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A Semilinear Elliptic Equation
with Dirac Measure as Right-Hand Side

R. Spielmann

Abstract. We investigate solutions to the problem

Au=Aie* +mé  inD'(N)
u=g a.e. on 99,

where § is the Dirac measure and A, m are real parameters, m > 0. We discuss the existence
and uniqueness of solutions in dependence of these parameters. For the homogeneous Dirichlet
problem in a ball we give multiplicity results.
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1. Introduction

In this paper we investigate L!-solutions of the Dirichlet problem

(1)

Au = e + mé in D'(Q)

u=g a.e. on Of.
Here § is the Dirac measure, and Q is a bounded C?-domain of R", containing the
support of the Dirac measure. The parameters A and m are real, m is restricted to be
positive. We note that for dimension n = 1 problem (1) can be solved completely for all
real A and m. In the case of positive A there is a unique solution for every pair (A, m).
For negative X there are critical bounds for the parameters, such that a solution either
must or cannot exist. :

We will investigate problem (1) for dimensions n > 1 in dependence of the parame-
ters. For every positive pair (A, m) we show the existence and uniqueness of the solution.
In the case of negative A and positive m we find bounds for these parameters, for which
we state existence respectively non-existence of the solution. If we specify the problem
for homogeneous Dirichlet data, we find multiple solutions for certain parameters.
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Nonlinear elliptic equations with measures have been investigated by different au-
thors (see, e.g., L. Boccardo and T. Gallouet [3], L. Boccardo and F. Murat (4], T.
Kilpelinen and X. Xu [12]. These results are statements on existence and uniqueness of
the solution. Assumptions on the measure determine the choice of the solution space.
In the cited papers the measure is assumed to be a Radon measure with supplemen-
tary properties such as boundedness (see, e.g., [3]) or bounded variation and absolute
continuity with respect to the p-capacity (see T. Kilpelinen and X. Xu [12]). The inves-
tigations in [3, 4, 12] are restricted to Sobolev spaces, e.g. WIIOCI(Q) The techniques are
based on the approximation of the measure by means of functions in Sobolev spaces and
the use of estimates in suitable LP-norms. In our case (Dirac measure) it is impossible
to obtain such estimates.

F. Rothe [15] proposes to use the homogeneous Dirichlet problem
: Au = |z|%u|ul? + mé in D'(Q)
u=0 on 00

to find examples for the sharpness of regularity results for m = 0. He gives an example
of a distributional solution, but no solution class is specified.

In the present paper we find solutions in larger spaces than Sobolev spaces. Outside
of a small neighbourhood of the boundary no assumptions on the first derivative are
needed. Our technique is based on separating the singular part of the equation. The
reduced differential equation will be regular and can be treated in Sobolev spaces.

First we must formulate our problem correctly, i.e. we must specify the boundary
conditions of problem (1) and make assumptions, how to understand the non-linearity
e" in weak sense. We use the following notations: :

D(Q) space of test functions on Q,i.e. D(R) = C$*(Q)
D(Q) space of the corresponding Schwartz distributions on
B(z,r) ball with center z € R" and radius r > 0
B unit sphere in R"

() Gamma function
E() elementary solution of the Laplace operator. It is given as
E(z) { 7 In |z| in R?
T)= r3) 2—-n n
(n_—Z)Zan-lzl IHR,.TI>2.

K(Q) Kato class, i.e. the class of measurable functions g : 2 — R with

lim (SUP/ E(z ~y)lg(y)| dy) =0.
alo \ze0 Jjz—y|<a .
Especially, one has LP(Q) c K(Q) for p > 7 (see B. Simon [17]). Further, we define

the strip
S(e) = ( U B(z,e)) nQ
€90
for e > 0.
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Definition 1. Qur solution classes are
R'"7(Q) = { e* € L},.(R), and u|s() € W'P(S(¢)) for some ¢ € (0, l)}
and
R'®(Q) = {

Notice that these classes contain also functions with much stronger singularities
than the elementary solution E. In both classes R!"?(Q) and RY?(Q2) problem (1) is

formulated correctly, if we suppose boundary values g e W' »'P(09). The first equation
of (1) is equivalent to

/ u(z) Ap(z)dz = —A/ e*® p(z)dz + mp((0) (¢ € D(N)).
113 Q

Obviously, we have I}“’(Q) C R'?(f2). For positive A and m we can work in the class
RVP(Q).

In Section 1 we will prove the following

e* € K(Q), and u|s() € W'P(S(¢)) for some € € (0,1)}.

Theorem 1. Consider problem (1) for positive A\, m end boundary values g €
Wz_%”’(BQ), p > n. Then there exists a unique solution in RVP(Q).

In Section 2 we consider the case A < 0 and prove the following Theorem 2. Here
we state the existence of bounds for A such that there exists at least one solution
respectively there is no solution. In the latter case we will work — for technical reasons

- in the class RVP(Q).
Theorem 2. Consider the problem
Au = —)Xe* +mé in D'(Q)
u=gyg (z € 09) }
for parameters m,A > 0 and p > n. Then:

(2)

(a) There 1s 6 = 6o(n,Q) > 0 such that problem (2) possesses a solution u €
RYP(Q) for every 0 < A < &o.

(b) Define 6, as the first (positive) eigenvalue of the problem

—Ah = XemEH (z € Q) } ®)
h=0 (z € 09)
where the function f is defined as the solution of the problem
af=0 (=€) } (4)
f=9g-mE (z € OQ).

Then there is no solution u € R'P(Q) of problem (2) for A > &,.

The main goal of our paper is to establish multiplicity results for the homogeneous
Dirichlet problem (Theorems 3 - 5). For its formulation we first need some concepts,
which will be introduced later. The formulation of these results will be given in Section
3. The main part of the proof for Theorems 4 and 5 is done by phase plane analysis
similar as in .M. Gelfand [7].
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1. Existence and uniqueness for positive parameters

We consider the case A,m > 0 and proceed with the proof of Theorem 1 stated above.

Proof of Theorem 1. The ansatz
u=v+mF (5)

yields the following problem for the function v:

Av = \e™Ee? in
} (6)

v=g—-mE on 0f.

It is possible to construct weak sub- and supersolutions for the latter problem. Using a
result due to S. I. Pokhozhaev [13] we can find a solution v € W2?(Q) of problem (6)
Then u = v + mE is a solution of problem (1).

Now we will show the existence of a constant C = C(g) > 0 such that for every
solution u € RV'?(Q) we have the estimate

esssupu(z) < C. @)
€N

For this purpose we use the regularization 9, : R® — R* (¢ > 0) given by

52
y

for o] > ¢ <1

By definition of R"'?() there exists a constant C such that for every u € RY?(Q),p>n
we can find a strip S(y) with
sup u(z) < C. (8)
z€S(7) :
We take a C?-domain Q; CC Q with @\ S(y) C ©;. By u, we denote the restriction of
u to ;. Next we will show that u; is bounded from above. We take ¢ < dist(99, 9)
and consider the convolution

(uy * 9 )(z) = /B(O )u(x + 2)0.(2)dz (z € ).

It isin C*°(Q,). Owing to A(uy*9.) > 0in D'(Q)) and the classical maximum principle

it follows

‘ sup(u; * 9¢) < sup(u; *9,). (9)
o an,

The estimate
sup (u; *9.)(z) < C (e < dist(99,05(7)))
€0,

implies together with (9)

sup(u; *9¢) < C (e < dist(8Q,85(7)))- (10)
11
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Suppose now esssupq, u; > C, i.e. there exist @ > 0 and a set of positive measure
A C Q; such that u;(z) > C + « for all z € A. By (10) it holds

u(z) = (v *9:)(zg) >C+a-C=a (z € A). (11)

Consequently, ||u; —uj *J.||11(q,) > ameas(A). On the other hand, lim.—q |[u1 —u1 *
Je|lL1(@,) = 0. This is a contradiction. Consequently, esssupg, u; < C. Owing to the
independence of C on Q; we obtain (7). As a consequence for every solution u € R'"?(Q)
one has A(u — mE) = Ae* in D'(Q?) where the right-hand side of that equation is in
- L®(R). Then w :=u — mE € WP(Q).

Suppose now the existence of two solutions uj,uz € R"P(Q). Then we find for
wy :=u; —mFE and wy := u; — mE

Alw) —wy) = AemE(e®r — e¥?) in D'(Q)
w) — w2 = 0 on 0N.

The application of the mean value theorem and the Aleksandrov maximum principle
(see Gilbarg and Trudinger [9]) yields now w; = w i

Remarks. 1. Instead of the assumption g € Wl_%’p(aQ) we make use of the
stronger assumption g € Wz_:—*“”(aQ). This is needed for the application of Pokhozha-
ev’s supersolution technique [13].

2. We have supg u < supq u for the solution of Theorem 1 (maximum principle).

3. Supposing for the domain only Q € C!! and boundary values g € W%’Z(BQ) N
L°°(8S) we can show the existence of a solution u € R'?() of problem (1) for every
A, m > 0. Here we use a supersolution technique due to J. Deuel and P. Hess [6].

4. The uniqueness statement of Theorem 1 can be generalized in the following
way. In problem (1) we take a non-negative function f = f(z,u) instead of e*. In the
definition of RV?()) we replace the demand e* € L}, (Q) by f(-,u(-)) € L}, ().

5. Owing to the representation (5) of our solution u of problem (1) one can show
the continuous dependence of u on both parameters A and m in certain L9-norms, ¢ > 1.
For further details cf. R. Spielmann [16].

6. A similar version of Theorem 1 can be proved, if we take instead of é a Leray form
6r on a relatively compact C!-submanifold I' C R™, T C Q, defined by (ér,¢) := fr pdl’
for ¢ € D(Q).

2. Existence and non-existence for negative A

Now we investigate problem (1) for negative parameters A\. We will reformulate it to
obtain problem (2) with A > 0. The aim of this section is to prove Theorem 2.

In the function class R"?(Q) the following statement holds.

Lemma 1. Suppose that u € R'P(Q) is a solution of problem (2) with boundary
values g € Wl—‘F”’((?Q), p > n. Then u ~v+mE, whereby v € WEP(Q) N W'P(Q) is

loc
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a solution of the auziliary problem
—Avy = )e™Ee? in ) 1
v=g-mE on 0. (12)

Proof. The equation in problem (2) can be written as A(u — mE) = —\e* in
D'(Q). By definition of R”IQ) we have e* € K(Q). Applying [17: Proposition A.2.4]
we obtain v := u—mE € C(§?). Consequently, e* € L>®(). This implies the assertion

The next lemma is the "weak version” of a well-known classical result (cf. J. Be-
bernes and D. Eberly (2: Lemma 2.4]).

Lemma 2. Suppose a bounded domain Q2 € C?, and positive functions fo € LP(Q2)
(p > n) and f; € L°(Q) such that

f(zau) 2f0($)+f]($)u ((.’L‘,’u)EﬁX [0,00))

Furthermore, denote by Ao the minimal (positive) eigenvalue of the problem

—Au = A (z)u (z € Q)
u=0 (z € 69)} (13)
Then for A > Ao the problem
—Au = M f(z,u) (z € Q) } (14)
u=g (z € 00)

has no non-negative solutions u € W1 P(Q).

Proof.” Assume that the non-negative function & € W'(Q) is a solution of problem
(14) for some A > Ag. Then it is a supersolution of the problem

~Bu=Mh@E) +AEw)  (zeQ)
u=0 (z € 99).

Regarding u(z) := 0 as a subsolution we apply the supersolution technique of J. Deuel
and P. Hess [6] to find a non-negative solution u € W!?(Q) of the last equation. Im-
proving regularity by iteration we obtain u € W2P(Q). Owing to

—Au(z) > Afi(z)u(z) >0, u(z) £0 (z € Q), u(z) =0 (z € 9Q)
there follows u(z) > 0 (z € ).

Let w € W'%(Q) be the non-negative eigenfunction of problem (13) corresponding
to the eigenvalue \g. By a standard iteration technique one can show that w € W23 (Q).
Now we can apply Green’s second formula and obtain

ow Ou
0_./39 (uE—wa—V> dS

= /(qu — wAu)dz
Q

= [ (#@R () + A @u(@)] - u(E) M (@ul@)] ).
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It follows that
(Ao = A) /;) fi(z)u(z)w(z)dz = /\/S;w(z)fo(z) dz >0

and A < Ag. This is a contradiction to our assumption A > Aq

Now we prove the above mentioned Theorem 2 about the existence and non-existence
of solutions of problem (2).

Proof of Theorem 2. Part (a): The proof of this statement is similar to the
existence proof in Theorem 1.

Part (b): Regarding Lemma 1 it suffices to show that the auxiliary problem (12)
has no solution v € W"P(Q) for every A > §;. Assume v € W'P(Q) is a solution of
problem (12) for the parameter A > §,. By the ansatz v = h + f we obtain for A the
problem »

—Ah = demEH et (zeQ) 15

h=0 (z € 09). (15)

Obviously, A is positive. Applying Lemma 2 to the last equation and taking into.account
emEtfeh > emE+S | emE+fh (R > 0) we obtain the assertion il

3. Bifurcation of radially symmetric solutions

We investigate now problem (2) in the unit sphere B for homogeneous Dirichlet bound-
ary conditions, i.e. we consider the problem ‘

Au=—Xe* +mé  in D'(B) }

(16)
u=0 . (z€0B) 4
for parameters m‘, A > 0. In the case m = 0 problem (16) is called the Gelfand problem.
I. M. Gelfand (7], and D. Joseph and T. Lundgren {10] found for every A > 0 the number
of its solutions u € C?*(B) N C(B). For a survey see also J. Bebernes and D. Eberly [2].

Taking into account the Holder continuity of e™E we can conclude from Lemma
1 the representation u ~ v + mE with a function v € C**(B), a € (0,1) for every
solution u € R!?(B) of problem (16). Remark that the symmetry principle [8] is not
applicable to v. h

Definition 2. A solutionu € }}"P(_B) of problem (16) is called radially symmetric,
if the corresponding function v € C%%(B) according to Lemma 1 is radially symmetric.
We denote this by u(r) ~ v(r) + mE(r) (0<r <1).

From problem (12) it follows that v = v(r) solves the ordinary differential equation

& ~1d o B
d_r“+”r d—:+Ae"‘E(')e"(’).=0 O<r<1) (17)
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with boundary conditions

dv

- =0 and v(1) = C(m), (18)

r=0

0 forn =2
C(m) = ﬂil&r for n > 2.
(n-2)2n
For n == 2 this equation can be transformed by means of

, e e_g’ ﬁ(t) — v(.,-)’ z(t) = 17(t) - (2 + 2271_)

to an exact solvable differential equation for z = 2(t). Solving it we get

whereby

Theorem 3. The distribution problem (16) possesses for B C R2
« two radially symmetric solutions for every A € (0, 2(2 +2)?)

« one radially symmetric solution for A = 7(2+ 2)?

« no radially symmetric solutions for A > l(2 + = 2

Definition 3. We say that in A occurs an m-bifurcation, if problem (16) and the
Gelfand problem have different numbers of solutions for the value \.

Accordmg to Theorem 3 and I. M. Gelfand (7] an m-bifurcation occurs for A €
2,22+ )} | | _.

Now we consider radially symmetric solutions of problem (16) for dimensions n > 2.
We must carry out a bifurcation analysis of problem (17) - (18), but this is much more

comprehensive than for the case n = 2. Thercfore we will give the proofs for the
following theorems in Section 4.

Theorem 4. We consider problem (16) in B C R™, 2 < n < 10.

(a) For every m > 0 there ezists Ay = A\(m) > Apk such that problem (16)
possesses for every A € (0,\] af least one radially symmetric solution u € R "P(B).
Here we denote by Apk the so-called Frank-Kamenetzki parameter (cf J. Bebernes, D.
Eberly (2] and Definition 6 in the following section).

(b) For every k € N there ezist mx > 0 and values 0 < A\ (k) < Ap(k) < Ag(k)
such that problem (16) possesses for \ € (/\](k),/\z(k)), m = my at least k radially
symmetric solutions u € RV?(B) and for A > A3(k), m = my no solutions u € RV?(B).

Theorem 5. Consider problem (16) in B C R®, n > 10.

(a) For cvery m > 0 there ezists A} = A(m) > 2(n — 2) such that problem (16)
possesses for every A € (0, A] at least one radially symmetric solution u € RYP(B).

(b) There ezisth > 0 and values 0 < A, < Ay < Az-such that problenz; (16) possesses
for A€ (M1, A2), m =1h at least two radially symmetric solutions u € R*?(B) and for
A > A3, m =m no solutions u € R"?(B).

A comparison with the bifurcation results for the Gelfand problem obtained by D.
Joseph and T. Lundgren (10] yields m-bifurcations for every n > 2.
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4. Proof of Theorems 4 and 5
For n > 2 problem (17) - (18) has the form

d?v n-1dv

i = _ 2—ny v(r) _
Tt Aexp(—C(m)r* ™)e*” =0 (0<r<l) (19)

with d_:|r=0 = 0,v(1) = C(m) and the constant C(m) = ——Lq-(::l;;j: .

The proofs of Theorems 4 and 5 reduce to the bifurcation analysis of equation (19).
For the latter we use a phase plane analysis, i.e. we will transform this equation into a
dynamical system. The technique of phase plane analysis has been developed by I. M.

Gelfand (7], further we refer to D. Joseph and T. Lundgren [10], J. Bebernes and D.
" Eberly {2]. We use the dynamical system

2 o aly-2) (20)
R T (21)

which occured also in I. M. Gelfand [7]. First we give the following sketch of the proof
for the bifurcation analysis of equation (19):

Step 1: We classify the trajectories of system (20) - (21) in the right half of the phase
plane and specify their asymptotic behaviour by means of an asymptotic coefficient.

Step 2: We transform the solutions v of equation (19) into trajectories (z(t), y(t))
of system (20) - (21). Moreover, the parameters A and m will be transformed into
conditions for the initial value and the asymptotic coefficient of the obtained trajectory.
Then we define a mapping, the so-called asymptotic function, between the initial values
and the asymptotic coefficients. We prove some properties of the asymptotic function,
important for the characterization of its level sets.

Step 3: Let N(C) denote a level set of the asymptotic function. We investigate its
shape for 2 < n < 10.

Step 4: We investigate the shape of the level sets N(C) for n > 10.
Step 5: By means of the shape of N(C) we deduce bifurcation results of equation

(19).

We proceed with

Step 1: Investigation of the associated dynamical system. We classify the
trajectories of our dynamical system and give a concept to describe its asymptotical
behaviour.

Lemma 3. The system (20)—(21) has critical points (0,0) and (2(n —2),2). There
ezists a unique heteroclinic orbit Ty = (zy(t),yn(t)) (t € R) joining these points. In
the right half of the phase plane Ry x R we find furthermore

+ trajectories on the ordinate Torg = (O,y(O)e("_z)‘) (t e R)
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« trajectories T = (z(t),y(t)) (t € R) with the properties z(t) >0 (t € R) as well
as lim¢ 400 z(t) = 0, limi—4 0 y(t) = —0co and lime . _oo(2(t), y(2)) = (2(n — 2),2).

Proof. The uniqueness of the heteroclinic orbit has been shown by I. M. Gelfand
[7] for n = 3, and by D. Joseph and T. Lundgren [10} for n > 3. The rest of the proof
1s standard 8 :

Definition 4. Let be (z,y) € R+ x R and consider the trajectory T = (z(8),y(2))
(t € R) of system (20) - (21) with (2(0),y(0)) = (z,y). Assume, for some constant
one has
: t (n=2)t\ _
t_l}+m°°e (y(t) + ve )=0.
Then v will be called the asymptotic coefficient in the point (z,y).

If there exists some asymptotic coefficient in the point (z,y), it is determined
uniquely. Furthermore, it is easy to see that neither in points of the heteroclinic orbit
nor in (2(n — 2),2) a positive asymptotic coefficient can exist. Later we will show the

_existence of asymptotic coefficients for all other points in the right half of the phase
plane Ry x R.

Now we come to

Step 2: Transformation theorem and asymptotic coefficients. The following
thecorem points out the connection between our problem’ (16) and the asymptotical
behaviour of the trajectories of the dynamical system (20) - (21).

Theorem 6. The solutions of the auziliary problem (19) can be characterized in
the following way. o ’

1. Let v be a solution of equation (19). Then we find a solution (z(t),y(t)) of
system (20) — (21) with z(0) = X whereby v = (n — 2)C is the asymptotic coefficient in
(2(0),y(0)). : : :

2. Let be given a solution (z(t),y(t)) of system (20) — (21) with z(0) = A whereby
v = (n - 2)C is the asymptotic coefficient in (z(0);y(0)). Then the function

1 ()
| v(r) =1In 5

W+CT2-R+CY with t(r):—lnr (0<T<1)

and the constant o = In 2@ 13 a solution of equation (19).

Proof. Let v = v(r) be a solution of equation (19). By means of the transformation

5(t) = v(r)} - (0 <t< +00) (22)

and the constant o := In 3("I\;”we obtain from equation (19)

d*s

dv
dt? d

-(n-2) ” +2(n—2)exp(6—Cexp((n—2)t)—2t—a) =0
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for 0 < t < 400 with 3(0) = C, d‘ Y(4+00) = 0 and 5(4+00) < 400. With the help of the
transformation

2(t) =o(t) — 2t — Cexp((n -2))—a (23)
we get now

d?z

d
d—tz—(n—Z)d—j—-2(n—2)+2(n—2)e’=0 (0 <t < +00)

with boundary values z(0) = —a, %(+00) = —00 and z(+00) = —00. By means of the

transformation
2(2) = 2(n - 2)exp(2(t)) (24)
=242 (25)

we obtain system (20) - (21) with the boundary conditions

z(0) = A } and z(+00) =0 }
y(0) = —v'(1) = C(n - 2) y(+o0) = -

For 3 := —v'(1) it follows y(0) = §. From formula (23) we derive

dv  dzdt dt 1—n _ 1 2—n
T =g 2 tC@ - T = (y(t) - C(2-n)? 7).

Then we find from v’(0) = 0 the condition lim—4c0 €’ (y(t) + v exp((n — 2)t)) = 0 with
v = (n —2)C, and the first assertion of Theorem 6 is proved. The second assertion can
be shown by reversing the proof given above B

In the right half of the phase plane we define the set
M =R; xR\ ({(2(n —2),2)} U {(zu(t),yu ()|t € m}).

Theorem 7. In every point (z,y) € M there ezists an asymptotic coefficient.

Proof. For all points on the ordinate our assertion follows from Lemma 3. We
consider now (z,y) € M with z > 0 and y < 0. For the trajectory with initial dates
(z(0),y(0)) = (z,y) one has lim;_.4 o y(t) = —oo and z(t) > 0 for all ¢t > 0. With the

expression
z(t) = §(t) exp(-2t) } (26)
y(t) =n(t)exp((n - 2)t)
we obtain from (20) - (21)
L Getoes(n-2m
dn : (27)

5 = ~¢()exp(-nt).
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The functions { = {(t) and n = n(t) are monotone decreasing for ¢t > 0 and £ possesses
a continuous inverse function t = t(£). Furthermore, there exists lim_o, £(t) = Ce> 0.
From (27) it follows

n' _ _exp((—2n + 2)t)
§' U
(%Z# = —exp((—2n + 2)t).
Defining
wt)= 3% (£20)
w(¢) =w(t(¢)) (€€ (Ce,£(0))
we get
z—? = —exp ((—2n + 2)t(€)) (Ce < £ < €(0))
£(0)
B(E0) ~5(Co) = - [ exp((~20 -+ 2t(6)) de
Ce

as the integral and consequently the limit lim_ oo w(t) = W(Cp¢) exists because of the

boundedness of the integrand. Accordingly, there exists lim;—oo 7(t) = —/2W(Cp).
We want to show that the asymptotic coefficient in (z(0),y(0)) is equal to v :=

V2w(C¢). We have

‘ v B n(t) + v
e (u(t) +yexpl(n —2)0) = T

For ¢ — oo the last fraction is an expression of the form g. Applying L’Hospital’s rule
we obtain

ny . n(t) +
Jlim e (y(t) +yexp((n - 2)1)) = lim exp((1 —m)t)
n'(t)

- zll.n;o (1 —n)exp((1 - n)t)

o E@exp(-nt)
t—oo (1 — n)exp((1 — n)t)

=0.

Consequently, we find in (z,y) the asymptotic coefficient v = /2w(C¢). Now we
show that for every point (z,y) € M an asymptotic coefficient exists. Without loss of
generality let be z > 0 and y > 0. We consider the trajectory (z(t),y(t)) with initial
dates z(0) = z and y(0) = y. Then there exists 7 > 0 such that z(7) > 0 and y(7) < 0.
Define n := ¢t — 7. Accordingly, (z(r), (7)) := (z(t), y(t)) are also solutions of system
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(20) - (21). According to the previous considerations the point (Z(0), §(0)) has a positive
asymptotic coefficient v. Therefore

Jim_e"(§(n) + yexp((n - 2)m)) = 0

e " t_l§+m°° e (y(t) + yexp((2 — n)7)exp((n — 2)t)) = 0.

Then (z(0),y(0)) has the asymptotic coefficient yexp((2 — n)7) B

Hence, there exists a function ® : M — R associating every point of M to its
asymptotic coefficient. We call it the asymptotic function. From the last proof it follows

Corollary 1. Let be given a trajectory T = (z(t),y(t)) (t € R) with initial dates
in the set M. Then for two arbitrary points (z(i0),y(to)) and (z(t1),y(t1)) it follows

3 (z(t1), y(t)) = exp (2 = n)(to — 1)) B(a(ta), y(t0)).

We will show the continuity of the asymptotic function on the subset

Mo := Ry x R\ ({(2n —2),2)} U {(zn(®), ()|t € R} U {(0,v)]y 2 0})

which is open in Ry x R. First we prove a representation formula.

Lemma 4. Let (z,y) € M be the starting point of the trajectory T = (z(t),y(t)),
that means we have (z(0),y(0)) = (z,y). Then

+ o0
(z,y) = —y + / 2(n) exp((2 — n)7) dn.

0

Proof. The assertion follows from Lemma 3 for all points on the ordinate. Consider
now initial values (z,y) € M with z > 0. From (21) we obtain

y(t) = exp((n — 2)t) (y(ﬂ) - / 2(7) exp((2 — n)7) drz) .

0

We consider the expression

+oo
A(t) = ¢! [y(t) + exp((n - 2)t) (—y(O) + / z(n) exp((2 - n)n)dn)}

t

+{o z(n) exp((2 — n)n)dn
exp((1 — n)t)

The last version is for ¢ — 400 of the form g—. Applying L'Hospital’s rule, we find

t

+oo
lim ef [y(t) + (—y(O) + / z(n)exp((2 - n)n)dﬁ) exp((n — 2)0}' o
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t
- — lim z(t)e '
t—+o0 1 —n

For arbitrary real n also (£(t),§(t)) := (z(t + n),y(t + 7)) is a solution of system (20) -
(21), and it yields

. :z(t)e‘ e" . e”
- 1 = 1 t — . - t
‘"*12100_1 -n n-1 t—}gloox(t +me n-1 t—l}inoo Z(t)e'.

There exists n > 0 such that y(n) < 0 and consequently §(0) < 0. By means of
expression (26) we find functions (4(t), 5(t)), which satisfy (27). Then lim¢—. 400 @(t) <
oo and consequently lim;— 4o Z(t)e! = 0. Hence

z(n)exp((2 — n)n)dn | exp((n - 2)t)| =0

t—

+ o0
lim e |y(t)+ | -(0) +
0

and the statement is proved i

Theorem 8. The asymptotic function ® is continuously differentiable on the set
M.

Proof. We consider the trajectory T = (z(t,p, q), y(t,p,q)) (t € R) of system (20)
- (21) with the initial dates z(0,p,¢) = p and y(0, p, g) = ¢. Now we want to investigate
the function

+

o0

3(p.q) =—q+ [ z(t,p,q)e® ™dt  ((p,q) € Ry x R).

S,

First we choose (po,q0) € Mg with py > 0. For every ¢ > 0 we find ¢, such that
z(t,po,qo) < € for all t > t,. The mapping ¥ : R? — R? associates every point of the
phase plane to its image after the time t,. For the sake of the continuous dependence
of (z(t,p, q),y(t,p,q)) on (p,q) there exists a ball

B= B((”(tml’o,%),y(teapo,%)),51) C Ms n([O,E) x R_),

which will be mapped by means of ¥~! on the open set ¥=!B C Mg. Then yields
z(te,p,q) < ¢ for every trajectory (z(t,p,q),y(t,p,¢)) with initial dates (p,q) € ¥~ B.
For (p,q) € ¥~1B it follows

+ oo
/ z(t,p,q) e?"™dt < ¢

te -

e(2—m)tgy

o\.é.

and the uniform convergence of f0+°°z(t,p,q) e(2=™t dt is established. By means of
the continuous dependence of (¢, p, q) on (p,¢)-and the limit lim;_.4 o z(¢,p,¢) = 0 we

receive the continuity of z(¢, p, ¢) e(2~™* in the set R4 x ¥~1B. Accordingly, the integral



A Semilinear Elliptic Equation 933

f0+°° z(t, p, q) e2~™)dt is continuous in the set ¥-1B. In this way we have established
the continuity of the function @ = &(p,q) on Ms \ {(0,9)|¢ € R}. Analogously, we
show the continuity of ® in points (0, go) with ¢o < 0.

Now we demonstrate for (p,q) € Me the uniform convergénce of the integrals

+o00

t ' oz(t
I](p,q)z w‘e(z_n)tdt and I2(P, / 1: P;q) (2 n)tdt
0

P

o-\..é.

We choose (po, qo) € Mg with pg > 0. For arbitrary K > 0 a.nd ¢ > 0 we find as above
t. and § > 0 such that for all (p,q) € B((po,qo) 8)

, .. z(t,pg<e | . L
.y(t,p,q)<_K} (t > t.): A (28)

We determine the function 6z(t,p 9 from the variational equation (cf. V. I. Arnold [1])

d [—"”(5;1"‘”] _ [y(t,p,q) —2 I(t,P,Q)] [——a’(é’,f”")] [—L—Lax o )} _ [1]

dt | 8v(te.) -1 n—2 dy(t.p.9) dy(0,p,9) 0
S8p ap op’

Let be

. t,p,q) -2 z(t,p,
Aiipig) = [y( P,q) ( pq)].

-1 n—2

By (-,-) we denote the inner product of R? induced by the Euclidean norm. With the
notations

u(t,p,Q)=(ax(g;’q),ay(g;”q)) and h(t,p,q)=(u(t,p,q),9(t_,p,q))

it follows for all (¢, p,q) € [te, +o0) x B((po,q0), )
d ' y
-t P 9) = 2(A(t, . g) ult, P, 9), ult, P, 9))
I 37P’q -1 1
L2 D23 bt,pug)

Let be C := 2(n -24 Ez,ﬂ) Then we obta.ir'l‘

§2<n—2+

%h(t,p; 9)<C h“(t,p,q) ((t,p,q) € [te, +00) x 'B((?o.a %),9)).

Integrating this inequality we find a constant C; > 0 such that

(2RO < rexplC)  (40) € ferboo) % Bln,an) ). (29)
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With regard to the estimate % <(n—-2)y (t € R) we find a constant C; > 0 such that

y(t,p,q) < ~Crexp(n = 2)t)  ((t,p,9) € [te, +0) x B((po,0),5)).  (30)
Estimating (20) and using (30) we obtain

S -Cion((n =20 ((tp.0) € [t +00) x Bl(po,a0),6).

Integrating the latter, we find a constant C3 > 0 such that

z(t,p,q) < Cs eXP(— ncfz exp((n — 2%» ((t,p,9) € [te, +00) x B((po,q0),)). (31)

Regarding to the estimates (29) and (31) we find for b(t, p, q) := z(¢, p, q) %’:’q)

t1ir+n b(t,p,q) =0 uniformly with respect to (p,q) € B((po, q0), 6). (32)

Define a(t,p,q) := y(t,p,q) — 2 and é(t,p,q) := exp(f:‘ a(s)ds). From the variational
equation we derive for t > ¢, -

9 9z(t,p,q) _ 9z(t,p,q)
at ap - a(typ’ q) ap + b(tap; q) V
a t, , . t B
—I(a: 2) =¢(t,p,q)+/ é(t,p,q) ¢~ (7,p,q) b(7, p,q) dr
te

whereby %d)(t,p, q) = a(t,p,q) é(t,p,q) (t>t¢.). Using (28) we get for T € [t,,1]
qs(tap: q) ¢_1(Tv p, q) < exp ( - (K + 2)(t - T))
#(t,p,q) <exp(— (K +2)(t - t.)).
Hence it follows for all (p,q) € B((po,q0),6) and t > ¢,
¢

_638(2;’ = ’ <exp(— (K +2)(t~t.)) + / exp (~ (K ‘+' 2)(t =~ ) b(r,p,q) dr.

te

On combining this inequality and (32), we find

i 0560, 9)

Jm =5, =0 uniformly with respect to (p,q) € B((po,0),9). (33)

Hence the integral I)(p,¢) converges uniformly in B((po, 90),6). Analogously we verify
the uniform convergence of I;(p, q) in B((po, o), §).

Define D := B((z(t,,po,qo),y(te,po,qo)),é). " By means of the continuous dif-
ferentiability of (:t:(t,p, q),y(t, p, q)) on (p,q) and (33) the continuity of the function
g%le“_")‘ in R4 x D follows. Analogously we verify the continuity of az(g#le(z‘")‘
in R4 x D. Hence f0+°° z(t,p,q) e2~™t dt is continuously differentiable in D. In this
way we verified the continuous differentiability of ® in the set Mg\ {(0,q)|q € R}. Anal-
ogously we show the continuous differentiability of & in all points (0,90) with go < 0
(instead of B and B((po, 0),6) we choose fitting hemispheres)-#
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Corollary 1 implies for ¢; =t and t; = 0 the equation

di(rc_(z,yﬂ = (n — 2)®(z(t), y(2)).

On the other hand we find

do(z(t),y(t)) _ 0%2(=(t), y(1)) d=(t) | 0%(z(1),y(t)) dy(t)

dt Oz dt Oy - dt
o9 a9
= a—zz(y—2)+ Ej—((n—?)y—z).

In this way we obtain

Theorem 9. In the set M¢ one has

o0d 0%

ey =2+ 5 (=2 -2) = (=22

Definition 5. ¥, (¢t € R) denotes the flow of the system (20) - (21). For every
a >0, N(a) = {(z,y) € R} x R|®(z,y) = a} denotes the level set of the asymptotic
function @ in the right half of the phase plane.

Corollary 1 implies now

Theorem 10. For every a € R one has U,(N(a)) = N(exp((n — 2)t)a) (t €
R). (The flow transforms the level sets into another.)

Now we proceed with

Step 3: Investigation of the level sets for 2 < n < 10. Let be 2 < n < 10.
We choose a parametrization (zx(t), y#(t)) of the heteroclinic orbit. Then there exists
to = max{t € R|yx(t) = 2}.

Definition 6. The value Apg = zh(to) is called the Frank-Kamenetski parameter
of the Gelfand problem for 2 < n < 10 (cf. J. Bebernes and D. Eberly [2] and Figure
1).

The ray K = {(z,2)|z > Ark} divides the set Mg into two subsets Mp and M;.
The subset M, consists of pairs (z,y) with y < 2 (the shaded area in Figure 1). So we
obtain the decomposition My = My U M,.

Now we want to investigate the subset N(a) N My. The proofs of the following two
lemmata are trivial and omitted.

Lemma 5. Consider T = (z(t),y(t)) with initial dates (z(to), y(to)) G Mo\ {(0,¥)|y
€ R}. Then: .

1. The functions z = z(t) and y = y(t) are monotone decreasing for t > to. ‘

2. For everyn > to the curve K = {(z(t),y(t))|to <t < n} can be represented in the
phase plane as the graph of a monotone increasing functiony = f(z) (z € [z(m), z(t)))-
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M,

~&(¢, )

. Figure 1

Lemma 6. For all (z, y) € My \ {(0,0)} one has z > (n — 2)y.

Lemma 7. Suppose a > 0. Then there ezist an ag = ao(a) > Apk and a monotone
increasing contmuous function Fy such that the set N(«) ﬂ M, can be represen.ted as

the graph of y = Fo(z) (z € [0,a0)), i.e.
N(a) N Mo = {(z,y)ly = Fo(z), z € [0,a0]}.
Furthermore, 9(0) = —a and fo(ao) = 2. The curve N(a) N M, is rectzﬁable
To prove this sta.tement we need the followmg three lemmata _
Lemma 8. For every fized Io > 0 the function (I>(a:0,~) 13 stroﬁgly monotone de-
creasing on My, i.e. for points (z0,y0),(z0,y1) € Mo one has
| Cw<u = 2(zo,u1) < ¥(z0,0).

Proof. In the case of o = 0 our assumption follows from Lemma 3. Now we
consider two points (zo,y0) and (zo,y1) in the set Mo\ {(0,y)|y < 0}, whereby yo < y;.’
Let be

= (20(t),%(t))  and = (z1(t), na(t)) (teR)

trajectories with initial dates (zo(0), yo(O)) = (:co,yo) and (71(0),4:1(0)) = (z0,31). For
every i € (0,zg) the trajectory Ty intersects the straight line z = I in exactly one point
of My. The trajectory Tp attains this point at the time to > 0. Consequently, we have
Zo(to) = Z. Analogously we show the existence of an intersection point (z(t; ), y1 (¢, ) €
M, of T\ and z = %, which will be reached by Ty at the time ¢; > 0.

By Lemma 5 there are functlons fo= fo(z) and f; = fl(z) such that

{(IO(t),yO(t))lo <t< to} = {(z,9)lz € lp = [Io(tO)yZO(O)] v = fo(z)}
{(z1(0), yl(t))IO <t<ti)={(z,9)lz € I = [z:(t:),2:(0)], y = fu(x)}
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where Iy = I = [%,z0]. The graphs of fo and fi have no common points in the
phase plane. From fo(zo) = yo < y1 = fi(zo) now for all z € [£,zo] the inequality
fo(z) < fi(z) follows. Especially, one has yo(to). = fo(Z) < fi(Z) = y1(t1). We choose
a sufficiently small Z. Then we get by hélp of Theorem 8 and Lemma 3

0 < &(z1(t1), 41 (t1)) < &(20(to) yo(to))- C (39

The point (zo,y;) is an inner point of Mp. By means of the monotony of f, we find
fi(z) < 2 for all z € [Z,z0]. Remembering fo(z) < fi(z) (z € [Z,20]) we get now

1 1

2—fo($) < 2 — fi(z) (i Sz %) (35)
From (20) . .
T 1 dz o 1 -dez
o~ frmme v e o

follow. From these equations and (35) to < t; follows. Therefore exp((2 — n)t1) <
exp((2 — n)tp). By means of (34) we find

exp ((2 - n)tl) l1>(1:1(t,),y1(t1))4< exp ((2 - n)to) @(xo(to),yo(to)).
Our assertion results now from Corollary 1 A '

Lemma 9. For every fized yo the function ®(-,y0) is in My strongly monotone

increasing, t.e. '
o<z = ¥(z0,%0) < ¥(z1,y0)

Proof. The assertion follows for zo = 0 from Lemmata 3 and 4. Consider now
points (zo,y0) € Mo and (z1,y0) with 0 < zo < z;.  Then we have (z1,y0) € Mo.
We introduce the trajectory (zo(t),yo(t)) with initial dates (20(0),%0(0)) = (Zo,%0)
and the trajectory (z,(t),y1(t)) with initial dates (z1(0),31(0)) = (z1,y0). For a given
§ < yo there exist times to > 0 and t; > 0 such that yo(to) = y1(t1) = §. The curves
Ko = {(zo(t),40(t))|0 < t < to} and Ky = {(z1(t),%1())|0 < t < 1} are completely in
M,. Now we want to compare #y and ¢;. By Lemma 5 there are monotone increasing

functions fo = fo(y) and fi = fi(y) such that '
Ko = {(z.9)|2 = folw), v € o = [wo(to)s w(0))}
K, = {(x,y)\ z=fi(y), yeh =-[y1(t1),y1(0)1}
where Iy = I = [§,y0]. Analogously to the derivation of (35) we find

1 1
@) —(n—2)y - foly) — (n—2)y

welw) G

From (21)

/ foly) - (n - 2)? / hy) - (n =2y
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follows. By (37) we get

t < tp. (38)
Bearing in mind the monotony of yo(t) and y,;(t) for t > 0, we get
n(t) <w(t) (t>0) (39)

By the method of variation of constants it follows from (21) that

Yo(t) = exp((n — 2)t) (yo(O) - /xo(n) exp((2 - n)n) dn)

0

1 (t) = exp((n - 2)t) (yl(o) - /xl(n) exp((2 - n)n)dn) -

Therefore
t

exp((2 — n)t) (yo(t) — wa(t)) = /(rx(n) — z0(n)) exp((2 = n)n)dn. (40)
By Theorem 7 there exists fow(m](r;) — zo(n)) exp((2 — n)n)dn. By (39) for t > 0 the
inequality exp((2 — n)t) (yo(t) — y1(t)) > 0 follows. Therefore
+o0
/(Il(n) = zo(n)) exp((2 —n)n)dn = lim exp((2 —n)t)(yo(t) ~wi(t)) 2 0

and
+o00

[ a1y expl(2 = mymyan 2
0 .
By Lemma 4 there follows

zo(n) exp((2 — n)n) dn.

ov\.é.

@(21(0),41(0)) > ®(20(0), 30(0))- (41)
For (C],Cz) € My we define the ray S(C,,Cz) = {(z,y)|z > Ci, y = C;}. By (41) the

asymptotic function ¢ is monotone non-decreasing on every such ray. We want to show
that it is monotone increasing. For this purpose we assume the existence of two points
(z0,¥0) and (z1,y0) in My with z¢ < z, such that

®(z0,%0) = ®(z1,%0)- (42)

We denote the trajectories with the initial dates (zg,y0) and (z1,y0) by To and Tj.
Consequently we have ®(z¢(0),y0(0)) = ®(z,(0),%:(0)). Now we fix § < y. By
Lemma 5 there exists to > 0 and t; > 0 such that yo(to) = y1(¢1) = §. Repeating the
considerations for the proof of inequality (38) we find t; < t;. Therefore exp((n—2)t;) <
exp((n — 2)to). By (42) and Corollary 1 we get

exp((n - 2)t1) ®(21(0),41(0)) < exp((n — 2)to) ®(z0(0), %o (0))
®(zo(to), yo(to)) > ®(z1(t1), y1(t))-
This is a contradiction to (42)
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Now we can give the announced proof of Lemma 7.

Proof of Lemma 7. Owing to (0,—a) € N(a) N My we define F,(0) := —a. By
Theorem 8 and Lemmata 8 and 9 we can construct a monotone increasing continuous
function y = Fy(z), whose graph equals the set N(a) N My. Now let be é, the first
eigenvalue of problem (3), posed in Q = B (cf. Theorem 2). As follows from the proof
of Theorem 2/(b), there is no solution of equation (19} for parameters A > §;.

We take now some A > §; and assume A € domF,;. Then we must find y =
Fo(X)-such-that (A,y) € N(a) N My. We investigate the trajectory (z(t),y(t)) with
(2(0),y(0)) = (X, y). By Theorem 6 we find a solution of equation (19) for the parameter
A > §,. This is a contradiction. Consequently, the domain of the function y = Fo(z) is
an interval [0, ap]. There are the following two possibilities for F(z) as z — ao:

1. Fo(z) converges for z — ag to a point of the heteroclinic orbit, such that
zy(t) = ap and limz_—.q, Fo(z) = yu(t) hold for some t € R.

2. lim,_.,,o .7:0(.’1:) = 2.

We assume the first hypothesis. Owing to the continuity of Fo we find € > 0 such that
a -
y<-5  ((z,9) € N(a) " Mo N B((0, -a),¢))-

We choose (zo,y0) € N(a) N My N B((0,—a),e) \ {(0, —a)} and consider the trajec-
tory (z(t),y(t)) with (z(0),y(0)) = (z0,%0). Then we have ®(z(t),y(t)) = aexp((n —
2)t) (t € R). Consequently ®(z(t),y(t)) < a (t < 0), and the graph of Fo(z) cannot
intersect the curve {(z(t),y(t))|t < 0} for z > zo. For a sufficiently small § we consider
the environment B((zo,y0),8) N Mo of (zo,y0) in Mp. Due to Lemmata 3 - 5 the curve

N(a) N Mo 01 B((z0,%),0) \ {(z, Fo(2))] = < To}

is located in the phase plane below the curve

{(z(),y(¥)It < 0} N B((<0,30),¢)-

Owing to the continuity of the curves N(a) N My and {(z(t),y(t))|t < 0} N Mo we
conclude that N(a) N M is located below {(z(t),y(t))[t < 0} N M,. Considering
(z(t),y(t)) and the heteroclinic orbit in the phase plane we see that our first hypothesis
is false. So we have lim;_.,, Fo(z) = 2 for some ag > 2(n — 2). The rectifiability of the
curve N(a)N M is a consequence of the monotony and continuity of Fo i

Corollary 2. On the ray K = {(z,2)|z > Ark } we find the following. properties of
the asymptotic function: )

« The restriction ®(z,2) is strongly monotone increasing for > Ark.
. One has lim: ., ®(2,2) =0 and lim; oo ®(z,2) = 00.
Theorem 11. For every a > 0 we can represent the set N(a) as a non-intersecting

rectifiable C'-curve K. Denoting'its arc length parameter by s, we find b € (0, oo] with

N(a) = Ka(s) = {(zo(s),ya(s))|0 <s< b} and }1_1’.1'%) Ky(s) = (0, —a).
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Furthermore, there ezists a € (0,b) such that
N(a) N Mo = {(za(s),ya(s))|0 <s< a}
N(0) N My = {(2a(5), va(s))la < s < b}.
The point (za(a),ya(a)) € N(a) is the only intersection point of N(a) with the ray
o K ={(=,2)z > Apx}.

Proof. By Lemma 7 we can represent the set N(a) N M, as a non-intersecting
rectifiable C''-curve.. Let be a its arc length. Then we have N(a)N My = {(za(s), ya(s))|

0 < s < a}.. By Corollary 2 the point (z4(a),ya(a)) € N(a) is the only intersection
point of N(a) and the ray K = {(z,2)|z > Apx}.

We want to show that N(a) N M, is a connected curve. Suppose that the points
(z0,Y0) € My and (z1,y1) € M) belong to the same level set N(a). Consequently, there
exists ¢ > 0 such that

Ue(z0,y0) € N(a exp(n =2)t) " Mo and ¥(zy,y) € N(a exp(n — t) N M.

With regard to Lemma 7 there exists in Mo a unique curve K beginning in ¥,(z, yo)
a.nd ending in ¥(z,,¥) ), on which one has (K) = a exp(n—2)t. We consider the curve

Y_¢K. It is contained in N(a). Therefore it has at most one intersection point with the
ray K (cf. Corollary 2). The initial point (z9,yo) and the end point (z1,y;) of ¥_ K
are in M,. Therefore ¥_,;K is completely contained in M; and we have oV _ K = a.
Consequently the set N(a) N M, contains a uniquely determined curve

k((IO;yO))(Il,yl)) =V K o - (43)

connecting our points (zo,yo) and (z1,y:1). Hence N(a) N M, is connected.

Regarding Theorem 9 and the implicit function theorem we find for every (a:o, Yo) €
N(a) N M; some € > 0 such that »

N(@)NM N ((IO,_ €,Z0 +€) X (Yo — €, 50 + €))
can bg represented in one of the following ways as graph of a continuous function:
y =y(z) (2: € (zo —€,20 + 6)) v (44)
z=2(y) " (y€(yo—em+e)). ‘ ' - (45)

Theréfdre N(a) N M, is a non- intersecting, connected C'-curve. - The. rectifiability of
N(e) N M, is a consequence of the rectifiability of N(a) N Mg (cf. Lemma 7) and
Theorem 108

Now we proceed with

Step 4: Investigation of the level sets for n > 10. For n > 10 we consider in the
phase plane of system (20) - (21) the connected curve

K =Ty U{(z,2)z.2 2(n —2)}.

It decomposes the set Mg into two subsets My and M. By M, we denote the lower
and by M, the upper of them. (My is shaded in Figure 2.)
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Lemma 10. Let be n > 10. For every a > 0 we can represent the set N(a)NMp as
graph of a monotone increasing continuous function y = Fo(z) (z € [0,a0]), i.e. there
ezists ap = ao(a) > 2(n — 2) such that

N(a)n Mo = {(z,y)ly = Fo(z), = € [0,a0]}.

Furthermore, F3(0) = —a und Fo(ag) = 2. On the ray {(z,2)|z > 2(n — 2)} we find
the followsng properties of the asymptotic function:

o The restriction ®(z,2) is strongly monotone increasing for > 2(n-2).

+ One has lim;_o(n—2) ¥(2,2) = 0 and lim; . ¥(z,2) = oo.

y

M,

Mo

M 2(n ~2) A z

—e(3.2)
Figure 2

Theorem 12. We consider the level sets N(a) of ® for n > 10. For every a > 0
we can represent N(a) as a non-intersecting, rectifiable C'-curve K,.  Denoting its
parameter of arc length by s, we find b € (0, 00] with

N(a) = Ko(s) = {(za(5),¥a(s))|0 < s < b} and lim Ko(s) = (0,—a).
Furthermore, there ezists a € (0,b) such that
N(a) N My = {(za(s),¥a(s))|0 < s < a}
. N(a)ﬂM1.= {(za(s),ya(s))|a$§<b}. '
The point (zo(a),ya(a)) € N(a) is the only intersection point of N(a) with the ray
ST k= @)z >2An -2} '

The proofs of Lemma_10 and Theorem 12 are.analogous to those of Lemma 7 and
Theorem 11 and hence omitted. '

Now we come to

Step 5: Proof of the final results. By means of the shape of the level sets N(a) we
deduce bifurcation results of equation (19) and prove Theorems 4 and 5.
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Proof of Theorem 4. Part (a): We define \;(m) = ao(ml"(g)/27r%), whereby
ao(*) is as in Lemma 7. By Lemma 7 it follows that the straight line g(A) = {(\ )y €
R} possesses for every A € (0,A;] at least one intersection point with the level set
N(mI(2)/27%). By Theorem 6 equation (19) possesses for parameters A € (0, \;] and
m at least one solution, i.e. we obtain assertion (a).

Part (b): In the phase plane of system (20) - (21) we consider a point (€,n) € M,.
By Theorem 11 there exists a unique curve K¢,y C N(®(£,7)) with initial point (¢,7)
and end point (0, —®(¢,7)). This curve cannot intersect the heteroclinic orbit, because
every level set N(a) (a > 0) is completely in Mg. We choose k € N. Now we take a
point (§,7) € M, sufficiently close to (2(n—2),2). Owing to the shape of the heteroclinic
orbit of system (20) - (21) for 2 < n < 10 (cf. D. Joseph and T. Lundgren [10]) and
the disjointness of Ty and K¢, we find values 0 < A; < 2(n — 2) < Az such that the
straight line g(A) = {(A,y)]y € R} has for every A € (A1, \;) at least k intersection
points with the curve K(¢ ,y (cf. Figure 1). By Theorem 6 we find that equation (19)
possesses for parameters A € (A;,A2) and m = (271')%4)({,7])/1“(%) at least k solutions.
Hence we obtain assertion (b) for A € (A, ;) and m = (27r)%d>(£,77)/r‘(%) ]

Proof of Theorem 5. Part (a): We proceed as in the proof of Theorem 4/(a).
Instead of Lemma 7 we use Lemma 10 and instead of Apgx we take the value 2(n —2).

Part (b): The most significant difference to the proof of Theorem 4/(b) is the shape
of the heteroclinic orbit of system (20) - (21) for n > 10 (cf. D. Joseph and T. Lundgren
[10] or Figure 2). We consider a point (£,7) € M, in the phase plane of system (20) -
(21) for n > 10. Regarding Theorem 12 there exists a unique curve Kemy CN(P(E, 7))
with initial point (£,7) and end point (0, —®(£,7)). This curve cannot intersect the
heteroclinic orbit. Now we consider a point (£,7) € M; with £ € (0,2(n —2)), n = 2
and define A, := {. According to Lemma 10 we denote by g the uniquely determined
value, for which A; > 2(n — 2) and ®(A2,2) = ®(£,7) holds. Then the straight line
9(A) == {(X\ y)ly € R} possesses for every X € (A}, );) at least two intersection points
with the curve Ky, 2) C N(®(A1,2)) (cf. Figure 2). Owing to Theorem 6 equation (19)
has for parameters A € (A1,)2) and m = (27)F®(),,2)/T(2) at least two solutions.
Hence we obtain assertion (b) for A € (A1, ;) and m = (2m)7@(A1,2)/T(2)N
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