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A Semilinear Elliptic Equation 

with Dirac Measure as Right-Hand Side 

R. Spielmann 

Abstract. We investigate solutions to the problem 

itz=.Ae +mi5 -	iriV'(Q) 

U = g	 a.e. on 

where b is the Dirac measure and A,m are real parameters, m > 0. We discuss the existence 
and uniqueness of solutions in dependence of these parameters. For the homogeneous Dirichlet 
problem in a ball we give multiplicity results. 
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1. Introduction 

In this paper we investigate L'-solutions of the Dirichiet problem 

Lu = Aeu + mS	in D'() ) 
U = g	 a.e. on aQ. J	

(1) 

Here 6 is the Dirac measure, and Q is a bounded C2 -domain of lR', containing the 
support of the Dirac measure. The parameters A and m are real, in is restricted to be 
positive. We note that for dimension n = 1 problem (1) can be solved completely for all 
real A and m. In the case of positive A there is a unique solution for every pair (A, in). 
For negative A there are critical bounds for the parameters, such that a solution either 
must or cannot exist. 

We will investigate problem (1) for dimensions n> 1 in dependence of the parame-
ters. For every positive pair (A, in) we show the existence and uniqueness of the solution. 
In the case of negative A and positive m we find bounds for these parameters, for which 
we state existence respectively non-existence of the solution. If we specify the problem 
for homogeneous Dirichlet data, we find multiple solutions for certain parameters. 
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Nonlinear elliptic equations with measures have been investigated by different au-
thors (see, e.g., L. Boccardo and T. Gallouet [3], L. Boccardo and F. Murat [4], T. 
Kilpelinen and X. Xu [12]. These results are statements on existence and uniqueness of 
the solution. Assumptions on the measure determine the choice of the solution space. 
In the cited papers the measure is assumed to be a Radon measure with supplemen-
tary properties such as boundedness (see, e.g., [3]) or bounded variation and absolute 
continuity with respect to the p-capacity (see T. Kilpelinen and X. Xu [121). The inves-
tigations in [3, 4, 12] are restricted to Sobolev spaces, e.g. W11 ''(1l). The techniques are 
based on the approximation of the measure by means of functions in Sobolev spaces and 
the use of estimates in suitable LP -norms. In our case (Dirac measure) it is impossible 
to obtain such estimates. 

F. Rothe [15] proposes to use the homogeneous Dirichlet problem 

Au = x I u l u I + mS	in D'(cl) 
U 	 on 31 

to find examples for the sharpness of regularity results for in = 0. He gives an example 
of a distributional solution, but no solution class is specified. 

In the present paper we find solutions in larger spaces than Sobolev spaces. Outside 
of a small neighbourhood of the boundary no assumptions on the first derivative are 
needed. Our technique is based on separating the singular part of the equation. The 
reduced differential equation will be regular and can be treated in Sobolev spaces. 

First we must formulate our problem correctly, i.e. we must specify the boundary 
conditions of problem (1) and make assumptions, how to understand the non-linearity 
e' in weak sense. We use the following notations: 

space of test functions on 1, i.e. V(1) = 

	

V(cl)	space of the corresponding Schwartz distributions on ci 

	

B(x, r)	ball with center x E 1R and radius r > 0 

	

B	unit sphere in R" 

	

r(.)	Gamma function 

	

E( . )	elementary solution of the Laplace operator. It is given as 
( - ln I x I	in R' 

E(x) =	
1x12" in R n n > 2. I. (n-2)2ir 

	

K(Q)	Kato class, i.e. the class of measurable functions g: ci - R with 

limsupf	E(x - ) I(v)I dy = 0.
ajO \ZEc Ix—vI:5a 
Especially, one has LP (Q) C K(Q) for p> (see B. Simon [171). Further, we define 
the strip

S(e)=(EaQU B(xc))flci 

for c > 0.
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Definition 1. Our solution classes are 

= { e	eU E L 0 (), and ujs() e W"(S(e)) for some e E (0, i)} 

and
1P(Q) = u E L1(	E K(Q), and uIs ( e ) E W(S(E)) for some e E (0, i)}. 

Notice that these classes contain also functions with much stronger singularities 
than the elementary solution E. In both classes R"() and R"P (ul) problem (1) is 
formulated correctly, if we suppose boundary values g E W' - "(Ofl). The first equation 
of (1) is equivalent to 

Ju(x)	(x) dx —A f e	(x)dx + m(0)	( E 

Obviously, we have R"P (1) C R 1 ' P (). For positive A and rn we can work in the class 

In Section 1 we will prove the following 
Theorem 1. Consider problem (1) for positive A, in and boundary values g E 

W2_ P(3), p > n. Then there exists a unique solution in R''P(Il). 

In Section 2 we consider the case A < 0 and prove the following Theorem 2. Here 
we state the existence of bounds for A such that there exists at least one solution 
respectively there is no solution. In the latter case we will work - for technical reasons 
- in the class &'P(1). 

Theorem 2. Consider the problem 

Lxu= —Ae' +m6	inlY(IZ)j 
U 	 (xEOQ)J 

for parameters m, A > 0 and p > n. Then: 

(a) There is 6 = 6o(n, Q) > 0 such that problem (2) possesses a solution u e 
R"P () for every 0 < A 6. 

(b) Define 6 1 as the first (positive) eigenvalue of the problem 

—Ah = Ae m fh	(x E )
(3) 

h=0	 (xEaQ)J 

where the function f is defined as the solution of the problem 

Af=0	 (xE))	
() f=g—mE	(xe0).J 

Then there is no solution u E R'-P(Q) of problem (2) for A > 8. 

The main goal of our paper is to establish multiplicity results for the homogeneous 
Dirichlet problem (Theorems 3 - 5). For its formulation we first need some concepts, 
which will be introduced later. The formulation of these results will be given in Section 
3. The main part of the proof for Theorems 4 and 5 is done by phase plane analysis 
similar as in I.M. Gelfand [7].
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1. Existence and uniqueness for positive parameters 

We consider the case .\, rn ? 0 and proceed with the proof of Theorem 1 stated above. 
Proof of Theorem 1. The ansatz 

u = v+rnE	 (5) 

yields the following problem for the function v: 

Av	 emEev	in Q '1 

	

v=g — mE	on3	
(6)

ILj 

It is possible to construct weak sub- and supersolutions for the latter problem. Using a 
result due to S. I. Pokhozhaev [131 we can find a solution v E W2P(cl) of problem (6). 
Then u = v + mE is a solution of problem (1). 

Now we will show the existence of a constant C = C(g) > 0 such that for every 
solution u E R' P (cl) we have the estimate 

ess sup u(x) < C.	 (7) 

	

For this purpose we use the regularization t9	 R+ (e > 0) given by 

— {keex	 forjx <e (	e2_1z12	 with k 1 =e[ ex(	1	
)dy. (x) -

	 for lxi ^	 i4S'	1 y 1 2 - 1 

By definition of R' P (cl) there exists a constant C such that for every u E R 1 ' P (cl),p > n 
we can find a strip S(7) with

sup u(x) <C.	 (8) 
zES(1) 

We take a C 2 -domain cl 1 Cc cl with ci \ S(-y) C cii. By u 1 we denote the restriction of 
u to c1 1 . Next we will show that u 1 is bounded from above. We take e <dist(ôQ,5ci1) 
and consider the convolution 

(u i * )(x) 
= fE 

u(x + z)(z)dz	(x E 11). 
B(O,) 

It is in C°°( 1 ). Owing to L(u i *19) > 0 in 'JY(ci 1 ) and the classical maximum principle 
it follows

sup(u1 * i9) !^, sup(u j * 19).	 (9) 
an, 

The estimate
sup (u 1 * t9)(x)	C	(e < dist(ô1li,ÔS(-y))) 

xEaDi 

implies together with (9) 

sup(u i * 19) < C	(E <dist(ôci i ,3S(-y))).	 (10) 
0
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Suppose now ess sup 0 , u 1 > C, i.e. there exist a > 0 and a set of positive measure 
A C l i such that u 1 (x) > C + a for all x E A. By (10) it holds 

ui(x)—(ui*i9)(x)>C+a—C=a	(xEA).	 (11) 

Consequently, II u i - u 1 *t9II L I (o, ) > amcas(A). On the other hand, lim—o 11 u1 —u 1 * 
= 0. This is a contradiction. Consequently, esssup 0 , u 1 < C. Owing to the 

independence of C on Q, we obtain (7). As a consequence for every solution u E R"(Q) 
one has L(u - mE) = Ae u in V'(Q) where the right-hand side of that equation is in 
L°°(Q). Then w := u - mE E W2''(1). 

Suppose now the existence of two solutions u 1 ,u 2 E R' .P(l). Then we find for 
W1 u 1 - mE and w2 = U2 - mE 

- 102) = AemE (eu t - e12)	in V'() } 
w 1 —w 2 =0	 on. 

The application of the mean value theorem and the Aleksandrov maximum principle 
(see Gilbarg and Trudinger [9]) yields now w 1 = w2 I 

Remarks. 1. Instead of the assumption g e W'"(5cl) we make use of the 
stronger assumption g E W 2_ (ô) . This is needed for the application of Pokhozha-
ev's supersolution technique [13]. 

2. We have sup0 u < sup0 u for the solution of Theorem 1 (maximum principle). 
3. Supposing for the domain only Q E C 1 " and boundary values g E W 2 (a) n 

L(al) we can show the existence of a solution u E R" 2 (Q) of problem (1) for every 
A,m > 0. Here we use a supersolution technique due to J. Deuel and P. Hess [6]. 

4. The uniqueness statement of Theorem 1 can be generalized in the following 
way. In problem (1) we take a non-negative function f = f(x,u) instead of e'. In the 
definition of R"() we replace the demand eli E L 0 ( l) by f( . ,u( . )) E L'0(). 

5. Owing to the representation (5) of our solution u of problem (1) one can show 
the continuous dependence of u on both parameters A and mn in certain q > 1. 
For further details cf. R. Spielmann [16]. 

6. A similar version of Theorem 1 can be proved, if we take instead of 6 a Leray form 
br on a relatively compact C 1 -submanifold F c R i', i'c ci, defined by (8r, p) := f 
for W E 

2. Existence and non-existence for negative A 

Now we investigate problem (1) for negative parameters A. We will reformulate it to 
obtain problem (2) with A > 0. The aim of this section is to prove Theorem 2. 

In the function class IV P() the following statement holds. 

Lemma 1. Suppose that u E R'"(Q) is a solution of problem (2) with boundary 

values g e W1_J(OQ), p> n. Then u ' v + mE, whereby v E W(1) fl W"'(l) isloc
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a solution of the auxiliary problem

AemEev	in c	'1
( vrg — mE	onôIl.	
12)

j 
Proof. The equation in problem (2) can be written as A(u - mE) = —Ae' in 

V'(1). By definition of R"() we have e" e K(Q). Applying [17: Proposition A.2.4] 
we obtain v := u—mE E C(cl). Consequently, etL E Lco (Z) . This implies the assertion I 

The next lemma is the "weak version" of a well-known classical result (cf. J. Be-
bernes and D. Eberly [2: Lemma 2.4]). 

Lemma 2. Suppose a bounded domain Q E C2 , and positive functions fo E LP(Q) 
(p> n) and Ii E L°°(Q) such that 

	

f(x,u) 2 fo(x) +fi (x)u	((x, u) E Ti x [O,cx)). 
Furthermore, denote by A0 the minimal (positive) eigenvalue of the problem 


	

—u = Af1 (x)u	(x E l) ) 
u 	 (xEocl).J	

(13) 

Then for A > Ao the problem 

	

—Au =Af(x,u)	(xEIl) '1 
U 	(xEacl)J	 (14) 

has no non-negative solutions u E W'P(l). 

Proof. Assume that the non-negative function l E W"P (Q) is a solution of problem 
(14) for some A > Ao. Then it is a supersolution of the problem 

—u = A(fo(z) + fl W-)	(x E 

U 	 (xEOQ). ^ 
Regarding u(x) := 0 as a subsolution we apply the supersolution technique of J. Deuel 
and P. Hess [6] to find a non-negative solution u E W"2 (Q) of the last equation. Im-
proving regularity by iteration we obtain u E W 2 ' 7'(1). Owing to 

—Au(x) > Afi (x)u(x) > 0,	u(x) 0 0 (x E 1),	u(x) = 0 (x E O) 
there follows u(x) > 0 (x E 1?). 

Let w E W"2 (1) be the non-negative eigenfunction of problem (13) corresponding 
to the eigenvalue A 0 . By a standard iteration technique one can show that to E W 2 '(Z). 
Now we can apply Green's second formula and obtain 

I law	Ou\ 0= J
9 0 

(u--w—jdS 
3y	 . 

f(uzw_wu)dx 

f (w(x)[Afo(x) + Af,(x)u(x)] - u(x)[Afi(x)w(x)])dx.
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It follows that

0 0 - \) 
in 

fi (x)u(x)w(x)dx = Ajw(x)fo(z)dx >0 

and A < A 0 . This is a contradiction to our assumption A > A0 I 
Now we prove the above mentioned Theorem 2 about the existence and non-existence 

of solutions of problem (2). 

Proof of Theorem 2. Part (a): The proof of this statement is similar to the 
existence proof in Theorem 1. 

Part (b): Regarding Lemma 1 it suffices to show that the auxiliary problem (12) 
has no solution v E W'(I) for every A > 6. Assume v E W" P (l) is a solution of 
problem (12) for the parameter A ? 5. By the ansatz v = h + f we obtain for h the 
problem

	

—h = Ae m fe h	(x E ) ' (15) 
h=0	 (xE5).J 

Obviously, h is positive. Applying Lemma 2 to the last equation and taking intoaccount 
e m fe ! > e+f + em fh (h> 0) we obtain the assertion I 

3. Bifurcation of radially symmetric solutions 

We investigate now problem (2) in the unit sphere B for homogeneous Dirichlet bound-
ary conditions, i.e. we consider the problem 

	

Au = — Ae' + mö	in V1(B)	
(16) 

u=0	 (xEaB)J 

for parameters m, A > 0. In the case m = 0 problem (16) is called the Geifand problem. 
1. M. Gelfand [7], and D. Joseph and T. Lundgren [10] found for every A > 0 the number 
of its solutions u E C2 (B) fl C(B). For a survey see also J. Bebernes and D. Eberly [2]. 

Taking into account the Holder continuity of emE we can conclude from Lemma 
1 the representation u --. v + mE with a function v E C 2 (B), a E (0, 1) for every 
solution u E R"(B) of problem (16). Remark that the symmetry principle [81 is not 
applicable to v. 

Definition 2. A solution u E R P (B) of problem (16) is called radially symmetric, 
if the corresponding function v E C 2 '() according to Lemma 1 is radially symmetric. 
We denote this by u(r) '-. v(r) + rnE(r) (0 < r	1). 

From problem (12) it follows that v = v(r) solves the ordinary differential equation 

d 2 v ri—ldv 
+	+ AemE e v . = 0	(0 <r < 1)	 (17)
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with boundary conditions 

dv 
I drr=	

and	v(1)r=C(rn), 

whereby
1 0	for n=2 

C(M)Mr 
(n-2)2r 

()
for n > 2. 

I  
For n = 2 this equation can be transformed by means of 

r=e	 v(r),	z(i) = (t) - (2+ 

to an exact solvable differential equation for z = z(t). Solving it we get 
Theorem 3. The distribution problem (16) possesses for B C R2 

• two radially symmetric solutions for every A E (0, (2 +	)2) 

• one radially symmetric solution for A	(2 + m )2 
2	2w 

• no radially symmetric solutions for A > (2 +	)2. 
2	2n 

Definition 3. We say that in A occurs an rn-bifurcation, if problem (16) and the 
Gelfand problem have different numbers of solutions for the value A. 

According to Theorem 3 and I. M. Gelfand [7] an rn-bifurcation occurs for A C-
[2, 1 (2 + 	)2]. 

Now we consider radially symmetric solutions of problem (16) for dimensions n > 2. 
We must carry out a bifurcation analysis of problem (17) - (18), but this is much more 
comprehensive than for the case n = 2. Therefore we will give the proofs for the 
following theorems in Section 4. 

Theorem 4. We consider problem (16) in B C R i', 2 < n < 10. 
(a) For every rn > 0 there exists A 1 = A i (m) > A FK such that problem (16) 

possesses for every A E (0, A 1 ] at least one radially symmetric solution u E R1'P(B). 
Here we denote by AFK the so-called Frank- Kamenetzkiparameter (cf. J. Bebernes, D. 
Eberly [2] and Definition 6 in the following section). 

(b) For every k E N there exist Mk > 0 and values 0 < A, (k) < A 2 (k) < A3(k) 
such that problem (16) possesses for A E (A 1 (k), A 2 (k)), m = rnk at least k radially 
symmetric solutions u E IV P (B) and for A > A 3 (k), ni = M k no solutions u E R_'''(B). 

Theorem 5. Consider problem (16) in B C R', n 10. 
(a) For every rn > 0 there exists A 1 = A, (m) > 2(n - 2) such that problem (16) 

possesses for every A E (0, A 1 ] at least one radially symmetric solution u E 

(b) There exist ñ > 0 and values 0 < A 1 < A 2 < A 3 such that problem (16) possesses 
for A E (A 1 , A 2 ), m = th at least two radially symmetric solutions u E R''P (B) and for 
A > A 3 , rr = ffi no solutions it E R1P(B). 

A comparison with the bifurcation results for the Gelfand problem obtained by D. 
Joseph and T. Lundgren [10] yields rn-bifurcations for every n > 2.

(18)
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4. Proof of Theorems 4 and 5 

For n > 2 problem (17) - (18) has the form 

&v n— ldv 
+	+ Aexp(_C(m)r2_n)et = 0	(0 < r < 1)	(19) 

with	 - 0,v(1) = C(m) and the constant C(m) - mI) 

dr r=O (n -2)2,r 
The proofs of Theorems 4 and 5 reduce to the bifurcation analysis of equation (19). 

For the latter we use a phase plane analysis, i.e. we will transform this equation into a 
dynamical system. The technique of phase plane analysis has been developed by I. M. 
Gelfand [7), further we refer to D. Joseph and T. Lundgren [10], J. Bebernes and D. 
Eberly (2]. We use the dynamical system 

dx 
-=x(y-2)	 (20) 

dt 
dy 
—=(n-2)y-x	 (21) 
dt 

which occured also in I. M. Gelfand [7]. First we give the following sketch of the proof 
for the bifurcation analysis of equation (19): 

Step 1: We classify the trajectories of system (20) -(21) in the right half of the phase 
plane and specify their asymptotic behaviour by means of an asymptotic coefficient. 

Step 2: We transform the solutions v of equation (19) into trajectories (x(t), y(t)) 
of system (20) - (21). Moreover, the parameters A and in will be transformed into 
conditions for the initial value and the asymptotic coefficient of the obtained trajectory. 
Then we define a mapping, the so-called asymptotic function, between the initial values 
and the asymptotic coefficients. We prove some properties of the asymptotic function, 
important for the characterization of its level sets. 

Step 3: Let N(C) denote a level set of the asymptotic function: We investigate its 
shape for 2 < n < 10. 

Step 4: We investigate the shape of the level sets N(C) for n > 10. 

Step 5: By means of the shape of N(C) we deduce bifurcation results of equation 
(19).

We proceed with 

Step 1: Investigation of the associated dynamical system. We classify the 
trajectories of our dynamical system and give a concept to describe its asymptotical 
behaviour. 

Lemma 3. The system (20) -(21) has critical points (0,0) and (2(n -2), 2). There 
exists a unique heteroclinic orbit Ttj = (xjq(t),yH(t)) (t E R) joining these points. In 
the right half of the phase plane R x R we find furthermore 

• trajectories on the ordinate T0 ,-d = (0, y(0)e(_2)t) (t E R)
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• trajectories T	(x(t), y(t)) (t E R) with the properties x(t) > 0 (t E R) as well 
as 1im 1 _.+ x(t) = 0, 1imj_	y(t) = -oo and limt__,,,(x(t), y(t)) = (2(n - 2), 2). 

Proof. The uniqueness of the heteroclinic orbit has been shown by I. M. Gelfand 
[ 7 1 for ri = 3, and by D. Joseph and T. Lundgren [10J for n.> 3. The rest of the proof 
is standard I 

Definition 4. Let be (x, y) E R+ x R and consider the trajectory T = (x(t), Y(0) 
(t E R) of system (20) - (21) with (x(0),y(0)) = (x, y). Assume, for some constant y 
one has

urn e t (y(t) + 7e(hl_2)t) = 0. 

Then will be called the asymptotic coefficient in the point (x, y). 

If there exists some asymptotic coefficient in the point (x, y), it is determined 
uniquely. Furthermore, it is easy to see that neither in points of the heteroclinic orbit 
nor in (2(n - 2),2) a positive asymptotic coefficient can exist. Later we will show the 
existence of asymptotic coefficients for all other points in the right half of the phase 
plane 1R x R. 

Now we come to 

Step 2: Transformation theorem and asymptotic coefficients. The following 
theorem points out the connection between our problem' (16) and the asymptotical 
behaviour of the trajectories of the dynamical system (20) - (21). 

Theorem 6. The solutions of the auxiliary problem (19) can be characterized in 
the following way. 

1. Let v be a solution of equation (19). Then we find a solution (x(t). y(t)) of 
sjjstcm (20) - (21) with x(0) = ..\ whereby y = (n - 2)C is the asymptotic coefficient in 
(x(0), y(0)). 

2. Let be given a solution (x(t), y(t)) of system (20) - (21) with x(0) = A whereby 
= (n - 2)C is the asymptotic coefficient in (x(0), y(0)). Then the function 

v(r) = In x(t(r)) +Cr2"+a	with t(r)=—lnr (0<r<1) 2(n - 2)r2 

and the constant a = in 2(n-2) is a solution of equation (19). A 

Proof. Let v = v(r) be a solution of equation ( 19). By means of the transformation 

r = e t ) 
i(t) = v(r) j	

(0 <t < +oc)	 (22) 

and the constant. a := In 2(n —2) 
A	we obtain from equation (19) 

d2 i3	di) - - dt2 (ri - 2)— dt + 2(n - 2)exp ( - Cexp((n - 2)t) - 2t - a) = 0
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for 0 < t < +oo with (0) C, 4 (+oo) = 0 and (+) < +. With the help of the dt 
transformation

	

z(t) =	- 21 - Cexp((n - 2)1) - a	 (23) 

we get now

d2 z	dz -----(n-2).--- _2(n_2)+2(n_2)ez =0	(0< t < +) 

with boundary values z(0) = —a, (+) = - and z(+oo) = —. By means of the dt 
transformation

x(t) = 2(n — 2) exp(z(t))	 (24) 

y(t)= dz
-+2	 (25) 

dt 

we obtain system (20) - (21) with the boundary conditions 

x(0) = A	
}	and	

x(+oo) = 0	

} Y(0) = —v'(l) - C(ri - 2)	 y(+oo) = 

For /3 := —v'(l) it follows y(0) = 3. From formula (23) we derive 

dvdzdt	di 
+ 2— + C(2 - n)r' = — 1 (y(t) - C(2 - n)r2). 

drdtdr	dr 

Then we find from v'(0) = 0 the condition lim.+ et(y(t) + y exp((n - 2)1)) = 0 with 
= (ri - 2)C, and the first assertion of Theorem 6 is proved. The second assertion can 

be shown by reversing the proof given above U 

In the right half of the phase plane we define the set 

M =	x R\ ({(2(n - 2),2)} U {(XH(t),yH(t))It E R}). 

Theorem 7. In every point (X, Y) E M there exists an asymptotic coefficient. 

Proof. For all points on the ordinate our assertion follows from Lemma 3. We 
consider now (x, y) E M with x > 0 and y < 0. For the trajectory with initial dates 
(x(0),y(0)) = (x,y) one has limt...+0,y(t) = -oo and x(t) > 0 for all t > 0. With the 
expression

x(i) = e(t)exp(-2t) 1	 (26) 
y(t) = i(t)exp((n — 2)t) f 

we obtain from (20) - (21)

= e(i)ii(t) exp((n — 2)1)	
(27) dt 

-	
= —e(t)exp(—nt).	J
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The functions = (t) and i =	are monotone decreasing for t > 0 and C possesses 
a continuous inverse function t = t(). Furthermore, there exists lim._ e() =	> 0.

From (27) it follows

- exp((-2n + 2)t) 
'7 

(1 2)1


cr = - exp((-2n + 2)t). 

Defining

W(t)	1 =,7 2 (t)	(t>-0) 

TV = w(t())	( E (C,(0)J) 

we get
dib

= - exp ((-2n + 2)t(e)) (Ce < 

0) 

- t(CC) = - f exp ((-2n + 2)t(e)) d 
cc 

as the integral and consequently the limit lim t .... w(t) = b(C) exists because of the 
boundedness of the integrand. Accordingly, there exists lim t .	ij(t) = - 

We want to show that the asymptotic coefficient in (x(0), y(0)) is equal to y := 
We have

e 1 (y(t) + 7 exp((n - 2)t)) -	'7(t) + 7 
- cxp((1 - 

For t -	the last fraction is an expression of the form . Applying L'Hospital's rule 

we obtain

lim et(y(t) + 7 exp((n - 2)t)) = hm 
1 00 t—.00 exp((1 - n)i) 

=lim 
t 	(1— n)exp((1 - n)t) 

-- lim	e() exp(—nt) =  
t—oo (1 - n)exp((1 - n)t) 

=0. 

Consequently, we find in (x, y) the asymptotic coefficient = J2ti(Ce) . Now we 
show that for every point (x,y) E M an asymptotic coefficient exists. Without loss of 
generality let be x > 0 and y > 0. We consider the trajectory (x(t), y(t)) with initial 
dates x(0) = x and y(0) = y. Then there exists r > 0 such that x(r) > 0 and y(r) < 0. 
Define i	t - T. Accordingly, (1(r), (r))	(x(t), y(t)) are also solutions of system
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(20) - (21). According to the previous considerations the point (?(0), (0)) has a positive 
asymptotic coefficient -y. Therefore 

urn e l? ((?7) + y exp((n - 2)77)) = 0 

e T urn et(y(t) + 7exp((2 - n)T)exp((n - 2)t)) = 0. 
i—.+oo 

Then (x(0), y(0)) has the asymptotic coefficient 7exp((2 - n)r) I 
Hence, there exists a function	: M —p R associating every point of M to its


asymptotic coefficient. We call it the asymptotic function. From the last proof it follows 

Corollary 1. Let be given a trajectory T = (x(t),y(t)) (t e R) with initial dates 
in the set M. Then for two arbitrary points (x(to), y(to)) and (x(tj ), y(ti)) it follows 

(x(ti ), y(ti)) = exp ((2 - n)(to - t 1 )) (x(t6), y(to)). 

We will show the continuity of the asymptotic function on the subset 

M, :=	x R\({(2(n - 2),2)} U {(XH(t),yH(t))It E R} U {(0,y)Iy ^! 0) ) 

which is open in R+ x R. First we prove a representation formula. 

Lemma 4. Let (x, y) E M be the starting point of the trajectory T = (x(t), y(t)), 
that means we have (x(0), y(0)) = (x, y). Then 

(x, y) = —y + I x(,I) exp((2 - n)) dii. 

Proof. The assertion follows from Lemma 3 for all points on the ordinate. Consider 
now initial values (x, y) E M with x > 0. From (21) we obtain 

y(t) = exp((n - 2)t) ((o) - / x()exp((2 - 

We consider the expression 

A(t) = e t y(t) + exp((n - 2)t) —y(0) + I x(,7) exp((2 - n))d)] 

- L x(r)exp((2 - n)i) di7 
- -
	exp((1 - ri)t) 

The last version is for t - +oo of the form 2 . Applying L'Hospital's rule, we find 

limet [Y(t) + (_(0) + / x()exp((2 - n))d) exp((n - 2)t)}
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Jim x(t)et 
i—.+cz, 1 - n 

For arbitrary real i also ((t), ( t )) : (x(t + j), y(t + 77)) is a solution of system (20) - 
(21), and it yields

X(t)el	 e	
lim x(t + 77) et	 lim —Urn	- -	 (t)et. t —• +oo 1 - ri	n - 1 t—+oo	 n - 1 t-+OO 

There exists i > 0 such that y(i) < 0 and consequently (0) < 0. By means of 
expression (26) we find functions (ü(t), (t)), which satisfy (27). Then ü(t) < 
oc and consequently limj...+,,, (t)e t = 0. Hence 

limet [(t) + (_(0) + J x(77)exp((2 - n)77) d77 exp((n - 2)t)1 = 0 

and the statement is proved I 

	

Theorem 8. The asymptotic function	is continuously differentiable on the set 
M41 -

Proof. We consider the trajectory T = (x(t, p, q), y(t, p, q)) (t E R) of system (20) 
- (21) with the initial dates x(0,p,q) = p and y(0,p,q) = q. Now we want to investigate 
the function

(p, q) = , —q + f x (t, p, q)	n) 'dt	((p, q) E R x R). 

First we choose (po, qo) E M4, with po > 0. For every e > 0 we find t such that 
x(t,po,qo) < e for all t > t. The mapping 'I': R 2 - JR 2 associates every point of the 
phase plane to its image after the time t. For the sake of the continuous dependence 
of (x(t, p, q), y(t, p, q)) on (p, q) there exists a ball 

B=B((x(te,po,qo),y(te,po,qo)),t5i)cMfl([0,)xJR_), 

which will be mapped by means of 'P' on the open set 'I' 1 B C Mt . Then yields 
x(t e ,p,q) < e for every trajectory (x(t, p, q), y(t, p, q)) with initial dates (p, q) E W1B. 
For (p, q) E	it follows 

	

+00	 +00 

J x(t,p, q) e(2tdt <e J 
0 

and the uniform convergence of f0+00x(i,p,q)e(2_tdt is established. By means of 
the continuous dependence of x(t,p,q) on (p,q)and the limit lim t ..+ 00 x(t,p,q) = Owe 
receive the continuity of x(t,p, q) e 2 ' t in the set	x 'I' 1 B. Accordingly, the integral
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f
+00 

0	x(t,p,q)e(2) dt is continuous in the set 'P-'B. In this way we have established 

the continuity of the function 4D = (p, q) on Mt. {(0,q)Iq E !R}. Analogously, we 
show the continuity of c in points (0,qo) with qo < 0. 

Now we demonstrate for (p, q) E M 1, the uniform convergence of the integrals 

+00	 +00 

	

_________ f 	t dt	 p, q) e(2_)tdt. and 12(p,q)	J Ii(p,q) -
	a aq 

	

o	 0 

We choose (po, qo) e M, with P0 >0. For arbitrary K > 0 and c >0 we find as above 
t and 8 >0 such that for all (p, q) e B((po,qo),6) 

-	 x(t,p,q) <e	

}	
- ( 

>	 (28)

y(i,p,q) < —K 

We determine the function Oz(t	from the variational equation (cf. Y. I. Arnold [11) 
ap

i r Oz(t,p,q) 1	1 8z(0,) 

	

I	öp
	I

d 
	z(t,p,q) 

	

y(t,p,q) —2 x(t,p,q) I I	I	
p,g

ft	8y(t,p,q)
,,	 n -2	a	 ap

  ] L Oy(t,p,q) I '	I 8y(0,p,q) 
J	L L  

Let be

p, q) .- {y(t,p,q) 

—2 x(t,p,q)] 


	

—1	n-2 

By (.,.) we denote the inner product of R 2 induced by the Euclidean norm. With the 
notations

fôx(t,p,q) ôy(t,p,q)\T 

	

u(t,p,q) = (	a	'	3p	)	
and h(t,p,q) = M t , p,q),u(t,p,q)) 

it follows for all (t, p, q) E [ t e, +) x B((po, qo), 5) 

p, q) = 2(A(t, p, q) u(i,p, q), u(t, p, 
dt

<2(n 
2x(t,p,q)-1I\ 

-	-	2	
I) h(t,p,q). 

Let be C 2(n —2 +	Then we obtain 

dt

	

h(t,p,q) 5 Ch(t,p,q)	((t,p,q) E [te,+) x B((po,qo),5)). 

Integrating this inequality we find a constant C1 > 0 such that 

:Iôy(t,p,q)
I 
^ C1 exp(t)	((t,p,q) € [te,+c)xB((po,qo),5)).	(29) I	op 
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With regard to the estimate 12 ^ (n - 2)y (t E R) we find a constant C2 > 0 such that 
y(t,p, q)	—C2 exp((n - 2)t)	((t, p, q) E [t i , +oo) x B((po, qo), 6)).	(3* 0)


Estimating (20) and using (30) we obtain 
dx 
dt

< —C2 exp((n - 2)t)x	((t, p, q) E [t i , +oo) x B((po, qo), 8)). 

Integrating the latter, we find a constant C3 > 0 such that 

(—n 
x(t,p,q) ^

C2 C3 expexp((n - 2)t)	((t,p,q) E [t,+) x B((po,qo),8)). (31)
—2 

Regarding to the estimates (29) and (31) we find for b(t,p,q)	x(t,p,q) äy(t,p,q) 
ap 

	

urn b(t,p,q) = 0 uniformly with respect to (p, q) e B((po,qo),8).	(32) t—.+oo 

Define a(t,p,q) := y(t,p,q) —2 and (t,p,q)	exp(fjt a(s)ds). From the variational

equation we derive for t > i 

0 9x (t, p, q) 
= a(t, q) Ox(t, p, q) +b(t,p,q) o	 Op 

Ox(t,p,q) 
= (t) +J (t,p,q)'(T,p,q)b(T,p,q)dT 

op	 I. 

whereby j (t,p,q) = a(t,p,q)(i,p,q) (t > 1). Using (28) we get for  e [t,i] 

0(t, p, q)	'(T,p, q) < exp ( - (K + 2)(t - r)) 
(t,p,q) < exp ( - (K + 2)(i - ti)). 

Hence it follows for all (p, q) E B((po,qo),8) and I > t 

Ox(i,p,q) 
<exp( - (K + 2)(i - t i )) +Jexp ( - (K + 2)(t - r)) b(T,p,q)dT. 

I' 

On combining this inequality and (32), we find 

Ox(t,p,q) lini	 = 0 uniformly with respect to (p,q) B((po, qo), 6).	(33) 

Hence the integral I(p,q) converges uniformly in B((po,qo),6). Analogously we verify 
the uniform convergence of I(p,q) in B((po,qo),8). 

Define D	B((x(t,po,qo),y(t,po,qo)),6). By means of the continuous dif 

frentiability of (x(t,p,q),y(i,p,q)) on (p,q) and (33) the continuity of the function 
ar(t,,,,q) e(2)t in	follows. Analogously we verify the continuity of	(2 —n)t 

ap	
2— - -	 +00	

i 
-aq 

in IR+ x D. Hence f0 x(i,p,q)e, t i di s continuously differentiable n D. In this 
way we verified the continuous differentiability of 41 in the set M, \ {(0, q) I q E R}. Anal-
ogously we show the continuous differentiability of cI in all points (0, qo) with q < 0 
(instead of B and B((po, qo), 6) we choose fitting hemispheres)I
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Corollary 1 implies for ti t and to = 0 the equation 

d'1(x(t), y(t)) 
di	

= (ii - 2)(x(t),y(i)). 

On the other hand we find 

d4(x(t), y(i)) - ô'(x(i), y(t))	+ a(x(t), y(t)) dy(t) 
di	-	 dt	ay	•dt 

i9x	 19Y = 

In this way we obtain 

Theorem 9. In the set M, one has 

x(y-2)+ —((n-2)y–x) =(n-2). 
0
—

x 

Definition 5. 'Pt (t E R) denotes the flow of the system (20) - (21). For every 
> 0, N() = {(x, y) € R+ x RI (x, y) = a) denotes the level set of the asymptotic 

function ob in the right half of the phase plane. 

Corollary 1 implies now 

Theorem 10. For every a E R one has 'P t (N(a)) = N(exp((n - 2)t)ct) (I E 
R). (The flow transforms the level sets into another.) 

Now we proceed with 

Step 3: Investigation of the level sets for 2 < n < 10. Let be 2 < n < 10. 
We choose a parametrization (XH(t), yH( t )) of the heteroclinic orbit. Then there exists 
to = max{t E RIYH(t) = 21. 

Definition 6. The value A FK = x H( to) is called the Frank- Kamen etski parameter 
of the Gelfand problem for 2 < n < 10 (cf. J. Bebernes and D. Eberly [2] and Figure 
1).

The ray AC = {(x,2)Ix > Aj'jç} divides the set M, into two subsets M0 and M1. 

The subset M0 consists of pairs (x, y) with y < 2 (the shaded area in Figure 1). So we 
obtain the decomposition M = M0 U M1. 

Now we want to investigate the subset N(a) fl M 0 . The proofs of the following two 
lemmata are trivial and omitted. 

Lemma 5. Consider T = (x(t),y(t)) with initial dates (x(to),y(to)) e Mo\1(0,y) I i 
E R}. Then: 

1. The functions x = x(t) and y = y(t) are monotone decreasing for t > to. 

2. For every ij > to the curve K = {(x(i),y(t))I to :5 t < ,j} can be represented in the 
phase plane as the graph of a monotone increasing function y = f(x) (x E Ex(i), x(t)]).
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Figure 1 
Lemma 6. For all (x, y) E M0 \ {(O;O)} one has x > (n - 2)y. 
Lemma 7. Suppose a > 0. Then there exist an a 0 = ao(a) > A FK and a monotone 

increasing continuous function Fo such that the set N(a) fl Mo can be represented as 
the graph of y	.To (x) (x E [0,ao]), i.e.  

N(a) nM0 = {(', y )I y = p0 (x), x  [0,ao]}. 

Furthermore, 7o(0) = —a and o(ao) = 2. The curve N(a) n 79 is rectifiable. 

To prove this statement we need the following three lemmata. 
Lemma 8. For every fixed x 0	0 the function (xo, .) is strongly monotone de-

creasing on M0 , i.e. for points (xo,y0 ),(x0 , y 1 ) EM0 one has 

Yo <Yi	.	(x 0 , y 1 ) < (x0,y0). 

Proof. In the case of x 0 = 0 our assumption follows from Lemma 3. Now we 
consider two points (x0, yo) and (x 0 , yi) in the set M0 \ { ( 0, )I y < 01, whereby Yo < y. 
Let be

To = (xo(t), yo (t))	and	T1 = (x 1 (t), y (t))	(t E IR) 
trajectories with initial dates (xo(0),yo(0)) = (xo,yo) and (xi(0),yi(0)) = (x 0 , y 1 ). For 
every i E (0, x0 ) the trajectory T0 intersects the straight line x = in exactly one point 
of M0 . The trajectory T0 attains this point at the time ±0 > 0. Consequently, we have 
xo (to) = i. Analogously we show the existence of an intersection point (x 1 ( t i), yj (t 1 )) E 
M0 of T1 and x = , which will be reached by T0 at the time t 1 > 0. 

By Lemma 5 there are functions fo fo(x) and fi = fi (x) such that 
{(xo(t),yo(t))o <i _< to = {(x , y ) I x E Io	[xo(to),xo(0)], y = fo(x)} 

{(x i (i),yi(t))0 <_ t <t}.= {(x , y )I x Eli = Lx1(t1),x1(0)1, y = fi(x)}
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where 1 = I, = [, xo]. The graphs of Jo and Ii have no common points in the 
phase plane. From fo(xo) yo < y = f1 (xo) now for all x E [,xo] the inequality 
fo(x) < f, (x) follows. Especially, one has yo(to).= fo() < f, (:i) = y i ( ti). We choose 
a sufficiently small i. Then we get by help of Theorem 8 and Lemma 3 

0 < (x i (t 1 ), y ' ( t ' )) < 4(xo(to), yo(to)).	 (34) 

The point (xo,y i ) is an inner point of M0 . By means of the monotony of f we find 
f, (x) <2 for all x E [,x 0 ]. Remembering fo(x) <fi (x) (x E [,xo]) we get now 

1	1 

	

2—Jo(x) <	
f, (X) 

From (20)

= 
ZO

 and 0 I	l	dx 
2—fo(x)x 

±

( <x	xe).	 (35) 

 - dx

 

I

ZO	

(36) 
 2—fi (x) x 

follow. From these equations and (35) to < t 1 follows. Therefore exp((2 - n)t i ) < 
exp((2 - n)to). By means of (34) we find 

exp ((2 - n)t i ) c1(x i ( t i ), y j (t i )) < exp ((2 - n)to) 4(xo(to), yo(to)). 

Our assertion results now from Corollary 11 

Lemma 9. For every fixed yo the function 4(•,y) is in M0 strongly monotone 
increasing, i.e.

xo <x 1	=	(xo,yo) <1(x!,yo). 

Proof. The assertion follows for x 0 = 0 from Lemmata 3 and 4. Consider now 
points (xo,yo) E M0 and (x i ,yo) with 0 < xo < x 1 . Then we have (x i ,yo) E M0. 
We introduce the trajectory (xo(t), yo(t)) with initial dates (xo(0), yo(0)) = (x 0 , yo) 
and the trajectory (x i (t),y i (t)) with initial dates (x i (0),yi(0)) = (x i , yo). For a given 

< yo there exist times to > 0 and t 1 > 0 such that yo(to) = y(t i ) = . The curves 
K0 = {(xo(t),yo(t))I0 t to} and K1 = { (xi(t),yi(t))I0 t t i } are completely in 
M0 . Now we want to compare to and i i . By Lemma 5 there are monotone increasing 
functions fo = fo() and f1 = f, (y) such that 

K0 = {(x,y)x = fo(y), , e 1o = [yo (to),yo(0)]} 

K 1 = {(x,) x = fi (y), Y  Ii =Jyi(ti),yi(0)1} 

where lo I = [Q, yol . Analogously to the derivation of (35) we find 

1	 1 
fj(y)—(n-2)y	fo(y)—(n-2)y	(yE[y,yol).	 (37) 

From (21)
I'D Yo 

	

0 
=ffo(y)n2)y	

and	t1=f(y)n2)y
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follows. By (37) we get
il <tO.	 (38) 

Bearing in mind the monotony of yo (t) and y, (t) for t > 0, we get 

	

Yi (t) < Yo ( t )	(t > 0).	 (39)

By the method of variation of constants it follows from (21) that 

Yo(t) = exp((n - 2)t) Yo( 0) - ixO() exp((2 - n)) d) 

	

Y1 (t) = exp((n - 2)t) (YI (0) -	exp((2 - n))d). 

Therefore

exp((2 - n)t) (yo (t) - y, (t)) = I (x I (,I) - x O ()) exp((2 - n))d.	(40) 

By Theorem 7 there exists f000 (x i ( i) - 20(77)) exp((2 - n)i7)d77 . By (39) for t > 0 the 
inequality exp((2 - n ) t )(yo ( t ) - y, (t)) >0 follows. Therefore 

f (x i (77) - 20(77)) exp((2 - n)77)d77 = lirnexp((2 - n )t )( yo ( t ) - yi ( t )) > 0 

and

f x i () exp((2 - n)77 ) d77	f - 0 (,7) exp((2 —n)77)d77. 

By Lemma 4 there follows

4'(xi(0),y(0)) > c1(xø(0),yo(0)).	 (41) 
For (CI , C2) EM0 we define the ray S(C1 ,C2 ) = { ( x , y )I x _> C1 , y = C2 }. By (41) the 
asymptotic function 1 is monotone non-decreasing on every such ray. We want to show 
that it is monotone increasing. For this purpose we assume the existence of two points 
(xo, yo) and (x i , yo) in M0 with 20 <21 such that 

4(xo,yo) = 1(x1, yo).	 (42) 
We denote the trajectories with the initial dates (xo,yo) and (x i ,yo) by T0 and T1. 
Consequently we have c1(xo(0),yo(0)) = (xI(0),y1(0)). Now we fix < 710 By 
Lemma 5 there exists to > 0 and t 1 > 0 such that yo (to) = 71 1 (t 1 ) = . Repeating the 
considerations for the proof of inequality (38) we find t 1 < to. Therefore exp((n-2)t 1 ) < 
exp((n - 2)to). By (42) and Corollary 1 we get 

exp((n - 2)ti)(xi(0),y1(0)) < exp((ri - 2)to)(xo(0),y0(0))

c1(xo(io), yo(to)) > J(x (t 1 ), y1(t1 )). 

This is a contradiction to (42) 1
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Now we can give the announced proof of Lemma 7. 

Proof of Lemma 7. Owing to (0, —a) E N(a) fl Mo we define F0 (0) := —a. By 
Theorem 8 and Lemmata 8 and 9 we can construct a monotone increasing continuous 
function y = po(x), whose graph equals the set N(a) fl Mo. Now let be 51 the first 
eigenvalue of problem (3), posed in ci = B (cf. Theorem 2). As follows from the proof 
of Theorem 2/(b), there is no solution of equation (19) for parameters A > 5. 

We take now some A > Si and assume A E domF0 . Then we must find y = 
.Fo(A) such that (A, y) e N(a) fl Mo. We investigate the trajectory (x(t),y(t)) with 
(x(0), y(0)) = (A, y). By Theorem 6 we find a solution of equation (19) for the parameter 
A > 61. This is a contradiction. Consequently, the domain of the function y = Fo(x) is 
an interval 10, a 0 ]. There are the following two possibilities for F(x) as x - a0: 

1. Fo(x) converges for x -+ a0 to a point of the heteroclinic orbit, such that 
XH(t) = a0 and lim z _ ao .To(x) = y ji (t) hold for some t E R. 

2. lim x _ ao .To(x) = 2. 
We assume the first hypothesis. Owing to the continuity of .F 0 we find E > 0 such that 

Y < -	((x, y) E N(a) fl Mo fl B((0, —a), c)). 

We choose (x 0 , y0 ) E N(a) fl Mo fl B((0, —a),) \ {(0, —a)} and consider the trajec-
tory (x(t),y(t)) with (x(0), y(0)) = (x 0 , y0 ). Then we have (x(t),y(t)) = aexp((n - 
2)t) (t E R). Consequently (x(t),y(t)) < a (t < 0), and the graph of .To(x) cannot 
intersect the curve {(x(t),y(t))It < 0} for x > x 0 . For a sufficiently small S we consider 
the environment B((xo, yo), 8) fl M0 of (x 0 , yo) in M0 . Due to Lemmata 3 - 5 the curve 

N(a) fl M0 fl B((xo,yo),5) \ { (x,Fo(x)) x x0} 

is located in the phase plane below the curve 

{(x(t), y(t))I t < 0) fl B((xo , yo), 5). 

Owing to the continuity of the curves N(a) fl Mo and {(x(t),y(t))It < 01 fl M0 we 
conclude that N(a) fl Mo is located below {(x(t),y(t))jt < 01 fl M0. Considering 
(x(t), y(t)) and the heteroclinic orbit in the phase plane we see that our first hypothesis 
is false. So we have limz_a o .Fo(x) = 2 for some a 0 > 2(ri - 2). The rectifiability of the 
curve N(a) fl M0 is a consequence of the monotony and continuity of F0 I 

Corollary 2. On the ray k = { ( x,2)Ix > A FK} we find the following. properties of 
the asymptotic function: 

• The restriction c(x,2) is strongly monotone increasing for x > AFK. 

• One has lim Z .. . A FK 4(x,2) = 0 and limz_oc,(x,2) = 00. 

Theorem 11. For every a > 0 we can represent the set N(a) as a non-intersecting 
rectifiable C'-curve K. Denoting its arc length parameter by s, we find b E (0,001 with 

N(a) = K,,(s) = {(x0(s),y(s))I0 <s< b}	and	limI(s) = (0,—a).
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Furthermore, there exists a E (0, b) such that 

N(a) fl Mo = {(x(s),y(s))o <s a} 
N(a) fl MI = { ( xc(s),y(s))Ia <S < b}. 

The point (xa(a), y,,(a)) E N(a) is the only intersection point of N(a) with the ray 

K: = {(x,2)Ix > A,-}. 
Proof. By Lemma 7 we can represent the set N(a) fl Mo as a non-intersecting 

rectifiable C'-curve. Let be a its arc length. Then we have N(a)flMo = {(X Q (s), ya(S))I 
0 < s < a}.. By Corollary-2 the point (xa(a),y(a)) E N(a) is the only intersection 
point of N(a) and the ray K: = {(x,2)Ix > AFK}. 

We want to show that N(a) fl MI is a connected curve. Suppose that the points 
(x 0 , y0 ) E M1 and (x 1 , y 1 ) E M1 belong to the same level set N(a). Consequently, there 
exists t > 0 such that 

'I' t (xo,yo) E N(a exp(n - 2)t) fl M0 and 'P(x 1 , y 1 ) e N(a exp(ri - 2)t) n Mo. 

With regard to Lemma 7 there exists in M0 a unique curve K beginning in 'P(xo,yo) 
and ending in tI1(x1, Yl), on which one has 41(K) = a exp(ri - 2)t. We consider the curve 
'I'_K. It is contained in N(a). Therefore it has at most one intersection point with the 
ray K: (cf. Corollary 2). The initial point (x0 , y0 ) and the end point (x 1 , y 1 ) of 'I'_K 
are in M1 . Therefore 'I'_K is completely contained in M1 and we have 4'I'_gK = a. 
Consequently the set N(a) fl MI contains a uniquely determined curve 

k((x 0 , y0 ) 1 (x 1 , y 1 )) := 'I'_K	 1(43) 

connecting our points (xo,yo) and (x 1 , y 1 ). Hence N(a) fl MI is connected. 
Regarding Theorem 9 and the implicit function theorem we find for every (x 0 , yo) E 

N(a) fl M1 some E > 0 such that 

N(a) n M1 n ((xo - E, xo + e) x (Yo - C, I/o + e)) 

can be represented in one of the following ways as graph of a continuous function: 

Y y(x)	(x E (x 0 —e,xo +e))	 (44) 
= x(y)	(ye (I/o — E,Yo +e)).	 (45) 

Therefore N(a) fl M1 is a non-intersecting, connected C 1 -curve. The rectifiability . of 
N(a) fl M1 is a consequence of the rectifiability of N(a) fl Mo (cf. Lemma 7) and 
Theorem 101 

Now we proceed with 

Step 4: Investigation of the level sets for n , 10. For n > 10 we consider in the 
phase plane of system (20) - (21) the connected curve 

K::=THU{(x,2)Ix>2(n-2)}. 

It decomposes the set Mt into two subsets M0 and M1 . By M0 we denote the lower 
and by M1 the upper of them. (M0 is shaded in Figure 2.)



- 

A Semilinear Elliptic Equation	941 

Lemma 10. Let be n > 10. For every a > 0 we can represent the set N(a)flMo as 
graph of a monotone increasing continuous function y Fo(x) (x e [0,aoj), i.e. there 
exists ao = ao(a) > 2(n - 2) such that 

N(a)flMo= {(x,y)Iy=Fo(x),xe(0,ao]}. 
Furthermore, .T0 (0) = —a und Fo(ao) = 2. On the ray {(x,2)Ix > 2(n - 2)) we find 
the following properties of the asymptotic function: 

• The restriction '1(x, 2) is strongly monotone increasing for x > 2(n - 2). 

• One has hm_.2( ._ 2) (x, 2) = 0 and 1im_	(x, 2) = 

•	 Figure 2 

Theorem 12. We consider the level sets N(a) of 4 for n ? 10. For every a > 0 
we can represent N(a) as a non-intersecting, rectifiable C'-curve K,,. Denoting its 
parameter of arc length by s, we find b E (0, oc] with 

N(a) = K. (s) {(x(s),yQ(s))0 <S < b} and limKQ (s) = (0,—a). 

Furthermore, there exists a E (0, b) such that 
• N(c) fl Mo = {(x(s),y(s))I0 <s < a} 

N(a) fl M1 = {(xa(s),(s))Ia < S <b}. 
The point (xcy(a), ya(a)) E N(a) is the only intersection point of N(a) with the ray 

={(x,2)lx>2(n-2)}. 

The proofs of Lemma. 10 and Theorem 12 are. analogous to those of Lemma 7 and 
Theorem 11 and hence omitted. 

Now we come to 

Step 5: Proof of the final results. By means of the shape of the level sets N(a) we 
deduce bifurcation results of equation (19) and prove Theorems 4 and 5.
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Proof of Theorem 4. Part (a): We define A(m) = ao(mr()/2ir), whereby 
ao( . ) is as in Lemma 7. By Lemma 7 it follows that the straight line g(A) := {(A,y)] y E 
IR) possesses for every A e (0, A 1 ] at least one intersection point with the level set 
N(mr( 2 )/27rfl. By Theorem 6 equation (19) possesses for parameters A E (0, A 1 ] and 
m at least one solution, i.e. we obtain assertion (a). 

Part (b): In the phase plane of system (20) - (21) we consider a point (, i) e M1. 
By Theorem 11 there exists a unique curve K() C N('(e,ii)) with initial point (e, 77) 
and end point (0, ii)). This curve cannot intersect the heteroclinic orbit, because 
every level set N(a) (c > 0) is completely in M. We choose k E N. Now we take a 
point (, q ) E M1 sufficiently close to (2(n-2),2). Owing to the shape of the heteroclinic 
orbit of system (20) - (21) for 2 < n < 10 (cf. D. Joseph and T. Lundgren [10]) and 
the disjointness of TH and we find values 0 < A 1 < 2(n - 2) < A 2 such that the 
straight line g(A) = {(A,y)]y E R} has for every A E (A,, A 2 ) at least k intersection 
points with the curve K( , ) ( cf. Figure 1). By Theorem 6 we find that equation (19) 
possesses for parameters A E (A,, A 2 ) and m = (27r)(,)/F(.) at least k solutions. 
Hence we obtain assertion (b) for A E (A,, A 2 ) and rn = ( 27r)	(, 7 )/r() I 

Proof of Theorem 5. Part (a): We proceed as in the proof of Theorem 4/(a). 
Instead of Lemma 7 we use Lemma 10 and instead of AFK we take the value 2(ri - 2). 

Part (b): The most significant difference to the proof of Theorem 4/(b) is the shape 
of the heteroclinic orbit of system (20) - (21) for n > 10 (cf. D. Joseph and T. Lundgren 
[10] or Figure 2). We consider a point (, i) E M1 in the phase plane of system (20) - 
(21) for n > 10. Regarding Theorem 12 there exists a unique curve K( , ) C N(4(e, )) 
with initial point (,i) and end point (0,—(,r)). This curve cannot intersect the 
heteroclinic orbit. Now we consider a point (,i) E Mi with e (0,2(n —2)), i = 2 
and define A 1 := e. According to Lemma 10 we denote by A2 the uniquely determined 
value, for which A 2 > 2(n - 2) and (A 2 ,2) = (i) holds. Then the straight line 
g(A) := {(A, y)] y E R} possesses for every A E (A 1 , A 2 ) at least two intersection points 
with the curve K(,\,,2) C N((A 1 , 2)) (cf. Figure 2). Owing to Theorem 6 equation (19) 
has for parameters A E (A,, A 2 ) and rn = (2n)(A1,2)/r() at least two solutions. 
Hence we obtain assertion (b) for A E (A,, A 2 ) and m = (2n)I(A1,2)/r(.) U 
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