
the compatibility conditions of (4.3.12), it gives rise to estimates (4.3.10) and (4.3.11) B

Taking together Lemmas 4.2 with 4.3, it follows

(4.3.17)

Lemma 4.4.

(1) For any given K € C'([0,To] : R), V, € ClOf, - R?), fi € Co(0%, : R?) and
Uspo € CO(w* : R) satisfying the zero-th order compatibility condition of (4.3.1), there
are unique weak solutions Uy € C°(Q, : R?) and x € C°([0,To] : R) to the problem
(4.3.1). Moreover,

Xl + U (Il < €4 (um,on + / 1 (s)1 ds>. (4.3.18)

(2) For the modulus of continuity of (U, x), we have
¢
w(é,t;x) +w(6,t;Us) < CCCM'<W(5, Us o) + 6l felle + /w(5,8;f¢)d5)~ (4.3.19)
0

(3) If we have the additional regularity f, € Cl(Q}o :R?) and Uy € CH(wt : R)
satisfying the first order compatibility condition of (4.3.1), then the solutions (Us,x) of
the problem (4.3.1) belong to C' (23, : R?) x C'([0,Ty] : R) and satisfy

Xl + 11U (Ol < Cec“'(IIUi,olln +1£:(0)Il + / I £+(s)Ih d5)~ (4.3.20)
. 0

Now, let us study the linear problem (4.2.15). .
Proof of Proposition 4.2. We solve the problem (4.2.15) by the iteration scheme
BLUMR =U (1<k<m))

XEULR £ (vi(Ve) - EoK)BsULY!

=L (UY,8V,) = E} fs .k ] (4.3.21)
X*ul+ (oI = AU — (6T —A_)U**' =0 onz=6=0
U;+l |!=r=0 = U*'Q(I,a) Y,

with U] given by (4.1.2). It is sufficient to consider the part of UZ{, because all properties
of x* and its limit x € C'([0,T] : R) can be easily deduced from the boundary condition
in (4.3.21). We divide our proof into the following three lemmas.
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Lemma 4.5. The sequences {U}} are convergent in C°(Q%, : R?), and the limits
U, are unique weak solutions of the problem (4.2.15). Moreover, we have

V(I < CleclMt<”Ui,0” +/||f*(5)ll d8> : (4.3.22)
0

with M = max (”V+”1,To’ ”V—Ill,To)'

Proof. Obviously, we have

IZ5(Us, 86V )(t)) < CrllVa @I UL (DI]- (4.3.23)
Applying (4.3.18) in (4.3.21), it follows

WL @)l < ¢ (nvi,ou + [0+ Vol nU:(s)n)ds)

which implies, by induction,

t
NIl < CleClMt(”Ui,Oll +/”.fi(s)” d5> (4.3.24)
0

for any v > 0, where M = max (||V,|l1,75,IV-l1,1,). Clearly, the last estimate gives
rise to the boundedness of {Uf} in C°(QF, : R?).

From (4.3.21), we know that w¥ = U¥*! — UY satisfies the problem
. Eiw;,k =wk
Xfw;,k + (’Yi(Vi) - IEO.K)B‘?“’;,I‘ * E’;(w;—l,aovi) =0 (4.3.25)
X[ul+ (ol —Awl — (eI —A_)w”’ =0 onz=6=0
Wy le=r=0 =0

with X*(t,7) = (x**! = x*)(¢, 7), which immediately implies the convergence of {UZ}in
CO(Q}O : R?) by applying (4.3.18) in (4.3.25) and using (4.3.23). Obviously, the limits
U of {U} in CO(Q'}0 :.Rz) are unique weak solutions to the problem (4.3.15), and they
satisfy the estimate (4.3.22) by using (4.3.24) 8

Lemma 4.6. There is a constant T > 0 depending upon ||[Vi|lwio and || K|
such that, for any t € (0,T], we have the estimate

w(éa t; Ui)

t
< CetMt <w(5, Us o) + 61 Falle+ MU ol + 63 [ 110} ds)
, (4.3.26)
t . ’
+CeM [ (wf6,5308Va Ul + sl Full) + (6,51 1)) ds

0
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on the modulus of continuity of the solutions Uy to the problem (4.2.15).
Proof. At first, from the definition we have the fact

w(6,5Z4(Us,0V4)) < Ca (w65 06Va)IUslls +w(6,5:Us)iBaValls).  (43:27)

For the problem (4.2.15), by removing the term =% (U, 8V, ) to the right-hand side
and using (4.3.19), we have
< CeOMY(w(6,Us o) + 81l fullc + 6106 VallU- 1)

t

+ CeM! / (w(8,55 £2) + (8,5 06Va) U s + (6, ;U )36Vl ) ds

0

t
< CeCM (W(é: Us,0) + 8l falle + MU ol + 5M/||f1(5)|| a’s)
0

t

+ CeCM / (w651 £2) + (U ol + sl fulls)(6, 53 BaVa)

o
+ Mw(6,5,U, )) ds.
This implies thaﬁ when T > 0 satisfies
. . . CMTeMT < %, | . (4.3.28)
then we have the conclusion (4.3.26) for any ¢t € (0,T) i

Lemma 4.7. The solutions U, of the problem (4.2.15) belong to Cl(u.»}‘0 : R?) and
satisfy '
IU+($)llx < C exp(CMteS™)

f (4.3.29)
P (nui,on, I AC AT TACT TS ds).

Proof. From Lemma 4.5, we know that U, are the limits of {U;} defined by
(4.3.21). As J. L. Joly et al. in (8], from the definition (4.2.8) of =k we have

”E'L(Ut,aaV* )(0“1 <G IIVg(t)le 1U+ ()]l (4.3.30)
which implies Uy € C!(Qf, : R?) for each v > 0. Applying (4.3.20) in (4.3.21), it follows

1ol < C_eCM'<IIU.t’°Il1 + 1 £ (0 + IV (0)llx ||Ux ol

; (4.3.31)
+‘_/ (||f=t(3)||l + MIIU;’(s)III)ds). .

0
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From here, by induction on v we obtain that {U{} arc bounded in C'(Q}, : R?), and
for all v > 0, the estimates .

U2 < Cexp(CMteCM?)

/ 4.3.32
x (”U:t,olll + Va0l 1T+ 0ll + ||f¢(0)|l+/llf¢(8)||1ds> ( )
0

are valid for all ¢t € (0,T;). Applying (4.3.20) in (4.3. 25) we can easily deduce the
convergence of {U} in C'(QF, : R?), with limits Uy € C'(Q%, : R?) being the solutions
to the problem (4.2.15). Obv1ously, from (4 3.32) we know that U, satisfy the estimate
(4.3.29) 8

5. Asymptotic properties
This section is devoted to the study of the asymptotic property of exact solutions
(u§,#°) to the problem (2.1.18), which gives the proof of Theorem 2.1/(3).

Let T > 0 be the smaller one between those obtained in Theorems 3.1 and 4.1. In
this section, we will always use o(1) to denote any infinite small quantity when ¢ — 0.
At first, we claim that the asymptotic property (2.2.18) of ¢°(t) can be easily deduced
from the property (2.2.17) of u§, which is stated as the following result.

Proposition 5.1. Suppose that (u5,9¢) € CH{QE) x C2[0,T), (Us,x) € cHak -
R?) x C1([0,T] : R) and ¢ € C?[0,T) are the unique solutions of the problems (2.1.18),
(2.1.25) and (2.1.30), respectively, and u$ satisfy the asymptotic property

|us(t,z) — Us(t,z; 4, 2 ). a0 = =o(1) when ¢ — 0. (5.1)

Then
ldeg*(8) = x(t )1 1 g0,y = 0(1) (5.2)
[|4°(t) - d’(t)”z,w[o,T] = o(1) |

when € = 0.

Proof. The proof of the first result in (5.2) is the same as in Corollary 4.1, and
the second result in (5.2) is similarly obtained in [18: Theorem 5.2]. So we omit thelr
proofs here i

Now, let us establish the asymptotics (5.1). From (3.2.2), we know that the exact
solutions (u§, ¢°) of (2.1.18) are the limits of (ug”,¢%") in CH(QF) x C2[0,T) with
(w1, ge¥+1) satisfying

Brug £ (Alus +euy”) — (0 + edig™*)I) Bpug ! = 0
did® u) + (o — A uS" — (o] — A Yus¥H! = gt
¢c,u+l(0) =0

ug" (0, 2) = u§ o(2)

(5.3)
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where (ui‘o, $°:%) are the approximate solutions constructed in Proposition 3.1, and
ge,u — d‘d):,u[uc,u _ uc,u-{-l] _ d!¢e,u+l[uz,u] :

1
+ / [sz(u + 7](-:11"")(u"",u""+1 — nu"")] dn (54
0

is bounded in C![0,T) for all v > 0. Moreover, the convergence of (uy",¢*") in
C°(Q24) x C'[0,T) is uniform for all € € (0, o).

On the other hand, from (4.2.3) we know that the leading profiles (U, x) are the
limits of (U, x¥) in C*(Q% : R2)xC'([0, T) : R), where (U¥*!, x**!) satisfy the problem

E UM+ = UvH! Y
QUL £ (A, —oINB, UL
FE, (X" 90U - Bo(8ULH,UY)) =0 (5.5)
) + (o = AU — (oI = A)U** =0 onz=0=0
Uyt imr=0 = Uz 0(z,6) )

with (U2, x°) € C*(92% : R?) x C*([0,T] : R) being constructed in Subsection 4.1. The
proof of (5.1) is to make use of the ideas in J. L. Joly et al. [8: Subsections 6.4 - 6.8],
and to extend their results to the case of boundary value problems. That is to say that
the proof of

”u;(taz)_U:t(tvx;é’%)”[,w(ﬂ;) = 0(1) (56)

is to use the argument of simultaneous Picard iteration, which means that, for any
v > 0, we wish to prove

Hu;"’(t,:c) - Ui(t 2 o f)"bm(n;) = o(1) (5.7)

which is valid for v = 0 by Proposition 4.1. By taking advantage of the uniform
convergence of {uy”} in C°(02}), we can conclude (5.6) from the assertion (5.7). The
asymptotics of derivatives of u§ is studied from the nonlinear problem (2.1.18).

The existence of u§ and U, to the following each problem can be obtained in the
same way as in Sections 3 and 4, so we only give our whole attention to the asymptotics
of u§.

As the first step, let us consider the linear diagonal problem
Bl % (Alus +ev5) = (0 + €d @)1 )0, = f
ded®(u)+ (o = A ul — (6T = A Ju® =¢g° onz=0
$°(0)=0

u3(0,2) = ui o(2)

(5.8)
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where .

. Au) = diag[A1(u),. .. y Am(u)) (5.9)
and Ay = A(us). For the problem (5:8), suppose that v§, fi, ®%, ¢° and u§ , are
bounded in C}(Q%}), C2(Q%), CI[O T], C°[0 T] and Co(w“) respectively. There are

V, €C'(Q4:R?), Fye€ C°'(Q%:R*™), Ke C°([0,T) : R), Ui € C'w* : R)
such that
E:t V:k = V:t (510)

and, in L°(9}), '

vi(t,z) = Vi(t,z; 5, 2) = o(1) )
fi(t,z) - Fi(t I, ‘P+(E’i) @-(f,f))=o(l) .
de®°(t) - K (¢, £) = o(1) (5.11)
uio(2) = Uso(z, 2) = of1)
9°(t) = o(1) )

when ¢ — 0, where
(51(7- 9 = (‘p;lt(‘r 9) ...,(p,*n(T,O))

w1th @i (7,0) =6 F (\f —o)r forall i € {1;...,m}. Furthermore, we suppose that the
zero-th order compatibility conditions for the problem (5.8) as well as the problem

] ]E* U* = U:!:
XiUsk £ (v5(Va) — BoK)BpUs k= EX Fi (5.12)
xul+ (eI =AU, —(cI —=A)U_=0 onz=6=0 '
Uilt=r=0 = Ut 0(z,6)
are valid, where X =9, £+ (Af — 0)8; and
oA :
TH(Va) = B ( = "(ut)vi,p>- (5.13)
Then, we have the following result.
Proposition 5.2. Under the above asgumption,
ui(t,z) —Us(t,z; £, 2) = o(1
de¢*(t) — x(t, ) = o(1)

in L°(Q%) when e — 0.
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Proof. As in Proposition 5.1, it suffices to consider the first line of (5.14). The
proof is to use the method of integration along characteristic curves. At first, let us.
investigate characteristic curves for (5.8) and (5.12).

For the problem (5.8), fix any (t,z) € 2%, let ££(s) = z+(Af —o)(s—t), and let s —
(5,65 (s)+ey} ((s;t, z)) be the characteristic curves of 8, % (Ak(uy +evi)—(0+ed:9¢))0;
through (¢, z), which means that y:k(s; t,z) satisfy

dyy?i(sit,z) = e (/\k (ui +ev§ (s, EE(s) + eyf’k(s)))
—A} — edi(s)) (5.15)
yr(tit,z) = 0.

For the problem (5.12), fix any (t,z,6) € Q% xR, and let s — (s, &5 (s),0+Y (53 t, z,6))
be the characteristic curve of 8, £(Af —0)8; + (vX(Va)—Eo K) s through (¢, z,8), where
YZ(s) satisfies the problem

YE(t;t,z,0) =0.

For any k € {1,...,m}, denote by 5}” the set

_ {(s,t,x)|0<s<t ((t,z) € QF)} forkel
Qr =
T {(s,t,z)|max(0,tiﬁ;)§s§t ((t,z)EQ})} for ke Il
k
where

and II={1,...,m}\I

”

I_{{l,...,j} for the case ” +”
1 {j,...,m} for the case” —
as given in the decompositions (3.3.9) and (3.3.10).

For the problems (5.15) and (5.16), we quote a result from J. L Joly et al. [8:
Proposition 6.4.2] as follows.

Lemma 5.1. y;, are bounded in C'(Q ), Y& € C‘(Q+ R), and

yii(sit,z) = YE(sit, 2, i(’\;")t) = o(1) (5.17)

&

in L°°(~7}) when € — 0.

Now, we turn to prove the first line of (5.14). For any k € I, both (5.8) and (5.12)
are the initial value problems for u§ , and Uik, and by using J. L Joly et al. [8:
Proposition 6.4.1] we immediately obtain the result (5.14).
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Let us discuss the case k € II. As before, it is sufficient to investigate the component
u i (t,z). For any (t,z) € QF, let s(t,z) = == +1, and s, = s.(t,z) be the root of
the algebraic equation

z— (M —o)(s—t)+ey;,(s;t,z) =0.

That is to say that (s,(t z),0) and (s(t,z),0) are the intersection points of the char-
acteristic curves of

B — (M(u- +ev®) — (0 +€d®%))0; and X; =0 —(A\] —0)0s,
respectively, at the boundary {z = 0}. Denote
= {(t,z) € Q}|s(t,z) <0}
Q,}l = {(t,z) € Q}|s.(t,z) < 0}
QF, = Qp\QF)
OF,, =\ Q7
Obviously, we know that, for any (t,z) in @}, and QF, , (5.12) and (5.8) are Cauchy
problems for U_; and uf ), respectively; and for any (t z) in 2%, and QF, , (5.12)
and (5.8) are boundary value problems, respectively.
When (t,z) € QF, N Q1 , by using the result of [8: Proposition 6.4.1] again, we

obtain the asymptotic expansion (5.14) for u? ,(t,z). For any (t,z) € Qr, N Q% 5,
from (5.8) and (5.12) we have

“e.,l(tvl') = uf’l(sg,O) + /ff,x (Taff(") + 5ye-,1(7))d7 (5~1§)

and
U_i(t,z,0) =U_1(s,0,0 + Y, (s;t,2,6))

t

5.19
/nzl A (76 ()84 Y7 () dr (5.19)
where s, = s.(t,z) and s = s(¢,z). Let
se(t, ) — s(t,z) = en.(t, ). (5.20)

Then from the definition of s.(t,z), we have

1 1
ne(t,z) = ’\;—_U Ye (s(t7 z) +ene(t, z); t,:L‘) = ’\l——_; Ye (s(t: T);t, I) +o(1)

which implies

ne(t,z) = X l_ - Y’ (s(t,:c);t,x, M) +0(1) ‘ (5.21)
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by using Lemma 5.1. By employing this and the asymptotics of the components uj ,
for the boundary conditions in (5.8) and (5.12), we obtain

1(00) = Uy (50,0, D270 ) 4o

(5.22)
=U_,(s,0;6 + Yl'(s;t,z,ﬂ)”

g THAT =o) + 0(1)'

Let us consider the integral terms on the right-hand sides of (5.18) and (5.19).
Without loss of generality, we assume s.(t,z) < s(¢,z). By using the hypothesis (5.11)
and |[s.(t,z) — s(t,z)| = o(1), we obtain

/fi,l (7751_(7) + 5ye_,1(7'))d7

=jF.,1 (r,c;m;@ (Z.55) 4y ) a4 o)

S

(5.23)

where Y7 (1) = Y, (r;t,z, 222D and €5 (r) = z — (A] — o)( — t). Applying
the result of the non-stationary phase in J. L. Joly et al. [8: Theorem 4.4.2] to the
right-hand side of (5.23), it follows

/ff,, (T,{f(r) + Ey;,l(r))dr
” (5.24)

t

/lEl A(rE 8+ Y (i, ,a))dr‘o;m:_,)‘ +0(1).

8

Substituting (5.22) and (5.24) into (5.18) and (5.19), it immediately follows that, for
any (t,z) € Qp, N N1, ,
u y(t,z) = U (t,2; ZHAZD) = o(1). (5.25)

For any (t,z) € Q. NQF., , the solutions of the problems (5.8) and (5.12) can be
expressed as

Wt a(t2) = 0ty (50,0)+ [ 43 (nE () + even () dr (5.26)

and
U a(t,2,8) = U, (z + (A7 = 0)t, 0+ Y, (0;t, 2, 9))
t

+ [BLF(ng (o (7)) dr.

0

(5.27)
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Since s.(t,z)—s(t,z) = ene(t, ) with s.(¢,z) > 0 and s(t,z) <0, we have 0 < se(t,z) <
ene(t, ), which implies |s.(t,z)] = o(1). Hence, by the same argument as in (5.24), we
obtain

[ra(r& @ +en )

E‘_F_,l(r,éf(r);e+Y,'(r;t,x,a))dfjaz,m-_,),+o(1) . (5.28)

S L TS~

ELF 3 (n, 67 ()0 + W ritn0)dr| oco + o).

From 0 < =s(t,z) < ene(t, z), we have |z + (A] — o)t = |(A] — a)s(t, z)] = o(1) which
implies

UE’O (z +(A] —o)t, 0+ Y{(O;t,x,&)) |0

=::+(4\_ —-o)
‘ (5.29)
= ({_’1 (35,0; 0+ Y7 (0;¢, x,G)) ‘0: ”(x'— —ey +0(1)
by using the zero-th order compatibility condition of (5.12).
On the other hand, from the definition of s.(t,z), we have
Al —0)s, T -
Comoloe L2200k aitio)
€ € :
= (6 + Yl_ (01 t,l‘, 0)) 0==+(A: -0t + O(l)
which gives rise to
U_1l5.0;6+ Y‘(O;t,x,ﬁj ‘ . ;_u . =U_1(se,0; (—’\;:L)s‘ + o(1)
( ! ) p=2ty m7) ( ) (5.30)
) =uf | (sc(t,7),0) + o(1)
by using the boundary conditions in (5.8) and (5.12).
Combining (5.29) with (5.30), it follows
ut (se(t,z),O)
(5.31)

= UL, (2 + (A7 = o), 0+ Y, (0,1,2,)) [pore0g o +o()

By substituting (5.28) and (5.31) into (5.26) and (5.27), we obtain the same result as
in (5.25).
For the case of (t,z) € Q}, NQF |, we can get the conclusion (5.25) in the same

way as above. In summary, for any (¢,z) € 4, we obtain the asymptotic expansion
(5.14) for the component u¢ ,(¢,z)
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Let us consider the semilinear problem with linear diagonal principal part

Bt + (A(ui +evs) - (o+ emf)z) Bpul, )
+my(ev, w}ug + Qu(evi,ui) = fi
ded*[u] + (0] = A )us — (oI —A_Ju® =g¢° onz=0 (5.32)
$°(0) =0
u3(0,z) = uf o(z) )

where every notation and assumption are the same as in (5.8),
my(v,w) = Y ma(v)w  and  Qi(v,u) =) QF ,(v)uiup, (5.33)
l ' ip :

my (v, w) are linear in w and Q4 (v, u) are quadratic forms in u, with mz ; and (Q;’:’,k)g,,
being (m x m)-matrices. Suppose that w¢ are bounded in C2(2}) and satisfy the
asymptotic property

wi(t,2) - Wa (6,256, (4, 2),6-(4,2)) = o) (5.34)

in L®(Q}) where Wy(t,z;60) € C°(Q} : R*™). For the problem (5.32), we have the
following

Proposition 5.3. Suppose that the zero-th order compatibility conditions for the
problem (5.32) and the following problem (5.36) are walid. Then there 1s T} € (0,7
such that, in L>(QF, ),

(5.35)

E.U, = U,
XiUpx £ (v5(Ve) — EoK)OpUx &
+E{ (zﬁi’,’,Wi,,Ui,, + Za;p,kUi,iUx,p> =E{Fy (5.36)
1, ip
px[u]+(al—A+)U+—(UI—A_)U_=0 onz=6=0 V
Usli=r=0 = Us,0(z,0)

with every notation being the same as in (5.12), My = my (0) and 6;”,,‘ = Q':’k(O). :

This result can be easily obtained by using Proposition 5.2, and the idea of the
proof can be found in J. L. Joly et al. [8: Proposition 6.5.1]. Of course, this propositon
can be generalized to the case of m; and Q. depending upon (t,z) also.
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Consider the linear problem with non-diagonal principal part

Ol + (Aus +ev5) = (o +ed, @)1 )0, s )
+my(evy, wilug = f3
de¢®(u) + (0 = A )us — (6l —A_)u® =¢g° onz =0} (5.37)
¢°(0) =0
uz(0,2) = uf o() )

where all hypotheses are the same as in Propositions 5.2 and 5.3. Moreover, let
W(t2) - Vit L 2) =o(1)  in CH(Q%) (5.38)

with Vi (t,2;7,68) € C' (2% : R?) being the same as in (5.10): E,V, = Vi. As before,
A; arc assumed to be the diagonal matrices A, .

Proposition 5.4. Under the assumption of the zero-th order compatibility condi-
tions for the problem (5.37) and the following problem (5.40) being valid, we have

ui(t,z) = Us(t,z; £, 2) = o(1) } (5.39)

deg*(t) — x(t: 1) = o(1)

in L°(Q7), where (Uy, x) € C°(02% : R?) x C°([0,T) : R) are the unique weak solutions
to the problem

EsU; = Us )
XEUgr + EX (B';(agvi, Vi) — KUy &
+ Zﬂ_li;‘),WiJUi,p> = IE: F:t,k (5~40)

Lp
xul+ (el =AU, —(cI =A_)U_.=00nz=6=0

U;t |t='r=0 = Ui,O(zy 0)

Proof. Suppose that T, (v) are the diagonalizers of A(uy + v),
T (v)A(us + v)Ts(v) = A(us + v). (5.41)

Obviously, T, (v) can be easily computed from the right eigenvectors {re(u)}i, of A(w),
and T;(0) = I. By performing the transformation

a5 = T (ev Ju (5.42)
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in the problem (5.37), we know that 4§ satisfies

B £ (M(us +ev3) - (0 +edi@)1) 0,05 + i = ff
de¢t[u) + (oI —A)as — (6 —A_)a% =o(1) onz =0
¢(0) =0
05(0,2) = 4§ o(2) : = Ty (ev} Jus o(2)
where f$ = T (evs)fe and m§ = Ty ' (evs)my Te(evg) + 1§, with
nS = Ty (e} )0 T (evy)
+ (A(u* +evt)—(o+ ed,@f)I)T;'(sv;)a,n(ev;).

For any 8 = 8, or 8 = 0, we have

ot

OTu(evt) =D
4

(0)(ed)vs p + o(1). .

p=1
Substituting (5.45) into (5.44), and using the assumption (5.38), it follows

g (t,z) = Ny (t,z; &, %) + o(1)
in L*°(Q2%) where N, = (Ni")mx,n with

ki “ ,\:t + aT:fI .
NE =2 (O - A) o (0)3s Vi p | ¢, 2;
p=1 .

zF (A —o)t
-—6——) + o(1).

Here, we still regard Vy »(t, z; 7,6) as functions of (t,z;0 F (A5 — o)r).

911

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

Employing Proposition 5.3 for the problem (5.43) with the case Q; =0, we have

as(t,z) — Us(t, 2 £, 2) = o(1) }
4t (1) - x(6,£) = o{1)

(5.48)

in L®(Q), where (U, x) € C*(% : R?) x C°([0,T) : R) are the unique weak solutions

to the problem
lEi U:t = Ui )
XtUgsx £ (75 (Ve) = EoK) U+

+EX (Z (N;‘P + Zm'g_’,wi_o Ui,,,) =EkFy
{

p
xlu] + (eI =AU, = (0l =A_)U_. =0 onz=06=0

Uilt=r=0 = Ui,O(I’G)‘ L

(5.49)
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Obviously, we have .
4t 7) ~ui(t,z) = o(1) (5.50)
in L*(94.) by making use of Ty(0) = I. ' '

By comparing the problems (5.40) with (5.49), and using Lemma 4.1, we know that
it suffices to verify

EX (Z Ni‘PUi,p) = £=X(U,,85Vs). (5.51)
p=1

From (5.41), we have

0A, a:r,k aTi

OA
(0) + o (us)

v
which implies

& Tk T N
a{:fal;,i) = oy ON = X5 (0) + b (us)

by using the fact A = Vf = (g&)mx’n Hence, the coefficients b" & of the bilinear

forms BX(-,-) given in Lemma 4.1 have the expressions

aTkx
- A:t) + 6/0 6)\k

bik_

(ui)

which implies

- AF = A
:i(Ux,aoVi) = ]El._z ( Z ﬁ bll kU:t ,agV:t 1)

ik, £k
(5.52)

=E

[P

itk itk

) 8Tkx
( Z (A “’\f)—a:l (O)Ux,iaovx,z)

by using (4.2.8). By noting the basic fact EX 1(0sVy p) = 0 for any p # k, and using the
expression (5.47) of N¥!| we immediately obtam the assertion (5.51) 11

Now, let us consider the asymptotics of derivatives of solutions to the linear version
of the problem (5.3): Study the linear problem

agui + (A(ui +evs)— (o + ed,q)s)[)azui = f:
di¢flu] + (o — A Jus — (6 —A_)u® =¢° onz =0
$0)=0 -

u3(0,2) = u§ o(2)

(5.53)
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where v;~have the same property as in (5.38), ff, ®¢, ¢° and u§ o are bounded in
CH(Q%), C20,T), C0,T) and Cl(w*), respectively, and have the asymptotic properties
filtx) = Fe(t, 76,5, £),4- (5, £)) = o(1)

d®5(t) — (t, £) =o(1)

ujo(z) - Uso(z, f) = o(1)

g°(t) = o(1)

in C!, where Fy € C'(%} : R?™), K € C'([0,T) : R) and Uy o € C'(w* : R). Further-
more, we suppose that the compatibility conditions of (5.53) and the problem

(5.54)

) E,Us =WU* .
XtUyx £ EX(BX(0gUs, Vi) — KBoUys ) = EXFy i
x[u] + (eI =AU, — (6l —A_)U_=0 onz=6=0
Usle=r=0 = Uz 0(z,8)

(5.55)

up to order one are valid.

Proposition 5.5. Under the above assumptions for the problems (5.53) and (5.55),
we have that (uf,¢®) € CI(Q ) x C2[0,T) are bounded, (Us,x) € CHQ% : R?) x
C'([0,T] : R) and

uS(t,z) —Us(t,z; £, %) = 0(1)
* s(toie?) (5.56)
deg(t) — x(t, 1) = o(1)

in C}(Q}) when e — 0.

Proof. At above, we have obtained the asymptotics (5.56) in L°°(Q*) If we can
prove

+ _
Bl 4 (t,x) £ (AF — 0)(BUs p) (8,7 EEZDY) — o(1) (5.57)
in L>°(Q4 ) for any k € {1,...,m}, then the asymptotics of e0;u§ can be easily deduced

from the equations in (5. 53) a.nd (5.55). Hence, it is enough to consider the estimate
(5.57).

Set 2§ = edyus and A4 = (A(us +€ve) — (0 +£d®*)I) ", Then
| AS(t,z) — (As — o)™ =0(1) (5.58)
in C}(Q%) and z§ satisfy
825 # (A(us + ev5) = (0 +ed®*)1) 3,25 = F5
ed?¢[u] + (oI — A,)2% — (o — A_)2 = edig® onz =0 (5.59)

25(0,z) = (oI — Ay )(96Us0)(z, %) + 0(1) in L™
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from the problerﬁ (5.53), where
Fi =€0uf; + Bi(edivf, AL25) ~ AS(ed?®%)28 + o(1) (5.60)

in L*(Q27.). We note that the problem (5.59) - (5.60) has the same form as (56.37), with
w§ = (ed;®*,e6,v%) and

my(evs,wi)zf = A5 (ed?®%)z5 — By (e0ivg, AL 25). (5.61)

Set my(v,w) = 312, my i(v)wy, with my ;| = (m:’:l)k,p being an (m x m)-matrix. By
simple computation, we deduce that
(A —0) 1, ifl=0

5.62
(0= 22)7"P, ifl=1,...,m (5:62)

& k
m;tpl = m;t’,)l(o) = {

where b;"’k is the coefficient of B¥ defined by Bk(u,v) = Zl'p b;”,kulvp. Applying
Proposition 5.4 to the problem (5.59), we get

25(t,z) — Zy (t,z; f, f) =o(1) }
ed;¢*(t) — £(t, %) = o(1)

in L*(Q}), where (Z4,€) € C°(24} : R?) x C°([0,T] : R) are the unique weak solutions
to the problem

(5.63)

lE:t Zi =2,

XtZ,x £ EX (B;(agz*, Vi) ~ K0gZy &
g — /\;t Ip k -
+> 5 W 406ViiZsp) = B} (VoFy i @) \ (5.64)
Lp P

flul + (oI —A)Z, — (eI —A)Z_=0 onz=68=0

Zyli=r=0 = (0] — A1) (06U 0)(z,6) ]

by using
€0 f5(t) — VoFu(tai 6, (4,2),6(4,2)) -d = o(1)
+
e0vg 4 (t,z) £ (A — o)aoVi,k(t,:z:; ﬂﬁl)') = o(1)
and

EX(0-KZ,x)=0 forall ke{l,...,m},
with © € R?™ being the last 2m variables of F, and

T
a= (a—z\f‘,...,a—/\fn,/\; —0,...,/\,',,—0) .
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To prove the assertion (5.57), it remains to verify that _
Zyx = Usi(t,z;7,0) := £(0 — AF)(BeUs,4)(t, 7; 7,6) }
€ =0:x(t, 1)

satisfy the problem (5.64), where U, and x are the unique solutions of the problem
(5.55). From that problem, it is easy to verify that the boundary and initial conditions

in (5.64) are satisfied by ((L,a,x). On the other hand, from the definition of BX, it
can be checked that

(0 — A3)OEL BX (85U, Vy)

(5.66)
= :tIEk (Bk(agZi, V:k + Z /\; b; kaoVi,IZi,p)

(5.65)

which implies that E’i satisfy the equation in (5.64) by acting the operator 0; on the
equation of (5.55). Thus, we obtain the assertion (5.65) il

By applying the above proposmons in the problems (5.4) and (5.6), it immediately
gwes rise to the following result.

Theorem 5.1. Suppose that (uy”,¢*) € C! (Q+)><CQ[0 T) and (UY,x") € C} (2%

: R?) x C'([0,T) : R) are the solution sequences of the problems (5.4) and (5.6), respec-
tively, for each v > 0. Then

u§(t,2) - Us(t,2: 4, %) =°(1>} (567)
deg™" (1) = x" (t,£) = o(1)

in CH{Q}) when e — 0.

By using Theorem 3.1/(3), the uniform convergence of (uy",¢*) in C°(Q}) x
C'[0,T] with respect to € € (0,&0], as a simple consequence from Theorem 5.1 we
obtain the following

Corollary 5.1. Suppose that (u5,¢%) € C}(Q}) x C2(0,T) and (Uy,x) € C* (4 :
R?) x C'([0,T) : R) are the unigque solutions of the problems (2.1.18) and (2.1.25),

respectively. Then we have the asymptotic properties

ui(t,z) = Us(ts; ¢, ?)”Lw(n;) =o(1) (5.68)
||dt¢e(t) - X ) ;)"Loo[o"r] = 0(1) .
when € — 0.
To finish the proof of Theorem 2.1/(3), it remains to prove that
eVien(ui(t,z) —Us(t,z; 4, 2)) =o(1
(¢, )( :t( ) :*( e e)) ( )} (569)
Edg (dg¢z(t) — x( y ;)) = 0(1)

in L°(02}.). As before, by using the equations and boundary conditions in (2.1.18) and
(2.1.25), it is sufficient to verify the following
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Theorem 5.2. With the same notations as in Corollary 5.1, there is a constant
T > 0 such that, for any k € {1,...,m},
edug (t,2) £ (Af = 0)(BpUs 1) (8, ; ZELEZY _ (1) (5.70)
in L°(Qf.) when e — 0.
Proof. By performing the transformation
25 (t,z) = sT‘l(eu‘ )Oyus (5.71)
in (2.1.18), with T, (v) being the diagonalizer of A(uy + v) as in (5. 41), we know that

2§ satisfy the problem

Bzt + (A(ui +eul) — (o + sd,w)z)a,z; +Qu(eul,ed?¢,25) = 0

ed{¢*[u] + (0] — Ay)2§ — (0 = A_)z® = o(1) in L™ (5.72)
2;(0,z) = £(ol - Ay)(ed: ug o)(z) +0o(1) in L*™®
where

Qs = (T;l(eui)agT*(eu;) i_(A(u# +euf)
— (0 +edig*)]) Ty (eu)0: Tu(eul)) 24
— T5" (eug) (B A(us +eug) - ed?¢°T) A5 Tx (ug )2
with A = (A(us + eug) — (o + edi¢€)I) ™", Obviously, we have
Q=Y B0 i, UZMWM*@%;é
p=1 P (5.73)
+ed} ¢ (A — aD)™'25 — By (25, (A ~ oD) 'z 2) +o(1) '

in L°°(Q*) The problem (5.72) has the same form as (5.32). By applylng Propos:tlon
5.3 in the problem (5.72), and using (5.73), we obtain

zi(t,z) — Z4(t,z; ¢ L, z) .—0(1)}
ed? ¢ (1) — £(t,4) = of1)

in L=(QF.), where (Z,,€) € CO(0% : R?) x C°([0,T) : R) are the unique weak solutions
to the problem

(5.74)

Ey2, =2, )

XiZop % (‘7;([/*) - IEOX)aOZ:t,k
+E§ (Z MEZ, 1+ €602 —a)“Zi,k>
1

—E4 BY (2., (As - o1)7'2,) =0

(5.75)

Elul + (eI —A)Z, — (0TI -A)Z_=0 onz=6=0
Zyli=rmo = £(0T — A, )(0sU4,0)(z,6) |
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with . . o
AE — A% 9THY0)
M"’:E:”——"—*—Z ) 5.76
+ o A; — avp +,p ( )

To end the proof of (5.70), as in (5.65), it remains to verify that

Z*,k - ﬁ*,k(t’z; 1',9) = :{:(U - At)(aGUi,k)(ty T, 0) } (577)

£ = arX(t) T)

satisfy the problem (5.75), where U, and x are the unique solutions of the problem
(2.1.25). From here, it is easy to see that U, and 8, x satisfy the boundary and initial
conditions in (5.75). As in the proof of Proposition 5.5, it is a direct computation to
verify that Uy and 8, x also satisfy the equation in (5.75) by acting the operator O, on
the equation of (2.1.25) and using the expression of BX. Thus, we have completed the
proof of (5.70) @

Note in the proof. After the finish of this work, the author was informed that a
similar problem had been investigated by A. Corli in [3]. :
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