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On a Theorem by W. von Wahl

M. Uiterdijk

Abstract. Let A be the - not necessarily densely defined — generator of an analytic semigroup
acting in some Banach space X. In the paper we prove a general theorem about the existence
and uniqueness of solutions of

u'(t) = Au(t) + F(u(t)) }
U(O) = ugp.

Our main assumption with respect to the non-linearity is that F is locally Lipschitz continuous
with respect to certain intermediate spaces between D(A) and X. Qur theorem extends results
obtained by W. von Wahl [9] and A. Lunardi [2]. In the second part this theorem is applied
to the Cahn-Hilliard equation with Dirichlet boundary conditions.
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1. Introduction

In this paper abstract semilinear parabolic equations are investigated. Our interest lies
in results obtained by Von Wahl [9, 10] and Lunardi [2]. We consider the problem
u'(t) = Au(t) + F(u(t)) (¢t >0)

- (1)
u(0) = uo

in some Banach space (X, || - |[x). The operator A: D(A) C X — X is a generator of
a bounded analytic semigroup on X, which is not necessarily strongly continuous at 0
(cf. [3]). Without loss of generality we assume that 0 € p(4). The map F: Y — X is
locally Lipschitz continuous, where Y is an intermediate space which belongs to the class
Jo between X and D(A) with 6 € (0,1) (precise definitions are given in Subsection 2.1).
We note that the definition of the class Jg is quite general. It includes interpolation
spaces and domains of fractional powers.

Let A be densely defined in X and let X, with 0 < a < 1 denote the space
D((—A)*). A classical result, which goes back to Sobolevskii and Tanabe [5, 7] states:
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If ug € X, and if F: X, — X is locally Lipschitz continuous, then there is a number
T(uo) € (0,00) and a umque element u € C([O T(uo)) Xo), which is a classical solution
of problem (1): : ' .

1. u € C((O,T(uo)); ’D(A)) n C‘((Q,_T(uo));X).

2. v'(t) = Au(t) + F(u(t)) for 0 < t < T(uo) and u(0) = uo.
Moreover, if T(uo) < o0, then limsupyjr(y,) llu(t)llx, = co.

In order to obtain solutions for more general initial values uy and in order to obtain
a better test for global existence, Von Wahl introduced a second intermediate space in

[7]. In that case F': X4 — X is not merely locally Lipschitz cont,muous but it must
satisfy

IF(u) - F@)lx
< g(llullxs + 1ollxe) { 1w = llxa + (lullx, + Iollx + 1)l = vllx, }

with 0 < 8 < a < 1 and where g : [0, oo) [0;00) is a ‘continuous map. In (9]
Von Wahl proves: For every ug € Xg there is a number T(uo) € (0,00] and a classical
solution u € C([0,T(uo)); X3) of problem (1). This solution is unique in an appropriate
sense. Moreover, if T(uq) < oo, then lim SUP{1T(uo) ||u(t)||x‘, = co. In {9] thls theorem
is applied to the Cahn-Hilliard equatlon

On the other hand, in (2] Lunardi replaces X by thc ‘more genera.l intermediate
spaces of class Ju between X and D(A) and even allows A to be non-densely defined.
However, this intermediate space, say Y, must satisfy

™) 1. Y & Dyla,00) = {z € X : t = ez € C*°((0,T}; X) for a.llT>0}

2 The part of Ain Y is sectorla.l in Y :
The second part of assumptlon (L) implies that A generates an analytic semigroup in
Y. For more details on these particular conditions we refer to [2]. Lunardi assumes that
F:Y — X satisfies

I1E () = F(v)llx

< g(llullx +llvllx) S : .
LIS+ ST+ L)l = olly S (el + ol e = ollx )

where g is a continuous functlon and C > 1. Iﬁ [2] it 1.s proved: . If (o < 1 and if
ug € X, then therc is a T(up) > 0 and a unique function u € C((0,T(uo)); D(A)) N
Cl((O T(uo)) X) which satisfies:

w'(t) = Au(t) + F(u(t)) for 0 < t< T(uo)
llmglo “A ‘U.(t) — A luo“x =0.
u € BCo((0,T);Y)NBC((0,T); X) for all T < T(uo) (cf. Deﬁmtlon 2.3).
- If T(uo) < oo, then im sup,;p(,,) lu(t)llx =

-

oW
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In fact Lunardi shows the existence of a mild solution (cf. [2: Definition 7.0.2]), which
is equlva.lent to the above

One sees that Von Wahl'’s theorem a.nd Lunardi’s theorem have much in common.
Lunardi can relax the conditions on A and the intermediate space, if stricter assumptions
on the Lipschitz condition of F are imposed. In that case more general initial values
are allowed and, also due to condition (L), there is a better test for global existence.’

Our aim is to analyze the interplay between the various conditions on the operator
A, the map F and the intermediate space(s). Indeed, we will prove a general theorem,
Theorem 3.2, which covers together with Proposition 3.12 all cases citated above. How-
ever, our conditions on A and the intermediate spaces are minimal:" A is only supposed
to be the generator of a bounded analytic semigroup in X, which is not necessarily
densely, deﬁned The intermediate spaces only satisfy Definition 2.2. In particular we
do not suppose that coridition (L) holds nor are the intermediate spaces supposed to be
domains of fractional powers. All the above results as well as other more general results
can be obtained by Theorem 3.2. In particular, if ¥ does not satisfy the condition
(L), then Lunardi’s result above still holds, if lim SUP1T(uo) IU(t)llx = oo is replaced
by im supy;7(y,) ||u(t)||y = 00. On the other hand we can also generalize Von Wahl’s
theorem. In that case Ais not necessa.rlly densely defined and X,, Xg are replaced
by general intermediate spaces "An other application is the case with ug € D(A) a.nd
F:Y-X locally LlpSChltZ continuous, especna.lly when A is not densely deﬁned

2. Preliminaries

2.1 Definitions. Let (X, || - |lx) be a Banach space and A : D(4) C X — X a closed
linear operator, which is not necessarily ‘densely deﬁned ‘We assume that A (or the
complexification of A) satisfies the condition ‘

(Ha) {1 p(A) D {z € C: Rz >0} U {0}
2.3 M > 0 such that ||z(z — A)~!|| < M for all z € {z€C: Rz >0},
where p(A) denotes the resolvent set of A.
We recall the following proposition of Sinestrari [4].

Proposition 2.1. If A statisfies condition (Hp), then there is a collection {e*4}e>0
C [:(X) such that the following statements hold:

1. %4 =T and e(s+1)4 = ¢24ctA Y for all s,t > 0. _
2. Ift >0, then €' : X — N, enD(A™) and A%z = e'4 Az for z € D(A™)
and n € N.
S 3t e'd e C°°((O 00); £(X)) and ;;,‘, = A"e'A forn e N.
4. There are My, M, > 0 such that ||et4]| x < M, and ||tAe'A||x < M2 forallt > 0.
. 5'..11m,lo 1A= 1(emz:—:z:)”x =0 forallz EX .
6. For everyz € X and t > 0 we have fo ’Axds € ’D(A) and Af e’A:rds =
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ethz — z.

7. If s ||e’Af(s)||x and s — ||Ae’A f(s)||x with f € C((0,1); X) are integrable
over (0,t), then [ e**f(s)ds € D(A) and Af e Af(s)ds = Jy Ae*4 f(s)ds.

In view of this proposition we say that A generates a bounded analytic semigroup.
Also note that e'4 is strongly continuous in X if and only if A is densely defined.

Definition 2.2. If (Y,|| - ||y) is a Banach space which satisfies
1. D(A) = Y — X (here we do not require D(A) =Y nor Y = X)

2. there are constants C' > 0 and 8 € (0,1) such that ||z]|y < C”x”%(A)”z"g(—o for
all z € D(A),

then Y is said to be an intermediate space of class Jy between X and D(A). This will
be denoted by Y € Jg(X, D(A4)) (cf. {2]).

Remark 2.3. If D4(0,1) = {z € X: t — ||t 9 Ae'4z|| € L'(0,1)}, then D4(6,1) —
Y for all Y € Jo(X,D(A)). For more details we refer to [2: Section 2.2].

Definition 2.4. By BC((0,T];Y) we denote the set of functions u : (0,T] —
Y which are continuous and bounded (with respect to || - ||ly). We say that u €
BCy((0,T);Y) for 6 > 0 if t > t®u(t) is an element of BC((0,T);Y).

Definition 2.5. A map F: Y — X is said to be locally Lipschitz continuous if for
every R > 0 there is a constant M(R) > 0 such that ||F(u) — F(v)||x < M(R) |lv—v|ly
for all u,v € Y with ||ul|y,|v]ly £ R.

2.2 The linear initial value problem. Let (X,| - ||x) be a Banach space and let
A: D(A) C X — X be a closed linear operator. For ug € X and f € C([0,7]; X) we

consider the linear initial value problem

(2)

u'(t) = Au(t) + f(2) mgtgm}
u(O) = Up.

Definition 2.6. A function u € C([0,T}; X) is said to be an integral solution of
problem (2) if

t t

/qg@evm) and qo=w+A/qga+jﬂqa
0

0 0
forall0 <t <T.

If A is a Hille-Yosida operator in the sense of [3: Formula (1.1)] and if uq € D(A),
then it is well known that there exists a unique integral solution. Moreover, we also
note that an operator which satisfies condition (Ha) is a Hille-Yosida operator (cf. (3]).
The converse is not true in general. In view of Remark 2.3 above, [2: Proposition 4.2.1]
and [4: Theorem 4.4] imply the following theorem. :
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Theorem 2.7. Let A satisfy condition (Hap), let Y € Jo(X,D(A)) with 6 € (0,1)
and let ug € D(A). Then the follwing statements are true:

1. If f € C([0,T); X), then the unique integral solution to problem (2) belongs
to Co'l'e([O,T];Y). Moreover, there is a constant C > 0 independent of f such that
lullco.-#(go,11;v) < Cll flleo-

2. If f € €%([0,T); X) with a € (0,1), then problem (2) has a unique integral
solution u € C([0,T); X) such that u(t) € D(A) for allt € [0,T], u € C'((0,T}; X) N
C((0,T); D(A)), and u'(t) = Au(t) + f(t) for 0 <t <T.

Furthermore, by an application of [3: Proposition 12.4] and [2: Propositions 4.2.1
and 4.3.4] we find the following statement.

Theorem 2.8. Let A satisfy condition (Hp), let Y € Jo(X, D(A)) with 6 € (0,1),
and let ug € X. Furthermore, assume that f € BCs((0,T); X) with 8 € (0,1). If we
define i

t
u(t) = eug + / N4 f(s)ds (0<t<T),

]

then u € BC((0,T];Y) and limyjo | A~ u(t)— A  ugl|x = 0. Moreover, u is the unique
function in BC((0,T]; X) such that

/u(s) ds € D(A) and u(t) = uo + A/u(s) ds + jf(s)ds

-0 0

forall0<t<T.

Furthermore, if - in addition — there ezists for every € € (0,T] an a € (0,1) such
that f € C%*([e, T); X), then u(t) € D(A) for allt € (0,T], u € C((O,T];'D(A)) N
CY((0,T); X), and u'(t) = Au(t) + f(t) for t € (0,T). :

Finally, we mention the following lemma which is a consequence of [2: Proposition
4.2.3].

Lemma 2.9. Let A satisfy condition (Hp). If f € BCg((0,T); X) with B € (0,1)
and if Y € Jo(X,D(A)) with 6 € (0,1), then

¢
t— t"’/ et=945(s)ds € C([0,T);Y) foralla > 6+ 8- 1.
0

Remark 2.10. We remark that the results in |2 - 4] often provide stronger state-
ments.
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3. Semilinear parabolic equations

3.1 Classical solutions and global existence. Let (X, || - |Ix) be a Banach space
and let A : D(A) C X — X be a closed linear operator, which satisfies the condition
(Ha). Assume that there are two Banach spaces (X, || - llx,) and (X2,]| - ||x,) and a
map F': X; — X such that

1. D(A) = X; — X; — X where X, € Jy, (X2, D(4)) and X, € Jo,(X, D(A))
with 8;,6, € (0,1),
2. |IF(w) = F()llx < g(llullx; + lollx.) {llull}, + ol %, + 1}l - vl x, + g (el x.+

lollx2) {llell %, +111%, +1}lu - vl x,, where g : [0, 00) — [0,00) is a continuous
map and 71,72 > 0.

Remark 3.1. If 6; + 6, < 1, then it follows that X, € Jg, 44,(X, D(A)). To avoid
trivial calculations we will assume that F(0) = 0.

For convenience we adopt the notation 7 := max (m + 1)6y,v261).

Theorem 3.2. Let (X,]|-||x) be a Banach space and let A : DA)C X — X be
a closed linear operator, which satisfies the condition (Ha). Furthermore, let X, X,
and F : X; — X fulfil the conditions above with n+ 6, < 1. Then for every up € X,
which satisfies sup,s |le'?ug||x, < 0o, there is a T(uo) € (0,00] and a unique function
u € C((0,T(uo)); D(A)) NC((0, T(uo)); X) such that the following statements are true:

- u'(t) = Au(t) + F(u(t)) for 0 <t < T(up).

- limygo [JA™ u(t) — A7yl x = 0.

3. u € BCe,((0,T); X1) N BC((0,T); X2) for all T < T(uy).
4. If T(ug) < oo, then lim SUP 17 (wo) lu(t)l x, = 0.

[

The proof of Theorem 3.2 is as follows: In Proposition 3.9 we show by a fixed point
argument that there is a T > 0 and a unique u € BCy, ((0,T); X;) N BC((0,T); X2)

such that u(t) = e'4ug + fot =4 F(u(s))ds with 0 < ¢ < T. Given this function u we
consider the initial value problem

V(8) = Av(t) + F(u(?)) m<tsn}
v(0) = ug

and apply Theorem 2.8. Finally, we derive the test for global existence by a bootstrap
argument.

Define for T > 0
Mr = BCy, ((0,T}; X1) N BC((0,T); X2)
and set for u,v € Mt

pr(u,v) = sup t%|lu(t) - v(t)llx, + sup [lu(t) — v(t)||x,.
0<t<T 0<t<T

By || - ll7 we denote |ju||r = pr(u,0). It follows that (Mr,|| - ||7) is a Banach space.
Observe the following easy consequences of the Lipschitz condition on F.
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Proposition 3.3. Let F satisfy the Lipschitz condition. If u € Mr, then F(u) €

BC,((0,T}; X). Moreover, for every R > 0 there is a constant C = C(F,R) > 0 such
that, for all0 < s < T,

| F(u(s)) = Fo(s)]l x < C{s™" + 1} ur(u,v)

for all u,v € Mr satisfying ||ul|T, |lv|lT < R.

Lemma 3.4. If uop € X satisfies sup, ||e'*uollx, < oo, then the function t —
etAug is in My for every T > 0. In fact, there is a K = K(uq) > 0 such that le*AuolflT <
K(up) for allT > 0.

Proof. Note that s — e*4ug € C((O,oo);'D(A)). Moreover, for all t > 0 we find
that

le4uollx, < Clleuoll® o lleually;® < C't™% luoll§ e 4uolly,” < K (o)

and the proof follows B

From now on we assume that ug € X satisfies sup,sg [le"4uollx, < co. In view of
Lemma 3.4 we define for § > 0

Mrs = {u€ Mr: pr(u,e4uo) < 6.
Note that (MT,é; pr(-, )) is a complete metric space. Next, define for u € Mt

D(u)(t) = e uo + /e('")AF(u(s)) ds (0<t<T).
0

Proposition 3.5. If T > 0 and if uo € X satisfies sup,o llet4uollx, < oo, then
the following statements hold:

1. T is o well-defined map from M into MT.
2. A= T(u)(t) = A ugllx — 0 as ¢ L 0.

3. Ifu € Mr satisfies T(u) = u, then u(t) € D(A) for all t € (0,T] and u €
C((0,T}; D(A)) as well as u € C'((0,T); X). Moreover, u'(t) = Au(t) + F(u(t)) for
0<t<T.

Proof. 1. For u € My we have seen that F(u) € BC,((0,T); X). Also, note that
X1 € Jo,+6,(X,D(A)) with 6, +6, <n+6; <1 So by Lemma 2.9 we find that

£ / eU=9AF(u(s)) ds € BCa,((0,T); X1) N BC((0,T); X2).

Together with Lemma 3.4 this implies that ['(u) € Mr.
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2. We know that 47 'e!4ug — A  ug in X as ¢t | 0. On the other hand, we see that
f(; et =DAF(u(s))ds - 0in X (even in X;) as ¢t | 0, which proves the second assertion.
3. Let € > 0 and write, for 0< ¢t < T — ¢, i

t

vi(t) = e'ePug + /e('_’)AF(u(s +¢€))ds

0
€

va(t) = ' / e(‘"’)AF(u(s)) ds.
0
According to Theorem 2.8, v is the integral solution of the initial value problem

v'(t) = Av(t) + F(u(t+€)) (0<t<T—¢)
v(0) = e“Auy.

Consequently, Theorem 2.7 implies that v; € C®1=8=82([0, T — €]; X1). On the other
hand, note that e*4z € C*((0, 00); D(4)) C C* ((0,00); X ) for every z € X. In view of
this we find that v2(t) € C%' =% ~%([¢, T - ¢]; X, ). Hence u(t) = vy(t — ) + va(t—e) €
CO178=02([2¢, T); X, ), which implies that F(u(t)) € CO1=%-62([2¢, T}; X). So we can
apply Theorem 2.8 to the initial value problem v'(t) = Av(t) + F(u(t)) with v(0) = uy,
from which the statement follows @

Remark 3.6. Note that Lemma 2.9 in fact states that ¢ — % f(; (=D AP(u(s)) ds

€ C([0,T); X1) as well as t — [ e#=4F(u(s))ds € C([0, T]; X2).

Lemma 3.7. Let 6 € (0,1]. There is a T = T(8o,uo) > 0 such that [(e*Aup) €
Mrs,.

Proof. By Lemma 3.4 there is a constant K = K(uo) > 0 such that lle4uo|lr <
K(uo) for all T > 0. Therefore, Proposition 3.3 implies that there is a constant C =
C(F,K(uo)) > 0 such that ||F(e*®uo)llx < C(s™" + 1) for all s > 0. Since X; €
Jo,+6,(X, D(A)) we find by Proposition 2.1 and Definition 2.2 that, for 0 < s < t,

||e(t—a)AF(esAu0)||Xl < C“e(t—s)AF(esAuo)I|:)l('t‘o)2 Ie(t—a)AF(eaAuo)”;—91—02

1-8,—-6>

< C,”Ae(g_,)AF(eaAuo)”&+92 “c(t—s)AF(esAuo)”x

X
< C”(t _ s)—01—02 ”F(C”Auo)”X

which implies that
t
4 “F(e’Auo)(t) _ elAuOHXl < A /lle(t_’)AF(€’Au0)||xl ds
0

<0 {0 -0y,
Analogously we find that
IT(e A uo)(t) — e4uo|| ., < Ca {1057 4 ¢1=62}

So, if we choose T > 0 such that (C; + C;) {T'=92-7 4 T'-%} < §, then clearly
pr(T(e*Aug), ethug) < & B
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Lemma 3.8. If § € (0,1)], then there is a T = T(8g,u0) > O such that, for all
S € (0,T),

T: Ms) — Mss, and ps(T(u),T(v)) < %ps(u,v) for all u,v € Ms...
Proof. Let S > 0 and let u,v € Mg,. Note that according to Lemma 3.4
llulls < ps(u, e uo) + [le*uolls < 1+ K(uo).
So, by Proposition 3.3, there is a C = C(uo) > 0 (not depending on §) such that
| F(u(s)) = F(v(s))]| x £ C(s™" + Dps(w,v) (0<s<S)

for all u,v € Ms,. Thus we find as in the proof of Lemma 3.7 that, for 0 < ¢t < S,

00 - TN, <1 [ A (F(6) - FO)) g ds

<ct? /(t — )02 (s 4 1) ds ps(u,v)
0

< Cl{tl_ez_" + tl_a’}us(u,v).

Analogously we find that

IT)(®) = T)®)l, < Ca {7577 + 177} us(u, ).

Hence
ps(T(u),T(v)) S (CL+C){S' 77" + 8 }us(u,v)  (u,v € Msy).

So, choose Ty > 0 such that pr, (F(e“‘uo),emuo) < %‘1. Then for all 0 < § < Ty and
u € Mg, we find by the preceding that (note that ps(u, e*tug) < 1)
ps (T(u), emuo) < ps(F(u),F(e’Auo)) +’,us(F(e’Auo),e'Auo)
. )
<(Cy + CQ){SI—Q’_" + 51_02} + EO
Thus if we choose T € (0,T] such that (Cy + C2){T'~%~" + T!~ o,} <% <lis
satisfied, the result follows 8

Proposition 3.9. If ug € X satisfies SUP;>0 lle*Auol|x, < oo, then there is a T =
T(ug) > 0 for which T : My — Mr has a unique fized point u. Moreover if ug € D(A),
then the fized point u 13 an element of C([0,T]; X,).

Proof. Fix 6 € (0,1) and let T = T(8p,u0) > O be as in Lemma 3.8. According
to Lemma 3.8 the map I' : Mp s, — My s, is a strict contraction, so due to the Banach
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fixed point theorem there is a unique u € My5, C My satisfying I'(u) = u. Next,
assume that v € MT satisfles v # u as well as I'(v) = v. Consider for 0 < § < T
the map S — us(v,e'*ug). By Remark 3.6 the map S ps(v, e!?ug) extends to an
increasing continuous function on [0, 7], which is 0 for S = 0. Since v ¢ Mrs,, there
must be a § € (0,T) such that

ps(v, et uo) <é for0<S<S$§ and ps(v,e®ug) > 68, for S<S<T.

By continuity there is an € > 0 such that ps(v,e'4ug) < 1 for 0 < S < S+ . However,
Lemma 3.8 and the Banach fixed point theorem imply that T : Mgi,y — Mg, , has
a unique fixed point u. Since u € Mg, ,aswellasv € Mg, it follows that u = v
on [0,5 + ¢]. Hence ps(v,e'4uy) = ps(u, e'tup) < &y for 0 < S < S + ¢, which is a
contradiction. Next assume that ug € D(A4). Since

t—s etdug € C([O,oo);X,)
t— [ IR ds € O(0, T X)),

it is sufficient to show that
t

/e('_’)AF(u(s)) ds — 0 as t | 0.
0 X\
Since F(u) € BCy((0,T); X), there is a C > 0 such that, forall 0 < ¢t < T,
: ¢
/e(t—s)AF(u(s)) ds <C {tl—ol—r,—o, + t:-ol—e,}
0 X\

(cf. the proof of Lemma 3.7). Soif 1 — 8, — 6; — 7 > 0, then the result follows (note
that 6, + 62 < 1). Otherwise there must be an £ > 0 such that, because n+6; <1,

t
UL /e('")AF(u(s))ds € C([0, T); X1).
/ |

Hence u € BCs,-((0,T]; Xy), which implies that F(u) € BC,_((0,T); X). But in
that case we can find a C' > 0 such that
¢

/e('_’)AF(u(s)) ds <C {tl_e‘_"_o’“ + tl—o‘—o’} (0<t<T).
0 X\

We are done if 1 — 8, — 6, — 7+ ¢ > 0. Otherwise we can repeat the argument above
and find a C > 0 such that

t
/e(t—s)AF(u(s)) ds < C {tl—o,—r)—or}-?e + tl—ol—e,} (0 <t< T)
0 X

Iterating this process the statement follows B
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Corollary 3.10. The map [': M7 — M7 has at most one fized point.
Proof. Let u,v € My with u # v be two fixed points of I'. Define

S= sup{K € (0,T): u(s) =v(s) forall s e (O,K]}.

In view of Propostion 3.9 and since u # v we must have § € (0,T). For0<t<T-§

we find that
t

u(t + S) = e'u(S) + /e(""’MF(u(U + 8))do

0
t

o(t + S) = e 4u(S) + /e“-”)"F(v(a +8))do.
: } 0
However, Proposition 3.5 implies that u(S) = v(S§) € D(A), so due to Proposition
3.9 there must be an £ > 0 such that u(t +8) = v(t+ S) for 0 <t < e. Thisisa
contradiction il

Proof of Theorem 3.2. Define T'(ug) € (0, 00] by
T(up) = sup {T > 0‘ r: MT — My has a fixed point}.
According to the preceding there is a unique function
u € C((0,T(uo)); P(A4)) N C'((0, T(uo)); X),
which satisfies statements 1 - 3 of Theorem 3.2. So there remains to prove that

T(ug) < o0 = lim sup ||u(t)|| x, = occ.
’ t1T(uo)
Since we are only interested in what happens near T(ug) and since u(t) € D(A) for
t € (0,T(uo)) we may as well assume that ug € D(A). The latter implies that u €
C([0,T(uo)); X1) and thus F(u) € C([0,T(uo)); X). So, let T(ug) < oo and assume
that {|u(t)||x, is uniformly bounded on [0,T(up)). This implies that |F(u(t))||x is
uniformly bounded on [0, T(uo))} and thus by an application of Theorem 2.7 there must
be a constant C > 0 such that '

lu(s) —u(®)lix, <Clt—s'""~%  (0<s,t < T(w)).

Consequently, limyr(yo) u(t) exists in X; and thus u € C([0, T(uo)}; X1). Hence we
find that F(u) € C([0,T(uo)); X). However, Theorem 2.7 implies in that case that
u(T(up)) € D(A). By Propositon 3.9 there is a S > 0 and a unique w € C([0, S]; X1)
such that

w(t) = euT(w)) + [ TIFw(s)ds (05t <)
If we define @ : [0,T(uo) + S) — X by a(t) = u(t) for 0 < t < T(uo) and a(t) =

w(t — T(ug)) for T(uo) < t < T(ug) + S, then & € Mr(y,)+s satisfies I'(@1) = @. Thisis "
a contradiction il
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If F satisfies additional assumptions, then assertion 4 of Theorem 3.2 can be im-
proved by an application of Gronwall’s Lemma (for a proof of this lemma we refer to

[1)-

Lemma 3.11. Let T € (0,00), 0 < a < 1 and C,,Cy > 0. If u : 0,T] =R isa
non-negative and integrable function satisfying

¢
u(t) < Ci +C /(i —5) %u(s)ds (0t
0
then there is a constant K = K(a,C,,T) > 0 such that 0 < u(t) < C\K for all
te[o,7T].

Proposition 3.12. If F satisfies the Lipschitz condition with v, = 0 and v < 1,
then statement 4 in Theorem 3.2 can be replaced by the followingvone:

4". If T(uo) < oo, then limsup, 7y, lu(t)]x, = oo.

Proof. Asin the proof of Theorem 3.2 it is sufficient to consider the case ug € D(A),
which implies that u € C([0,T(uo)); X1 ). Let T(ug) < 0o. In view of Theorem 3.2 it is
enough to show that

sup  Jlu(t)]lx, < oo = sup ||lu(t)||x, < oo.
0<t<T(uq) 0<t<T(uo)

If |lu(t)||x, is uniformly bounded on [0, T(uo)), then the additional assumptions on F
imply that there is a constant C' > 0 such that [|[F(u(s))l|x < C(Jlu(s)|x, + 1) for
0 <t < T(ug). So for 0 <t < T(ug) we find that

t
u(®llx, < e uollx, + / =94 F(u(s)) ds

0 X,
t

< Ci(u0) + G [t = )0 F(u(e)) s

0

t
<ci+c / (t = 6)70 % Jlu(s) | x, ds -
J .

and Gronwall’s Lemma implies that ||u(t)||x, is uniformly bounded on [0, T(uo)) B

3.2 Comparison with Von Wahl’s and Lunardi’s results. In this subsection we
will treat some consequences of Theorem 3.2 and we shall indicate how they relate to
known results.

Consequence 1: If we set X, = X, 92 = ( > 1 and 71 = ¢ — 1, then we arrive at
Lunardi’s case:
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Corollary 3.13. Let (X,||-||x) be a Banach space and let A: D(A) C X — X be
o closed linear operator, which satisfies the condition (Hp). Let Y € Jo(X,D(A)) with
€0 <1 where ( > 1, and let F: Y — X satisfy

|F(u) — F(v)||x
< g(llullx + llvllx)
x { (™ + 101§ + Dl = vlly + (el + eIl - vllx }
Then for every ug € X thereisa T(uo)be (0,00 and a unigue function u € C((0, T(uo));
D(A)) N C'((0,T(uo)); X) which satisfies:
u'(t) = Au(t) + F(u(t)) for 0 < t < T(uo).
- limggo [JA™ u(t) — A ugl|x = 0.
3. u € BC4((0,T);Y) N BC((0,T); X) for all T < T(uo).

N -

4. If T(uo) < oo, then limsup;7(y,) lu(t)lly = oo

Remark that due to condition (L) Lunardi gets a better test for global existence (cf.
[2: Proposition 7.2.2]).

Consequence 2: If we set v, = 0 and v2 = 1, then we arrive at a generalization of
Von Wahl’s theorem:

Corollary 3.14. Let (X,|| - ||x) be a Banach space and let A: D(A) C X — X be
a closed linear operator, which satisfies the condition (Ha). Let Xy € Jo_p(X2, D(A))
with 0 < B < a < 1 and X3 € Jg(X,D(A)). Let ug € X satisfy sup,s, |le'Auolix, < o
and assume that F: X| — X satisfies

|F(u) = Fo)llx < g(llullx, + llvllx,)
x {llu = vllx, + llu = vll (lullx, + Iollx, +1)},

where g : [0,00) — [0,00) i3 a continuous map. Then there is a T(uo) € (0,00] and a
unique function u € C((0,T(uo)); D(A)) N C((0,T(uo)); X) which satisfies:

1. u'(t) = Au(t) + F(u(t)) for 0 <t < T(uo).

2. limgjo JJA™ u(t) = A7 uellx = 0.

3. u € BCo-p((0,T); X,) N BC((0,T); X,) for all T < T(ug).

4. If T(ug) < 00, then imsup,r(y,) llu(t)llx, = oo

Note that Von Wahl’s result states that u € C([0,T(uo)); Xp). However this is due
to the fact that t — e'4uq € C([0,00); Xp), if up € X with X5 = 'D((—A)B). The last
assertlon is due to Proposition 3.12.

Consequence 3: Finally, set X, = Xo. After Corolla.ry 3.10 we arrive at
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Corollary 3.15. Let A : D(A) C X — X be a closed linear operator, which
satisfies the condition (Ha). Let ug € D(A) and Y € Jo(X,D(A)) with 0 < 6 < 1. If
F:Y — X is locally Lipschitz continuous, then there is a T(uo) > 0 and a unique
u € C([0,T(u));Y)NnC! ((0,T(u0)); X) N C((0, T(uo)); D(A)) such that:

L. u'(t) = Au(t) + F(u(t)) for 0 <t < T(uo) and u(0) = uo.
2. If T(ug) < oo, then SUP << T(uo) lu(t)lly = +o0.

4. An application to the Cahn-Hilliard equation

Let » € N, and let 2 C R™ be an open and bounded set with a uniformly C*-boundary
(cf. [2]). Set _ _
X=C)={f:0- R|fis continuous}

endowed with the sup-norm || - [0, and define the non-densely defined linear operator
A:D(A)C X — X by
D(4) = {u € Co(@) : Au =g with g € Co(R) and Ag € c@}
and
Au = — A%,

where Co(§) is the subset of C(§2) consisting of the functions which are 0 on the bound-
ary 9§ and where Au has to be understood in the sense of distributions. In (6] it is
proved that A is the generator of a bounded analytic semigroup in X. By Schauder
estimates (cf., for example, [1: p. 9]) it follows that D(A) «— C3*+*(Q) for all a € (0,1).
We recall that, for k¥ € N and a € (0, 1), -

CQ):={feC®: [fla < oo}

and

CHe@Q):={feCk@Q): 7feC*Q), |v| = k},

where C¥(9) is the space of all k times continuously differentiable functions in Q, whose
derivatives are continuously extendable up to the boundary and where {f], denotes

flo = sup {lz =yl If(2) = S|+ 2y € Bz # ).
As usual C¥(Q) and C*¥+2(Q) are normed by

fllkeo = Y2 107 flle  and  [Ifllksaco = I fllkoo + 3 (871,

1vI<k |vi=k

respectively. Finally, we note that C#(Q) = (C*(),Cc(Q), g) for 0 < B < a, if  has
a uniformly C* boundary (cf. [2: pp. 8 and 13]).
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As an example we consider the following generalized Cahn-Hilliard equation with
Dirichlet boundary conditions:
ug = —A%u+ F(u)forz € Qandt >0
(GCH) [ u(z,t) = Au(z,t)=0forz € 0N andt >0
u(0,z) = uo(z) € C(Q).
We assume that the map F : X5 — C(Q) satsifies

I1F(w) = F()llx < g(llullx + llvllx)
x { Il = vllx, + (lullx, + llollx, + 1)l = vilx },
where g : R — R is a continuous function and where X5 denotes the space C3+5(Q).

Since X € J;_Ii(X, D(A)) with a € (6,1), we can apply Corollary 3.13 and Proposition
3.12, which implies

Theorem 4.1. For every ug € C(Q) there is a T(uo) > 0 and @ unique u €
C*((0,T(u0)); C(Q)) N C((0,T(u0)); D(A)) such that:

1. u, = —A%u+ F(u) for allz € Q and 0 < t < T(up).
2. u(z,t) = Au(z,t) =0 for z € I and 0 <t < T(up).
3. ||A7  u(t, ) — A7 uo()]jo = 0 as t | 0.
4

. sup0<,<7~t9||u(t,~)||3+6,°° < 00 and supgeier [U(t, o < 00 for every T <
T(ug) and 6 € (‘lf—‘s-,l).

5. If T(uo) < 0o, then lim sup,j7(y) lu(t, *)lleo = co.

An example of such an F is

~

B8
0%u
F(u) = Za,,,,k(u)—— Eb,y(u)f +
O0z;0z; axk Oz;0z,

i,k

Ou
“oz,

where a; jk,bi; and ¢; are locally Lipschitz continuous and where 1 < o < %, 1<

B<2and 1l < v < 4 If we take F(u) = Af(u) = f'(u)Au + f'(u)|Vu|? with
f € C%(R;R), then we are in the situation of the original Cahn-Hilliard equation with
Dirichlet boundary conditions:

ur=-A’u+ Af(u) forz € Qand t >0
(CH) { u(z,t) = Au(z,t)=0for z € 0Q and t > 0

u(0,z) = uo(z) € C(R).
So, if f" is locally Lipschitz continuous, then Theorem 4.1 implies the existence of a local
solution for problem (CH) (indeed, one easily verifies that F' satisfies the above Lipschitz

condition). As in Von Wahl [9] and Temam (8] we shall give sufficient conditions for f
such that problem (CH) has a global solution in space dimension 3.
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We consider the case n = 3 and assume that f is a twice continuously differentiable

function, such that f" is locally Lipschitz continuous, f(0) = 0 and fot f(s)ds > 0 for
all t € R. Moreover, we assume that

(I <C(lul*+1) (1<g<d4) and [f'(u)) SC(lul"+1) (1 <7 <3).
Lemma 4.2. If u satisfies condition (CH) on (0,T(us)), then t — || [Vu(t)} |2 and

t — ||Au(t)||2 are continuously differentiable on (0,T(up)), where ||-||2 denotes the norm
on L*(Q). Moreover, they satisfy for t € (0, T(uo))

%ku(tn”; = —Q/QAu(t) di'tu(t)dz and %”Au(t)”; = 2/QA2u(t) d%u(t)dz.
Proof. From u € C*((0,T(u)); C(R)) N C((0, T(uo)); D(A)) it follows that
/Q Au(t) M dz / d r
— Au(t) —u(t)dz
/ Au(t + k) ‘—u(t + hfz —u(®) dz a dt ‘
Q

as h — 0. On the other hand, Green’s formula and the boundary conditions imply that

[19u(t + wII; = IV

h
:—/QAu(t+h)u—(t—thz—/nAu(t)Mdz

d
— —2/QAu(t) Eu(t)dz
as h | 0. The second part of the lemma is proved analogously i

Since we are only interested in what happens near T(ug), we assume again that

uo € D(A) and thus u € C'([0, T(uo)) : C(R)) N C([0,T(uo)); D(A)).

Lemma 4.3. There is a constant C > 0 such that ||u(t)]|, < C and ”]Vu(t)|||2 <C
for allt € [0, T(uo)).

Proof. First remark that it is sufficient to prove that [||Vu(t)|“2 is uniformly

bounded. Indeed, we can apply Poincaré’s inequality, since u(t) € H}(Q) for t €
[0,T(ug)). Next define

J(u) = %“IVM”;-&-/Qg(u)d:c with g(s)=/: f(o)do.

In view of Lemma 4.2, t = J(u(t)) is continuously differentiable on [0,7(uo)) and we
find that

d
/0= [ suude s [ s
= (—Au+ f(u),u,)
= (-Au+ f(u),-A’u+Af(u)
ALt J0) (_ mu f(w)ar - [ 19(= dur f) [z
o9 v . : “
= IV (-2 + )|
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(note that ~Au + f(u) = 0 on 99, for u = Au =0 on N and f(0) = 0). Hence
d 2
7@ +[IV(=au+ f@)[l; = o,
which implies that J(u(t)) < J(u(0)) for all t € [0,T(uo)). Since by assumption

Ja 9(u)dz > 0, we find that |||Vu(t)|||; < 2J(u(0)) for all ¢t € [0,T(uo)) B

Theorem 4.4. If f satisfies the above conditions, then problem (CH) has a global
solution.

Proof. Due to the regularity of the Dirichlet problem and the biharmonic Dirichlet
problem there is a constant C > 0 only depending on  such that ||u||g« < C||A%u||,
and |lully2 < C||Aul|; for all u € D(A). Since H%(Q2) is continuously imbedded in C(2)
for n = 3, it is sufficient to show that ||Au(t)||2 is uniformly bounded on [0, T(uo)). If
we multiply the equation by A%u(t) and integrate over {2, we find by Lemma 4.2-

5 AU + IA7()IE = (A F(u(t)), A%u(t))
< NAF(u)lz 18%u(D)]l2
< SIAFEIB + F1ATu(0)I3
hence d
ZIaulE + 1%l < 18 Fu)IE.
Next we find that

HAf(ENz < I1f (wlleollAullz + 1" (@llooll Vul llg
< CllullE + DliAullz + C(llullg + DIVl 5.

Interpolation, the Sobolev embedding theorem and Agmon’s inequality imply for u €
D(A) that
Iaul < CllIVullf A%l
119ullls < Cllull 145 < CHHIVul I 1A%}
lulleo < CIIVul 1§ 1A%l

Since || [Vu(t)|||2 is uniformly bounded on [0, T(u)), we see that

1.9 lar
A f(u)lz < C1 + C2llA%u(@®)3 5 + C3la%u(®)FTF < C1 + Cal|A%u(t)|IS

with 0 < @ < 1. Then Young’s inequality implies that there is a constant K > 0 such
that

1
lAf(u(t)ll; < K + §|IA2U(t)II§-
Hence d 1
SIAuOl} + S 1A% < K.

So ||Au(t)||2 must be uniformly bounded on [0, T(ug))
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Remark 4.5. 1. If n = 2, one can show by the same argument that there is
also global existence if |f'(u)] < C(|u]? + 1) and |f"(u)| < C(|u|? + 1) with ¢ > 1.
Indeed, if n = 2, then for every ¢ > 0 there is a C. > 0 such that, for all u € D(A),
lulleo < CllIVulll2™¢llAul5.

2. A closer inspection of Lemma 4.3 shows that the condition f(0) = 0 can be
dropped. Also note that our conditions on f are slightly weaker than those in (9]
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