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A Nonlinear Beam Equation
Arising in the Theory of Elastic Bodies

K. Doppel, W. Herforf and K. Pfliger

Abstract. We study the global solvability of a nonlinear Cauchy problem, which arises in
the theory of oscillations in elastic bodies. We show that the linearized problem defines a
contraction semigroup, which is then used to transform the Cauchy problem into an integral
equation. Finally, it is shown that the corresponding integral operator has a unique fixed point,
which gives rise to a global solution of the original nonlinear problem.
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1. Introduction

Beam equations as a tool to describe nonlinear vibrations of continuous systems have a
long history. The mathematical modelling of such continuous systems leads to equations
of the type

Blw + Ffw + adFfw — B(Bgw)diw — F =0,

where 00,0 w is an internal damping term, the nonlinear term [(9¢w)d;w is related to
stiffness properties of the body, and the external force F describes aerodynamic damping
or excitation. For a general discussion of continuous systems and their mathematical
modelling we refer to Nayfeh and Mook [8].

Since exact solutions are not available in general, there is a bulk of literature dealing
-with these equations in order to improve this situation. It is of particular importance
to study the influence of the external force F' on the solutions of this equation. In the
paper of Holmes and Marsden [6] this external force depends - linearly ~ on the time
derivative of the solution, whereas experiments done by Blevins [2] have shown that,
already in very simple configurations of the body, nonlinear terms in the time derivative
may appear in F. In particular, he has shown that F' has to be a power series of the
form

F =a8w+a3(8w)’ + ...,
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where the coefficient a3 should be non-zero. For this reason we shall consider the

following equation as a model for nonlinear oscillations of elastic bodies under external
forces: ) .
0w + Fw + N0 Gfw - 720w

-7 (fol(afw)2d§) 3§w — 740w — v5(8,w)* = 0

where ({,t) € I x {t > 0}, = (0,1), and 71,...,7s are real parameters, v, > 0.
We impose initial conditions w(£,0) = wo(€), dw(€,0) = wy(€) and, following the
suggestions of engineers, we consider the boundary conditions

w(0,t) = w(1,t) = w(0,t) = Bw(1,t) =0, (1.2)
which describe the so—called simply supported ends. We remark that boundary con-
ditions which model clamped ends, i.e. w(0,t) = w(1,t) = Oew(0,t) = Gew(1,t) = 0
lead ‘o the Sobolev space HZ(I) as a natural function space for this problem, while the
natural boundary conditions for equation (1.1) in the space H(I)N Hl(I) are

w(0,t) = w(1,t) = ag(w + 110w)(0,t) = ag(w + 71 0w)(0,t) =0.

These boundary conditions were considered in the paper of Holmes and Marsden {6].
However, as already mentioned above, for applications in the field of engineering, it
secems to be more reasonable to use conditions (1.2), which were suggested, for example,
by Herfort and Troger in [7]. These boundary conditions lead to additional difficulties,
since one cannot use the classical Sobolev space H?, although this space would be
reasonable for equations of fourth order. Instead of this one has to introduce a suitable
subspace of H® which reflects the boundary conditions (1.2) of simply supported ends.

(1.1)

Setting u = w and v = ,w we may transform equation (1.1) into the system
Ju=v ‘ ‘ V
O = —Fgu — 118v + 720fu + 73 (fol(afu)zdf) Fu+ vav + 750° (13)

where we require the boundary conditions

w(0,2) = u(1,t) = v(0,t) = v(1,t) = 8}u(0,t) = u(1,t) =0 . (1.4)

and initial conditions

- u(€,0) = wo(§) and  v(£,0) = wi(§). (1.5)
Our main result is that system (1.3) under the boundary and initial conditions (1.4)

resp. (1.5) is uniquely solvable and the solution is continuous and differentiable almost
everywhere with respect to ¢ (Theorem 6.1). :

We organize the paper as follows:

In Section 2 we introduce a Sobolev space which contains the boundary conditions
(1.4). Then we reformulate the initial-boundary value problem (1.3) - (1.5) as a Cauchy
problem in this space. Section 3 is devoted to the solution of the corresponding linear
problem and in Section 4 we prove some estimates for the nonlinear part. In Section
5 we prove a fixed point theorem which is used in Section 6 to obtain a unique local
solution of the nonlinear problem. Using uniform boundedness results, which are proved
in the Appendix, we finally show that this solution is global. In a forthcoming paper
we shall study the qualitative behaviour of the solution.
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2. Sobolev spaces and the Cauchy problem

We define
H3(I) = { € H(D)] #(0) = (1) = 82(0) = B (1) = 0}

with the scalar product (¢1,92)n3(1) = (B¢p1,03p2)o , where (-,-)o denotes the usual
scalar product in L2(I).

Lemma 2.1. The norm induced by (-, )u3(ry on H}(I) is equivalent to the usual
H3-norm. In particular the inequalities

liellzs < 21183¢llo < 2 llell 1o (2.1)

hold for every ¢ € H}(D). 4
Proof. Let ¢ € Hy(I). Since ;¢ € Hg(I) satisfies the Poincaré inequality, we
get . .
8¢ ¢llo < 110¢llo - (2.2)
By the Sobolev. embedding theorems, ¢ is continuously differentiable, and since ¢(0)
(1) = 0, there exists £ € (0,1) such that J¢p(&) = 0. Therefore we get ¢ ()
f:o 3§¢p(y) dy and from the Cauchy-Schwarz inequality |G¢p(§)| < fol |6§<,o(y)|dy <

||8§<p||o, and by integration we get ||O¢p|lo < ||6§<p||0. The usual Poincaré inequality for
functions ¢ € H{(I) and (2.2) gives

A

llelio < 19eello < 19 ello < 116Z¢llo, - (23

from which the inequality (2.1) is easily established B

A simple consequence of Lemma 2.1 is that -
X = H}(I) x H\(I) (2.4)

is a Hilbert space with respect to the scalar product

u u
((v:) ’ (vi))x = (G¢u1,G¢uz)o + (ev1, O¢vz)o -

Next we introduce some operators which we need in the following considerations.

Definition 2.1. Let

_ D(Ao) = {(1‘)) €X

u+mv € HYI)NHYI)
v € Hy(I),0¢ (u + mv) € Hy (1)
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and define the operators 4g : D(4p) = X, Ay: X > X and B: X — X by

(u) ( : : ) (u> ( ’ )
) —62 —7132 v —32(u+71v)
(u) ( 0 .0 )(u) ( 0 o
! ‘7262 Y4 v ‘Yzaezu + ’Y-av)
B (u) ( 0 )
v 73||35u||%63u + 508 )

respectively, and set G = A; + B.

<

Observe that for u € Hy(I) one has ||G¢ul| ‘agu € H(I), and since Hi(I) is a
Banach algebra (cf. [1: p. 115]), v* € H}(I). Therefore, B is well defined on X. Since
0u € Hy(I), we obtain that A, is a bounded linear operator on X.

Using Definition 2.1 we reformulate problem (1.3) - (1.5) as the following

Problem A (Nonlinear Cauchy Problem). For given (“°) € D(Ay) find a solution
(%) € €([0,00), X) N C'((0,00), X) of the problem

ORIORION @)
o= o)

3. Solution of the linear problem

The linear Cauchy problem associated to problem (2.5) - (2.6) is the following

Problem B (Linear Cauchy Problem). For given (::) € D(Ap) find a solution
() e C((0,00),X) N C'((0,00), X) of the problem

()= ()
(o-()

To solve the linear problem, we show that Ay is the generator of a strongly contin-
uous contraction semigroup on X. For this we need the following results.

Lemma 3.1. The set D(Ay) is dense in X.

Proof. Fix (}) € X. Since v € H}(I) and C(I) is dense in H}(I), it is
sufficient to show that there exists a function ¢ € C°°(I ) that approximates u (in the
sense that [|0¢¢ — dZullo is small) and satisfies the boundary conditions ¢(0) = ¢(1) =
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37¢(0) = 3Z¢(1) = 9¢¢(0) = 9§é(1) = 0. Since Gu is in L*(I), we can find to any
€ > 0 a function ¢ € C§°(I) such that ¢ — 83u||o < €. We define .

3
() = / ew)dy (€€

Obviously, ¢(0) = 0, and since 8gu isin L1(I), it satisfies agu(l)—agu(ﬂ) = fol 3gu(£)d§
(cf. [4: p. 235]). The left-hand side of this equation is zero (this follows from u € H}([I))
and the right-hand side is approximately equal to fol (&) d€ (since ¢ approximates 63u

in the L'-norm, too). After a suitable change of ¢ we may assume that fo (p({) d¢ =0,
which implies Lp(l) 0. Next we consider

3 §
50 = [eway+c wmd 4= [omd  (eD
0 0

where C is an arbitrary constant. Again we have ¢(0) = 0 and

¢(1)=]¢(§)d5='/1 (/éﬁ(y)dy+0) df = I/E (y)dyd§+0

Choosing C = — fol f: @(y) dyd€, we get ¢(1) = 0. So we have proved 6?43(0) =g(0) =
0=3(1) = Z¢(1) and 8¢ = ¢ € CG®(I). Therefore, ¢ is the desired function and
we obtain the density of D(Ag) in X W

Lemma 3.2. The operator —Aq is accretive, t.e. (z,Apz)x < 0 for every z €
D(Ay).

Proof. For z = () € D(Ao) we get by partial integration

(z,Aoz)x = ((:) ’ (—62(uv+ ’71”)))x

= (agu, agv)o + (O¢v, ——62(u + 71v))o
= (agU,agb)o - (3?v,63(u + 1v))o
= —‘71(620;62”)0

<0

k)

sincey; > 00

Lemma 3.3. For any posttive A the operator Al — Ay is surjective.
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n v
(AT — Ag)z = y, i.e. we have to solve

('_/\tg +g§(;imv))' =,<(:) ’

This is equivalent to the determination of a function u € H}(I) which satisfies

Proof. Given y = (“") € X, we have to find an z = (") € D(Ag) such that

AUt B (u+Anu —mp) =1 e | - (3.3)
$ettiné w= (1‘+ A u — Ne, eqxu’a'ti(;n (33) éé.n:bt; w.riftén in tfie flgrlx‘rAl. B
. N

142y

Ffw+ w=7n+ | (3.4)

Since the right-ﬁand side of this equation belongs to H} () dnd the homogeneous bound-
ary value problem

22
14 /\7].11) =0

L e
w(0) = w(1) = Bw(0) = 63@(1) =0

has only the trivial solutioh, it follows that equation (3.4) has a unique solution in

H3(I)n H3(I). Setting

1 . K T . e /\ 1

U= — + ’ and V= ————w — — ,
. ‘A1.+/\71u.)£ 1_+/\71('.0 - 14y 1+/\71<p

we obtain that u 4+ v,v = w and 9 (u+mv) € H(I). Thérefore, (:) € D(Ay) is the
desired solution i o C R S .

Theorem 3.1. Let the operator Ay be as in Definition 2.1. Then there ezists a
strongly continuous contraction semigroup S with the following properties: ‘

(i) For zo € X the map t z(t) := S(t)zo belongs to C([0,00), X).

(ii) For zo € D(Ao) the map t — z(t) := S(t)zo bélo;zgs to C'((0,00),X) and
is the unique solution of the Cauchy problem %:c(t‘): Aoz(t),z(0) = zp.

(iii) For zo € X and t > 0..the inequality ||S(t)zol|x < ||zo|lx holds.

Proof. Since D(Ao) is dense in X (Lemma 3.1), —A, is accretive (Lemma 3.2)
and Al — Ag is surjective for positive A -(Lemma 3.3), the assertions follow from [11:
Theorem IV, 4.C] B

Remark that in fact it is not necessary to prove that the domain of the operator Aq
is dense in X (see [11: Problem IV, 4.2)). : :

For later use we state the following - .
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Lemma 3.4. If z € C([O oo) X), then the mappmg t e S(t):z:(t) belongs to
€ ([0, 00), X)- <
Proof. Let t € [0,00) and h € R such that t+he [0 00). We obtain
“S(t + h)z(t + h) — S(t)z(t)”x
< ||S(t + R)(z(t + k) = ()|l x + (St +B) = SEN=(t)]| x -
< |l=(t + R) — (@) + ||(S(t +h) — S(t))z(t)“x

Since z is continuous and S is strongly contmuous, we can ﬁnd to anye >0aé >0,
such that . -

ot +h) 2@y <5 and  |[(SC+R) - S(t))z(t)ll X <3

hold sirilultan‘eédsly for |h| < §. This shows that ¢t — S(t) z(t) is continuous il

4. Estimates for the operator G
For the solution of the nonlinear problem, we shall need some estimates for the nonlinear
operator G. : ) . : .

Lemma 4.1. The operator G : X — X from Definition 2.1 is bounded, i.c. for
every bounded subset E C X there 1s a constant Cp only dependmg on E and V2500575
such that ||G(z)||x < Cr for everyz € E.

Proof. We choose R > 0 such that |y < R (i = 2,...,5) and ||z||x < R for
z€ E. Wesetz= (") For the linear operator 4; we get -

“Al:l:”X H(‘Y'zazu +74‘U)

= ||[120¢u + 7aBevll, < R (19 ullo + 1Bevllo) < 2R2.

To estimate the nonlinear operator B, we remark that v € Hg(I) is continuous and

satisfies v(§) = f: d¢v(y)dy. Using the Cauchy-Schwarz inequality, we obtain

(€) < lBevllo.  for €. . .(41)

‘We claim that o '
1 L

2

nas(vs)uo;s{ / }Iv(£)|f‘|3ev(‘£)l2d£} _S3||3ev||§{ / @v(c)l’ds} =310eoll}  (4.2)

and get

0
bEC=Hx = H(nnaeunoa?umv ),
= [rshoeulizaiu + 1506(v%)||, < R(IGRulE + 3ll0ewly) < 4R*

where we have used (2.3). This shows that Cg = 2R? + 4R* is the desired constant I
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Lemma 4.2. For every bounded subset E C X there is a constant Dpgr only depend-
ing on E and v2,...,7s, such that ||G(z,) — G(z;)||x < Dg||zy — z2||x for z,,z, € E.

Proof. Choose R > 0 such that |vi| <R (i =2,...,5) and ||z|]|x < R for z € E.
Then we get (setting z; = () for 1 = 1,2)

et - G
= ”72(62111 — B2uz) + 74(O¢vr — Bevy)
+ 7 (I0e 13081 — 19¢ual30uz) +25(0eof - 0ud)||
< Il 108 = wallo + el 10 (o1 — o)l
+ ol { 0 13 102ws — OFuallo + [Ouslo [10¢ws 3 — 0cuel3]}

+ 1l 3e{ o = va)(o? +wrve + 1)}
From (4.1) we get the estimate

”af(v? +viv2 + U%)”o < 2”Ul a5‘01”0 + ”U165‘U2”0 + |IU26€‘U] "o + 2”112651}2”0
< 21|8ev1lg + 10 vallg + 10eva I + 21|0¢v 2.

From Jluillo < |9¢villo < llzillx < R and ||G¢uillo < [183uillo < |lz:llx < R we finally
obtain

IG(z1) = G(z2)lix < 2R||zy — z2l|x + R®||z) — z2]|x
+2R%||zy — z2|x + 3R%||z1 ~ 22| x + 6R%|zy — za|x -

Therefore Dp = 2R + 12R® is the desired constant il

5. A fixed point theorem
Let Y be a (real) Banach space whith norm || - ||y. For fixed real numbers 0 < o < ¢,

consider the space C([to, ], Y) of continuous Banach-valued functions over the (closed)
interval [to,?,]. Define for a fixed yo € Y the R-ball of functions from C([to,tl],Y) by

Bluw, R) = {6 € Cto,01,Y) 1900~ wolly S R (¢ € [to,t:])}.

Then we can prove the following

Theorem 5.1. Fiz yo € Y and assume that the function
FI C([to,t,],Y) - C([to,t]],Y)

has the following properties:
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(i) There ezists R > 0 such that ||[F($)(t) — volly < R for all ¢ € B(yo, R) and all
t € [to, t1])-

(ii) There ezists Kr > 0 such that |[F(¢)(t)— F($)(t)lly < Kr f:o llé(s)—(s)llyds
for all ¢, € B(yo, R) and all t € [to,11].

Then F has o unique fized point oo € B(yo,R). Furthermore, the sequence

{$n}nzo defined by do(t) = yo and dns1(t) = F(éa)(t) (n = 0) converges uniformly
with respect to t to the fized point doo.

This fixed point theorem is a consequence of a slightly more general result of Foias,
Gussi and Poenaru [5]. For the reader’s convenience we shall give here an independent,
more elementary proof.

Proof of Theorem 5.1. 1. We show by induction that for any integer j > 0 the
estimate h

to)?

165106 = d5Dlly < R—R(‘]— (5.1)

is valid for all ¢t € [to, ;). From property (i) we see that (5.1) is certainly true for 7 = 0.
Assume that (5.1) has been shown for k = 0,...,7. Then from property (it) it follows

that
16542() = 651Dy = IF(B541)(2) — F(&)(Olly
< Kn / 16541(s) — 85(s)lly ds

t -7 y
KL(s —to)’
< RKg / Kals —to)’ 4
to J:
K3 (t = to)*!
(7 + 1)
2. We show that {¢n}n>0isa Cauchy sequence with respect to the uniform norm
in C([to,t1),Y) and converges to a fixed point of F. Therefore we estimate

=R

p-1 )
[ $nsp(t) = Sa®lly <> Ngntir1(t) = dnss(®lly
j=0

p=1 ..
" KhL(t —to)
< RKR(t —to) E (‘rET])(:)-

/J _ ]
<RK" to) ZI\ (tl to)

KR(tl — )"

< R exp(Kr(t1 — to)) o

(where we have used the inequality (n + 7)! > n!j!). Consequently, we get the uniform
convergence of ¢, to an element ¢oo and the a priori estimate

l6oo(t) — da(t)lly < R exp(Kr(t1 — to)) L\,ﬁ(t;—!_to): (t € [to, t1]).
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Since F is continuous with respect to-the uniform norm, we can choose for each ¢ > 0
an n, € N such that

P (boo)(t) - ¢w<t>ny ;
S. ”F(¢°°)(t) - ”y + ||¢n+l d)oo IIY <e€

holds uniformly in t for every n > n,. This shows that $oo is a fixed point of F.

3. The fixed point is unique.. Indeed, assume that F(¢) = ¢ and F(3) =

Successive application of property (1) leads to
16 = %(®)lly = IF@)®) ~ F)Dly
t

Kr [ 16(s1) = w(on)lvdsy

- Kr / 16(s1) - w(s1)llyds:

SK;;// / ||d>(s,, — Y(sn)|lydspdsn—y - - ds,

to to
t s,
<kpf [ /||¢(sn)—yo|lydsndsn e dsy
to to _
‘t sy
+K"// / IIyo— $(sn)lly dsn ds,, L dsy
to to
< 2RKD (—t"). .':
n!

Since the last term té'nds to zéro as n'— 00, -we see that ¢(t) = 9(t) for every t € [tg, 1]
and the proof is complete §
6. Solution of the nonlinear problem

Ifze C'_([to, tl],X) is a solution of the Cauchy problem

3% = Aoz(t) + G(a(1)) } (6.1)

:C(to) =Ig € D(Ao),
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then it is also a solution of the integral equation
' . ¢
z(t) = ‘S(t.—;to)xo + /‘S(t— $)G(z(s))ds . (6.2)
to

A continuous solution z of this integral equation is called a mild solution, and it is
called a strong solution if z is differentiable a.e. with z’.€,L!((to,t1), X). First we shall
use the fixed point theorem of the last section to construct a unique (local) solution of
equation (6.2). In Theorem 6.1 below we shall prove that this is in fact a strong solution
which exists globally in time. '

Let X be t,he Hnlbert space (2. 4) a.nd define the mapping F : C([to,tl] X)
C(lto,t1], X) by *

F(z)(t) = S(t — to)zo + / S(t - 5)Gla(s)) ds, (6.3)

where zg is a fixed element in X, S is the semigroup of Theorem 3.1, and G is the
operator of Definition 2.1. To use the fixed point Theorem 5.1 for this function, we have
to check that there exist real numbers' 0 <ty < t; such that F satisfies the conditions
(2) and (¢t). Therefore, we prove the following

Lemma 6.1. Fiz 2o € X and let F be deﬁned by (6.3). Then there ezist real
numbers R > 0 and 0 < to < t; such that.

IF@)(®) - Zollx < R (6.4)
is valid for all ¢ € B(zo, R) and for allt € [to,11].
We give the proof of this lemma by the help of the following

Proposition 6.1. Let 7o € X' be given and-choose R >0 such that' R > || (1 =
.,5) and R 2 ||zollx. Then for any positve € < R there ezists o 6(1:0,5) such that
for to <t <tp+ 6(zo,€) the inequality -

IF(8)(t) — zollx < &+ C2r(t —to)

holds whenever ||¢(t) — zollx < R, where Cap 13 the con.stant from Lemma 41 corre-
spondmg to 2R. - . Wt Ty

"Proof. Fix ty > 0. Since S is strongly continuous, to € > 0 we find a 6(:00,6) >0
such that ||S(t — to)zo — zol|x < € for to < t < to + 8(xo,€). If [|4(2) — Io"x < R, we
have ||¢(¢)||x < 2R. Therefore from Lemma 4.1 we obtain a constant C2r such that
IG(#)(®)|lx < Car holds if ||¢(t) — zollx < R. Consequently we get

IE(8)(2) = zollx < 1St ~t0)z0 — zollx + / ’ns(t _,s)a(¢('s))'||x,¢s.; .
<e+ / IG(g(s))lx ds < € + Canlt ~ to)

where we have used. the contractlon property of S I
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Now we return to the proof of Lemma 6.1. If we set

IZ,;:} (6.5)

ty = to + min {6(10,5),

the assertion follws immediately.

Lemma 6.2. Under the assumptions of Proposition 6.1, for t € [to,t,] the estimate

IF(8)(t) - F@)(®)llx < Dar / 16(s) — w(s)llxds

holds for every ¢,4 € B(zo, R) where Dyg is the constant from Lemma 4.2.

Proof. From Lemma 4.2 we obtain

IF(6)() — F@)(Dllx < / IS( - )(G(S)(s) = G)(s))ll ds
< / 1G(8)(s) — G(¥)(s)llx ds

< Dir / 16(s) — b(s)] x ds

for every ¢,v € B(zo,R) Il
Finally, we can prove our main theorem.

Theorem 6.1. Let the parameters satisfy the assumptions
120, %20, 120, %<0, <0 (6.6)

Then for every T > 0 the Cauchy problem (2.5) — (2.6) admits a unique strong solution
z € C([0,T), X). |

Proof. Let T > 0 be fixed. For z € X the mapping t +— S(t)z is uniformly
continuous on [0, T]. Therefore, given ¢ > 0, there exists a 6(z0,€) > 0 not depending
on t such that ' '

S(to)z0 = S(t))zollx <& if [to — t1] < 6(z0,€), to,t1 € [0, T).

Now choose R > 0 such that ||zg||x < Rand |y < R (i=2,...,5),and fixe > 0 with
€ < R. From (6.4) we see that assumption (i) of Theorem 5.1 is satisfied for ¢ € [0,¢],
where t; = min {§(z,¢), %}

Assumption (ii) of Theorem 5.1 follows from Lemma 6.2 (with Kg = D;R). There-
fore we obtain a solution z of the integral equation (6.2) in the interval [0,t;] which is
unique by Theorem 5.1. Now if ¢t; < T, we set z; = z(t,) and repeat the argument
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above for the interval t; < t < t; = ¢; + min {6(:1:1,5), g:’: } To show that this pro-
cedure leads to a solution in the whole interval [0, T}, it is sufficient to prove that any
solution of problem (2.5)-(2.6) is a priori bounded for every ¢ € [0, T]. To show this, we
take the scalar product of (2.5) with a solution z(¢) in X and obtain

1d
5 312l = (Aoz,2)x = (G(2),2)x =0,

Since (Aoz,z)x <0, we have
1d /
éallzllfv - (/ 720 udev + 73| Ogullg0¢ udev + va(8gv)* + 759 (v°)d¢v dz) <0
0
and from v50¢(v®)d¢v = 3vs(0¢v)?v? < 0 we claim
1d . . :
5 g ll2l% = 72088 ullolld¢vllo — 1allidevllf — 3l B¢ullzll o ullolldevllo < O

In the Appendix, Lemma A .2, we shall show that [|8¢u|¢ is uniformly bounded for t > 0
if 73 > 0. As a consequence, we obtain the estimate ﬁl]z”"},{ < C||z||% with a constant
C depending only on 7v;, v3, 74 and {|O¢ullo. Now the uniform Gronwall lemma (cf.
[12: p. 89]) shows that ||z||% is bounded for all ¢t € [0, T] and the solution of problem
(2.5) - (2.6) exists for all time.

To show the differentiability a.e. in (0,T) of the solution, we note that G satisfies
a Lipschitz condition in an appropriate R-ball in X with Lipschitz constant Dog (see
Lemma 4.2). We get

t+h
z(t + h) — z(t) = S(t + h)zo — S(t)zo + / S(t + h — $)G(z(s)) ds

0

- /S(t —5)G(z(s))ds
= S(t + h)zo — S(t)zo + / S+ h—s)G(z(s))ds

+ [ 8- 9[6(als + 1) - Glals))] ds.

Since S(-)zo is differentiable for zo € D(Ao), the mapping s — S(t + h — 5)G(z(s))
1s continuous, S is a contraction and G satisfies a Lipschitz condition, we obtain with
suitable constants ¢ and C

t
lz(t + k) — z(t)||x < he||lAozo|lx + hC2r + D2r / llz(s + h) — z(s)||x ds
0

= hC + Dsr / ll2(s + h) — 2(s)]| x ds.
0
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From the Gronwall Lemma it follows that
lz(¢ + k) — 2(t)lix < C exp(TDar)h, -

i.e. z is Lipschitz continuous. Conseqoently, G(:c()) is Lipéchitz continuous in (0,T).
Then the Cauchy problem 2(t) = Aoy(t) + G(z(t)), y(O) = zo has a unique solution

y € C([0,T), X), dlfferentlable almost everywhere, w1th Y ¢ L'((0,T),X) and y(t) €
D(Ap) a.e., satisfying

y(t) = S(t)zo + /S(t - 5)Gla(s))ds = 2()
) -

(see [9: Corollary 4.2.11]). This proves the theorem #

Appendix
We assume that the paramcters satlsfy (6. 6) and we use the notdtlon @ = OGu and
u' = 85u

Lemma A.l. If z(t) = (u(t),v(t)) is'a 3alutton of equatzon (2 5) then lvljo -2s
uniformly bounded for allt > 0.

Proof. We define the functional
Li(t) = 5 (Ilol3 + alle I + a3 + Sl -
Taking the time-derivative of this functional leads to.

d . . '
L) = (2,9)0 + 12’00 + (u",0")o + sllu'llg (' v")o (A1)

Since (u,v) is a solution, we have

(v,0)0 = —(v",u")o = m(¥",v")o + 72(v,u")o

"2 " 3 (A2)
+ v3llu IHCR? o + va(v,v)o + ¥s(v, v )o-
Inserting (A.2) into (A.1), we obtain
—Lx(t) —mllo"1§ + valiolly + s l0* 115 < vsllvllg + s llv? )15 (A.3)
On the other hand, we have '
Li(t) 2 —||v||o _ (A.4)

Since L;(t) is decreasing by (A.3), we mfer from (A 4) that llv]lo is bounded for all ¢t B
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Lemma A.2. If z(t) = (u(t),v(t)) is a solution of equation (2.5), then ||u'|lo is
uniformly bounded for all t > 0.
Proof. We introduce the functional
1
o La(t) = 5 (Ul + Ml + 2+ )"l + 2”Ih+@v%)
Then we get ' . S :
d : .
ELQ(?!) = (v,ﬁ)o + (_u,v)o + (1 + ’Y])(‘U",‘U”)g ‘ (Af))
ol B o + 6l + (a6
For a solution (u,v) we have ' '
(u,9)o = —(u",u")o = n(u",v")o + 72(u,u")o
o mll (e uo + ya(ws v)o + v5(u, v o
Inserting (A.6) and (A.2) into (A.5), we obtain '

"

(A.6)

d ’
L) = (14 7))o + (L+ v0)lIollg = 11 llv" I8 + 72(0", w)o + w[v*lg
= w11 = 2l lI§ = 311l + 75w, v*)o-
Using the Young inequality ab < 3(ca® +1 b2) we get
ly2(v",u)ol < g(fllv“llg + ;Ilﬁll;)
and for ¢ small enough, such that <2 < v, we obtain

72(v" u)o = nlv"lg < || ||o
Agam by the Young inequality (with € = 1) and Lemma Al we get

(1 +va)(u,v)o] < I(1+’r4)l-(llu||3+||v|l3) < alull§ +c

|‘)’5|
s, v*)ol < =l + I10*118) < esllullg + ca
with suitable constants ¢;. Since |[v||0 is bounded by Lemma A.1, this implies
d
—L2(t) < C1 + Calfuflg = vallu'llg = wsliu'lle < € + Callw'll§ = sllw'llo (A7)

where C; are appropriate positive constants. On the other hand,
1
1a(®) 2 3 (Il + Il + 1+ 7)1 = G103 = G101

' A8
> 2 (= vl + 0= DIl + 0+ 30l 13) (48)
2 Cs (Il + llu"I15) -
We conclude that |ju'l|2 < CsL2(t) and for ||u||o large, (A.7) implies TL1 0. This
shows that ||u'|l¢ must be bounded for allt > 0Nl
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