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Abstract. In this paper we consider some class of partial Uryson integral operators in spaces 
with mixed norm. We give some conditions for action, boundedness and continuity of those 
operators. 
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1. Introduction 

Let T C R'1 and S C IR'' be two compact sets with Lebesgue measure, D = T x S, 
a % : D x R - R (i = 1,2,3) given Carathéodory functions, and 

A = A 1 + A2 + A3, 

where

(Aix)(t, s)	IT a1 (t, s, x(T, s)) dr	 (1) 

(A2 x)(i, s) 
= is 

a (t, s, x(t, a)) da	 (2) 

(A3 x)(t, s) 
= if D 

(t , s, x(r, a)) drda.	 (3) 

The operators A, A 1 , and A2 are so called partial Uryson integral operators, which have 
been studied in C(D), in spaces with mixed quasinorm La [Lfl] , and in quasi-Banach 
ideal spaces (see 11, 4, 81, respectively). The properties of partial Uryson integral oper-
ators essentially differ from those of ordinary Uryson integral operators. For example, 
the operator A 1 with kernel a i ( i, 5, U) U is not completely continuous in LP (D), but 
the operator A3 is completely continuous for a3 (t, s, u) U. 
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We remark that linear and nonlinear operators with partial integrals have applica-
tions in problems of continuum mechanics, of the theory of transfer, of differential and 
integro- differential equations and other questions. 

In this paper the operator A is studied in Lebesgue spaces with mixed norm 

L"(T)[L(S)]	(1	p,q	oo). 

More general classes of partial Uryson integral operators in spaces of summable functions 
have been studied in [3]. Action, boundedness, and continuity criteria of the operator 
A3 in Lebesgue spaces have been obtained by Ojnarov [6]. 

2. Action, boundedness and continuity 

Let M(D) be the space of all real measurable almost everywhere finite functions on D. 
We denote by L(T)[LP(S)] (1 p,q oo) the set of functions x E M(D) for which 
the norm

lxii L(T)[LP(S)] = Mt	ii x ( i , )iiLP(s) M L(T) 

is defined and finite [2]. These spaces are Banach spaces. Of course, in case p = q we 
have LP(T)[LP(S)]	LP(T x S). Let X(xo,r) denote the closed ball of radius r with 
center x 0 in the space X.	 - 

The operators A 1 , A2 , and A3 are defined on functions x E M(D) for which the 
functions 

(t, s, i)	F—+	a 1 (t, s, x(r, .$)) 

(t,s,o) a2(t,s,x(t,o)) 

(t, s, 7, 01 )	—+ a3 (t, s, x(T, a.))

are summable in the variables T, a, and (r, a), respectively, for almost all (t, S) E D. 
Let D(A) be the domain of definition of the operator A = A 1 + A2 + A3 . If a 1 (t, s, 0) = 
a2 (i, 8,0) = as(t, s, 0) = 0, and x 1 ,... , x, e D(A) are functions with disjoint supports, 
then x 1 + .. . + x E D(A) and the operator A is partially additive, i.e., 

A(x 1 + ... + x) = Ax i + ... + Ax. 

In general, the operator x - A(x + xo) — Ax 0 is partially additive for fixed x 0 E D(A). 

By the partial additivity of A we have the following statement. 

Theorem 1. Let X = L(T)[LP(S)] (1 < p,q < oo). Suppose that the operator A 
acts from X(xo,r) into Y = L(T)[La(S)] (1 < a,/3 < oc). Then A acts from X into 
Y and is bounded (i.e., A 15 bounded on any bounded set). Moreover, A is continuous 
on X if A is continuous on X(xo,r). 

By Theorem 1 the boundedness of the operator A follows direct from its action. 

The next theorem concerning acting conditions (both sufficient and necessary) for 
the operator A3 may be obtained following the idea of [6]. 
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Theorem 2. The operator A 3 acts from X = L"(T)[V'(S)] (1 p,q < ) into 
Y = LI'S(T)[L(S)] (1 <a,f3 < ) if and only if, for any u E IR, 

	

11 a3(, , U)JI 	1min{pq} + b,	 (4) 

where a and b are non-negative constants. 

Proof. Without loss of generality, we assume that mesT = mesS = 1. Suppose 
that condition (4) holds. Then for any x E X the Holder and Minkowski inequalities 
imply that

IIA3xIIy = 
1111D 

a3	x (T, or )) dr do, 
1Y 

JIDII IIY 
<Jf(aIx( T,) I mI	+b)dTd 

<a r' lx 
min{p,q) + b. -	.I  

Hence, A 3 acts from X into Y. 

Conversely, suppose that the operator A 3 acts from X into Y. Then, by Theorem 
1, there exists a number b > 0 such that JJA3XJJY < b if IlxlIx < 1. Let u E R and 
xEuEX. If Jul	1, it is clear that 

1a3(, , u )lI y = 1I A 3 x II y	b < b(IuI mmn{PQ} + 1).	 (5)

If Jul > 1, we define a function x. on D by 

±(t, s) = I UXTXSJt, s) if p q 

UXT,<S(t,S) ifp>q 

where 5, is a measurable subset of S with mesSy = I u I P and 2',, is a measurable subset 
of  with mesT,, = ui' . Here, XT,,Su and XTXS denote the characteristic functions 
of T x S,, and T,, x 5, respectively. Then IIIIx = 1 and 

11, 
u l	

{P} a3(., , u) + (1 - Jul-mIn{P})a( ., 0)11 Y = ii A3uIi y < b. 
II  

Hence,

Ii a3(, ., 41Y	 b 1mmn{} +	1mmn(} II aa(, , 0)y <2b lU I mln{Pq}	(6)

From (5) and (6) it follows that condition (4) holds U 

Some acting conditions for the operators A 1 and A2 in spaces of summable functions 
have been given in [3]. We will give simple acting conditions (only sufficient) in the next 
leniina.
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Lemma. Let 1 p,q,c,/3 < cc, X = L(T)[LP(5)], and Y = L'3(T)[L°(s)]. The 
operators A 1 and A2 act from X into Y tithe kernels a 1 and a2 satisfy growth conditions 
of the form

Ia(t, s, u)I :5 C,	Jmin{p}/(a/3) + b 1 (t, s)	(i = 1,2)	 (7) 

for some b 1 , b2 E Y and C1, C2 ^! 0, where p i (a,#) = c and p2(ci./3) = /3. Moreover, in 
this case A 1 and A2 are bounded and continuous. 

Proof. It is easy to show the first statement by the Holder and Minkowski inequal-
ities. The continuity of A 1 and A2 follows from the principle of majorants [8] I 

We note that the growth condition (7) is not necessary for the action of A 1 (resp. 
A2 ). Moreover, there exists A 1 acting from X into Y (whence A 1 is even bounded), 
which is not continuous. In particular, the corresponding kernel a 1 does not satisfy the 
growth condition (7) (by the previous lemma). 

The following example is essentially due to P. P. Zabrejko [5]. 
Example. Let D = [0, 1] x[0, 1], X = L(T)[LP(S)], and  = L(D) (1 <p. q, ,3 

cc). Let z ( t,$ ) = z,, (t) ^! 0 have disjoint support, and I z Ik' = 1. Define the kernel 
a 1 on D x R by

(2"juj - 1)z.— i (t) + (2 - 2 'I u I)z ( t) if 2'J ul < 2" 
(t, U) = s

10	 ifu=OorIuI>1. 

Then the kernel a 1 is a non-negative Carathéodory function, and the operator A 1 acts 
from X into Y and is bounded (it even has bounded range): Indeed, by Minkowski's 
inequality we have for any measurable x 

IIAixII I =

	yla (.,s,x(r,$))dr	ds 

1" 
U, IIaI(.;x(Ts))MLsdT) ds 

<f (j 1d7-) 

<1. 

However, A 1 is not continuous, since it maps the convergent sequence (x) = (2") into 
the non-compact sequence (A i x,,) = (z,,). 

The kernel a 1 not only fails to satisfy the growth condition (7). Even more, a 1 does 
not satisfy

let (t, s, u)I	c u[ + b(t, s)	 (8) 
for fixed c,-y > 0 and b E Y. Indeed, for u,, = 2", (8) would imply z,,(t,$) 
a i (t, s, u,,) < c + b(t, s), whence d(t, .$) = b(t, s) + c satisfies d > z,, for all n, which 
obviously is not possible, since d E Y.
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The continuity of the operator A3 does not follow from its action and boundedness 
as is shown by the previous example (consider a 3 = ai). 

To discuss continuity conditions for the operator A3 , we apply the following theorem. 
Recall that a set G C X is absolutely bounded if sup {IIxn x IIx : x E G} - 0 as 
mescl - o. 

Theorem 3. Let 1 < p,q,c,8 < oo, X = L(T)[LJ(S)) and Y	LP(T)[L(S)). 
Suppose that, for each function x E X, 

11
11 D I a3 (', -, x(r, cr)) 1drda 1 	< 

Then the operator A3 acts from X into Y. Moreover, for each absolutely bounded set 
G c X and for each c > 0 there exists a nimber S > 0 such that the inequality 

EGJfDh I
Y <C 

holds whenever D 1 C D satisfies mesD 1 <S. 

Proof. It is analogous to that of [5: Theorem 18.41I 

Theorem 4 (see [7]). Let 1 < p,q,c,I3 < oo. The operator A3 acts from X = 
L(T)[LP(S)] into Y = L'(T)[L°(S)] and is continuous if and only if condition (4) 
holds and

lim Ias(,,u) - a3( . ,. , 110)Iy = 0	 (9) 

for any u0 E R. 
Proof. Without loss of generality, assume a3 (t,s,0) = 0 and mesT = mesS = 1. 

Suppose that the operator A3 acts from X into Y and is continuous. Then condition 
(4) holds by Theorem 2. Putting x u and x 0 uo, we have A3 x = a3 ( . ,. , u) and 
A3 x 0 = a3 (, , uo). Thus the continuity of A3 implies (9). 

Conversely, suppose that conditions (4) and (9) hold. Then the operator A3 acts 
from X into Y by Theorem 2. Assume that A3 is not continuous. This means that 
there exist a sequence (x) converging to a function x O in X and a number co > 0 such 
that

IIA3x - A 3 x0 [[y > E O	(n E N).	 (10) 

Since x,, - xo in X, the set {x0 ,x 1 ,x2 , ... } is absolutely bounded. Hence, by Theorem 
3 there is a number S > 0 such that the inequalities 

11 A3(xF	
6oxfl)IIY < -	(n > 0)	 (11) 
3 

hold whenever F C D satisfies rnesF < S. Let c = sup> 0 II x ,,[Ix, N = 
and D N = { ( t,$) : . I x ( t , $ ) I > N} (n > 0). Then mesD <	(n 2 0). Since 

X0 in X, we can find a subsequence (xn k ) which converges almost everywhere to 
no. Moreover, by Egorov's theorem, there exists a measurable set D6 C D such that
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mes(D - D5) < and (x,) converges to x 0 uniformly on D 6 . Let Ft = D5 —(D UD) 
and P' = D - Ft (k > 1). Then mesfrt < S for any k > 1. Now, we estimate 

II A3x - A,,oll y 5 I A3x x n k - A3XFoX 011 Y + JJA3XPIXfl k Jj y + A3x:x0ly. 

By condition (9) there is a 60 = So(N,eo) > 0 such that 

a3 ( . , , u) - a 3 (., •, uo)	-co 3	 (12) 

whenever Jul < N, luol < N, and Iu - tLOj < 8o• Since (x 5 ) converges to xo uniformly 
on D 6 , there exists an integer m = m(So) such that Ix,,,(t,$) - xo(t,$) < 5o for all 
(t,$) E D6 . Combining inequalities (11) - (13) we get I I A3 X m - A3x01 < co, which is 
contradictory to (10). Thus the operator A3 is continuous I 
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