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Abstract. We consider continuity and compactness of the particular Volterra operator Hx(t) = 
f' 0 

K(r)x(r) di-, where K(t) is a nonlinear continuous and compact or a-Lipschitz operator in 
some Banach space. 
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0. Introduction 

The initial value problem in a Banach space 

x'(t) = K(t)x(t) }

	
(1) 

X(to) = xo 

with nonlinear operators K(t) reads in integrated form 

X(t) -	
= J K(r)x(r) di-.	 (2) 

to 

In finite dimensions, the right-hand side usually defines a completely continuous operator 
H in appropriate function spaces, and thus by Schauder's theorem there exists a local 
(weak) solution of problem (1) (i.e. a solution of equation (2)). We can proceed similarly 
in infinite dimensions, if we can say something about continuity arid compactness of H. 

The existence of solutions of problem (1) has been discussed by many authois, e.g. 
by Ambrosetti [3], Krasnoselskii [9] and Sadovskii [12] (see also [5: Subsections 2.1 and 
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8.1), [1: Subsection 4.1], and the references therein). However it seems that no attempts 
have been made to consider compactness of H without the assumption that all K(r) 
have their range in the same compact set. 

We try to fill this gap now. The corresponding general theorems on continuity and 
compactness of H are established in Sections 1 and 2, while in Section 3 we discuss, 
how the abstract conditions may be verified. Section 4 is devoted to the case thatK(t) 
are Uryson operators (over arbitrary measure spaces). 

1. Continuity 

If T is a a-finite measure space, and U a metric space, we call a function x : T -i U 
(strongly Bochner) measurable, if it is a.e. (in the sense of the Lebesgue extension) the 
limit of a sequence of simple functions x, : T - U. A function x : T - U is called 
essentially separable-valued, if x(T \ To) is separable for some null set T0 c T. 

Proposition 1.1. Let T be a a-finite measure space, and U be a metric space. A 
function x : T - U is measurable, if and only if it is essentially separable-valued and 
x 1 (0) is measurable (in the sense of the Lebesgue extension of the measure space) for 
any open set 0 c U. 

Proof. The proof is standard (cf., e.g., [6: Subsection 111.6/Theorem 10] for a 
Banach space U) I 

Proposition 1.1 implies the following fact, which we shall frequently use: 

Lemma 1.1. Let T be a a-finite measure space, U be a metric space, and M c U. 
If x : T -* U is measurable with x(T) c M, then x is a. e. the limit of a sequence of 
simple functions x, : T -* M. 

Proof. Proposition 1.1 shows that x is measurable, if it is considered as a function 
from T into the metric space MI 

Let I be some compact interval, to .E I, U be a normed linear space, V be a 
Ba.nach space, and M c U. Assume, for almost all t E I we have a nonlinear operator 
K(t) : M -* V, such that the Carathéodory condition is satisfied: 

(i) I -+ K(t)u is measurable for all u E M 

(ii) u -* K(t)u is continuous on M for almost all t. 

Observe that these conditions already ensure that the superposition operator Fx(t) = 
K(t)x(t) maps measurable functions x : I -i M to measurable functions: Approximate 
x by simple functions x,, : I -* M (Lemma 1.1). Then each Fx is measurable and 
Fx(t) -* Fx(t) a.e. 

We consider the special nonlinear Volterra integral operator in Banach spaces 

Hx(t)=JK(r)x(r)dr=JFx(r)dr	 ( 3)
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as a mapping from B into C(I, V), where B is some set of measurable functions x I 
M. Let B be equipped with some metric, such that convergence in this metric implies 
convergence in measure. It is easy to give sufficient conditions for the continuity of H. 
One of the best is the following consequence of Vitali's convergence theorem: 

Theorem 1.1. Assume that in addition to conditions (i) and . (ii) the following 
holds: 

(*) Whenever x,. —* x in B, and I D D, D D2 J ... are measurable with flkDk = 0, 
we have limk..., sup,, fDk IIK(r)xn(r)II dr = 0. 

Then H : B — C(I, V) is defined and continuous. 

Proof. We first observe that condition (*) is equivalent to the apparently more 
restrictive condition

urn supJ
ID

	

IK(r)x n (r)II dr = 0	 (4) 
mesD—O n  

for any convergent sequence {x,,} in B. Indeed, if (4) is violated, there exists a sequence 
of measurable sets Ek with >k mesEk < oo such that 

sup JIE 
IIK(T)x n (T)IIdT	0	(k eN). 

n	 , 

Then Dk = u,,>k E,, is descending with mesD k —* 0. Thus, eliminating the null set 
flkDk from each Dk, we see that condition ('ic) fails since Ek c Dk. Applying (4) for 
the constant sequence x,, = x we find that Fx is even integrable on I, and thus Hx(t) 
is defined. 

Now, let x,. — x in B. We have to prove that 11 H — Hx,,II —* 0. Since it suffices to 
prove this for some subsequence, we may assume x,, — x a.e., whence Fx,, —* Fx ac., 
and thus Vitali's convergence theorem 16: Subsection 111.6/Theorem 151 implies 

jHx — Hx,,II	f II Fx ( t ) — Fxn(t)II dt	0	 (5) 

in view of (4)1 

Observe that condition (*) is 'almost necessary' for H to be continuous: Since the 
conditions of Vitali's convergence theorem are also necessary, condition (*) must be 
satisfied, if the right-hand side of (5) converges to zero. Surprisingly, it turns out that 
condition (*) is not necessary, even for U = V = R and smooth t —* K(t)u. We will 
construct a counterexample based on the following fact, which shows that the Hahn-Saks 
theorem [15: Section 45/Theorem 41 fails in a spectacular way for intervals: 

Lemma 1.2. There exists a sequence of smooth functions a n : 0, 11 —' IR, such 
that

mxfan(r)r	0	and	an	0 a.e.	 (6)
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although

	

Ia(r) I dT 740.	 (7) 

Proof. We first approximate Cantor's 'middle-third function' x uniformly by smooth 
functions x,. in the following way: Let E, be the union of all intervalls dropped until 
the n-th step of the construction of the Cantor set. Recall that x is constant on each 
of these intervals and monotone increasing with x(0) = 0 and x(1) = 1. Let x, be 
any smooth increasing function satisfying x(0) = 0, x,(1) = 1 and X nIE, = xIE. By 
construction x -* x uniformly, and x -* 0 a.e. 

Now, let k = (k,, k2 ): N - N2 be one-to-one and onto, and put a n =	Xf  

Since {x} is a Cauchy sequence in C([0, 1]), (6) is satisfied. But since the space 
AC((0, 1]) of absolutely continuous functions on [0, 11 is complete with respect to the 
norm

lixIl 1 = toil 1-(01 + 
/ 

Ix'(t)I di, 

and since x 1, E AC([0, 1]) converge uniformly to x V AC([0, 1), {x,} is not a Cauchy 
sequence in this norm, which implies (7) I 

Now the counterexample is as follows: Put I = [0, 11, U = V = R, M = [0 1 1), and 
define K(i)0 0, 

K(t)(n + A) - '	Aa +i (i) + (1 - A),,(i)	(n E N,0 < A < 1). 

Then each u i. K(t)u is continuous, and I * K(i)u is sniooth, but for x(t) n	we 
have f K(i)x(t)I di 74 0. Thus, Vitali's convergence theorem (necessary part) implies 
(since a.e. K(t)x,, (t) -* 0) that condition (*) fails with this sequence {x}. 

2. Compactness 

For the moment, let us consider a more general situation: Let T be a a-finite measure 
space, U and V as before, and M ç U. Assume, for almost all t E T we have a nonlinear 
continuous operator K(i) : M -4 V. Let B consist of mnieasurable functions x : T - M. 
We are interested in conditions which ensure that the range AB of 

Ax = JK(i)x(i)di 

is precomnpact. 

We prepare the result by observing a simple fact for Bochner integrals. Recall that 
the essential range of x is defined as the set of ally E Y, such that ess inf..,s li x ( s ) - II 
0.
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Lemma 2.1. If S is a measure space with mesS = 1, Y is a Banach space, and 
x : S -+ Y is integrable, then the integral yo = fS x(s) ds belongs to the closed convex 
hull C of the essential range of x. 

Proof. If yo C, apply the separation theorem [11: Theorem 3.41 to find 1 E Y* 

with Rel(yo) < infRel(C). Then, by elementary properties of the Bochner integral [6: 
Subsection 111.2/Theorem 19/(c)], we find Rel(yo) = fs Rel ( x ( s )) ds > fRel(yo)d.s = 
Rel(yo), which is a contradiction I 

We emphasize that, although we invoked Hahn-Banach's theorem in the proof, we 
just needed a countable form of the axiom of choice. Indeed, by the definition of the 
integral it is clear that it suffices to consider the closed linear hull of the values of the 
approximating simple functions instead of V. Thus without loss of generality, we may 
assume that Y is separable. And for the Hahn-Banach theorem in separable spaces the 
(uncountable) axiom of choice is not needed [7: p. 183]. 

Now, let B(M, V) be the Banach space of all functions M -+ V with bounded range, 
equipped with the sup-norm, 13C(M, V) c B(M, V) the subspace of continuous and 
bounded functions, and CC(M, V) c BC(M, V) the subspace of all continuous functions 
with precompact range, and assume the following: 

(iii) K(i) E CC(M, V) for almost all I. 

(iv) K is integrable as a function with values in B(M, V) 

Observe that the measurability of K : T -+ B(M, V) implies condition (i), and that 
condition (ii) is a consequence of K(t) E CC(M, V). 

Theorem 2.1. Let conditions (iii) and (iv) hold. Then AD is precompact. 

Proof. By Lemma 1.1 there exists a sequence of simple functions K. : T -+ 
CC(M,V), converging a.e. to K (in the norm of 8(M,V)). We may assume that 
additionally II K ,, ( i ) II II K ( t )II . Indeed, there exists a sequence of simple non-negative 
functions c 1,, which converges ac. monotonically increasing to t '-+ II I ( t )ll, whence we 
may replace K,, by K,,(t) = min{1, n (t)I]Kn (t)II'}Kn(i), if necessary. By Lebesgue's 
dominated convergence theorem, 

IT	
- K ( t )II dt —+0.	 (8) 

The range of each A,,x = IT K,,(t)x(t) di is precompact. Indeed, for fixed ri there exist 
pairwise disjoint measurable Ek and Ck e CC(M, V) with 

K. (t) =	XE+(t)Ck 

In view Of Lemma 2.1 (for the measure space Ek with renormed measure) the range 
A,,B is contained in E(mesEk)?(Ck M), i.e. in a compact set. Now just observe 
that by (8) we have A n -+ A uniformly on B I
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Remark 2.1. If B is equipped with some metric, such that convergence in this 
metric implies convergence in measure on sets of finite measure, then an analogous proof 
to Theorem 1.1 shows that A : B -f V is also continuous. Indeed, if x -+ x in B, then 
for a subsequence and almost all t we have x,,, (t) -+ x(t). Thus K(t)x,jt) - K(t)x(t) 
implies Ax,,, -* Ax by Lebesgue's dominated convergence theorem. 

We now turn to the question, under which conditions the operator (3) has pre-
compact range HB in C(I, V). Using the theorem of Arzelà-Ascoli for vector-valued 
functions (see [8: Theorem 3.10] or [10]) we see that this is the case if and only if the 
following is true: 

(a) HB is equicontinuous. 

(b) {Hx(t) : x B} is precompact in V for each t. 

The last assertion is satisfied under the conditions of Theorem 2.1 for T [t 0 , t] (resp. 
[t, to]). But condition (iv) evidently implies (a) and condition (*) of Theorem 1.1. Thus 
we have found the following main result of this paper. 

Theorem 2.2. Let conditions (iii) and (iv) hold. Then H : B - p C(I, V) is defined, 
continuous, and has prccompact range. 

Considering the initial value problem (1), we now can say: 

Corollary 2.1. Assume, conditions (iii) and (iv) are satisfied for M = '{u E U 
lu - xoII < 6) (8 > 0 fixed), B = C(I, M), and V = U. Then problem (1) has a (local) 
weak solution in C(J,M) for a small interval J c I around to. 

Proof. Choose J such that f II K ( r )ll drj 8 for t E J. Then x '-* x 0 + Hx is a 
compact and continuous mapping from C(J, M) into itself. Since C(J, M) is a closed, 
bounded and convex subset of the Banach space C(J, U), it remains to apply Schauder's 
fixed point theorem I 

We emphasize that x i-* x 0 + Hx in the próbf even transforms sequences {x } 
convergent merely in measure (not uniformly) into uniform cdnvergent sequences: Just 
equip B with the metric of convergence in measure, 

d(x y) = 
if	

11 x ( t ) - y(t)II	dt. 1 + 11 x ( t ) - y(t)II 

Corollary 2.2. Let the conditions of Corollary 2.1 be satisfied, and assume C(t) 
M -* U satisfies a Lipschitz condition 

II C( t )u - C(t)vll < L(t)u - vu	(t E I; u, v E ]W) 

with (in a neighborhood of t 0 ) integrable L, and t -* C(t)u is measurable for each fixed 
ii E M. Then the initial value problem 

x 1 (t) = C(t)x(t) + K(t)x(t)	
() X(to) =	 J
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has a (local) weak solution in C(J, M) for a small interval J ç I around to. 

Proof. The operator Dx(t) = f C(T)x(T) dr is a contraction of C(J, M) for small 
J. Since weak solutions of problem (9) are the fixed points of x -* xO + Dx + Hx, which 
thus is the sum of a contracting and a compact operator (whence a condensing operator 
[1: Subsection 1.5)), we can argue as in the previous proof, using Darbo's fixed point 
theorem [41 1 

Corollary 2.2 might be compared with the classical result in [9]. In this connection, 
we emphasize that our conditions do not imply that the (essential) range of the mapping 
g(t,u) = K(t)u on I x M is precompact, even if K(t) is linear, and K is piecewise 
constant: 

Example 2.1. Let V be an infinite dimensional Banach space, i.e. there exists a 
bounded sequence {v} C V without convergent subsequence. Let 1 E U satisfy 1(u) 54
0 for some u M. Choose I = [0, 1], and put K(t)u = l(u)v,, for (n + 1)_I < t 
Then conditions (iii) and (iv) are satisfied, but the (essential) range of g(i, u) = K(t)u 
is not precompact. 

It is a natural question whether analogues of Theorems 2.1 and 2.2 hold also for 
condensing K(t). This indeed is true in a certain sense. Recall that the Hausdorif 
measure of non-compactness of a set E in a metric space Z is defined as the infimum 
of all e > 0 such that E has a finite E-net in Z. Similarly, the Kuratowski measure a of 
E is defined as the infimum of all 6 > 0 such that E has a finite covering of sets with 
diameter less than 6. 

Let CC, (M, V) c 13C(M, V) denote the subset of all continuous C with bounded 
range, which satisfy

a(CM0) qy(Mo)	(M0 c M).	 (10) 

Condition (10) is appropriate for the following considerations. However, for applications 
it is more convenient to have a symmetric condition: Observing that a < 27, we 
may replace (10) by one of the sufficient (and up to the factor 2 necessary) conditions 

a(CM0 ) qa(Mo)	(Mo ç M)	 (11) 

or
7(CM0) < 7(M)	(M0 c M).	 (12)


We intend to replace condition (iii) by the condition 

(v) K(t) E CC Q (M, V) for almost all t E T (q < oo fixed). 

Analogously to Theorems 2.1 and 2.2 we can prove: 

Theorem 2.3. Let conditions (iv) and (v) hold. Then a(AB)	(qmesT)7(M).

In case I = T we also have a(HB) (q.mesl)7(M). 

Proof. The proof of the first statement is almost the same as that of Theorem 21 
(with CC q (M, V) instead of CC(M, V)): Observe that K(t) E CC q (M, V) indeed implies
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K(t) E CC q (M, V), and that 

a(AB) a ((mesEk)i1J(CkM)) 

>(mesEk)a ( Ck M )	 (13)


(mesT)qy(M). 

The second statement follows from the first, since HB is equicontinuous (see [3] or 
[10])I 

The first part of the Theorem 2.3 generalizes [1: Lemma 4.1.3]. For q = 0, Theorem 
2.3 gives the main statements of Theorems 2.1 and 2.2 again. 

We emphasize that Theorem 2.3 holds true for arbitrary set functions -y on U, which 
satisfy estimate (10) (C = K(t)). Even more, it suffices to have (10) only for M0 = M 
(for the statement of the theorem, it is unimportant, how 7(Mo) is defined for M0 
whence we may assume -y(Mo) = (M) for M0 c M). Thus, the only requirement on -y 
for Theorem 2.3 is the estimate a(K(t)M) q-y(M) (for almost all t E T). 

For the first part of Theorem 2.3, also a can be a more general set function: Using 
the terminology of [1], we see that (13) holds for any measure a of non-compactness 
which is monotone, semi-homogeneous, and algebraically semi-additive; if additionally 
a is continuous with respect to the Hausdorif metric, the complete proof of the first 
part of Theorem 2.3 carries over for such an a. 

However, observe that for the second part of Theorem 2.3 we need some connection 
between a in the spaces C(I, V) and in V. 

Whether Theorem 2.3 implies that A resp. H are condensing, depends of course on 
the metric on B, which has not been used so far. For simplicity, let us restrict ourselves 
to the most interesting case B c C(I, U) (i.e. we equip B with the max-norm). 

Lemma 2.2. Let B0 c C(I,U) resp. B0 c C(I,M), and M0 = {x(I) : x E B0}. 
Then -y(Mo) -y(Bo). 

Proof. Given E > 0, let x 1 ,.. . , x,. be a finite (-y(Bo) + E)-net for B0 . Let Mk be 
a finite e-net for x k (I). Then the union of all Mk is a finite ((B0 ) + 2E)-net for M0, 
which implies (M0 ) < ( B0 ) + 2e. Indeed, given x E B0 and t E I, there is some 
k with lI x ( t ) - Xk(i)ll < 7(Bo) + E and some U E Mk with ll u - Xk(t)Il	e, whence 
lu - x(t)ll	7(Bo) + 2e1 

We remark that for Lemma 2.2 it is unimportant whether we consider y in the 
spaces U resp. C(I, U), or in the corresponding metric subspaces M resp. C(I, M). 
The same is true of course for the following combination of Lemma 2.2 with Theorem 
2.3.

Theorem 2.4. Let conditions (iv) and (v) hold with B c C(I, U) (B c C(I, M)). 
Then H is continuous, and 

a(HB0 ) < ( qmesl)y(Bo)	(Bo c B).	 (14) 
In particular,

(HB0) < (qmes1)7(Bo)	(B0 9 B)	 (15)
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and
a(HB0) (2q nies I)a(Bo)	(B0 c B).	 (16) 

Thus, if qmesl < 1 (qmesl < ), H is condensing with respect to the Hausdorff 
(Kuraiowskz) measure of non-compactness. 

Proof. The continuity of H follows by Theorem 1.1. For (14), apply Theorem 2.3 
for B = B0 and M = M0 , where M0 is defined as in Lemma 2.21 

Observe that, if we consider only the Hausdorif measure of non-compactness, we 
loose a factor 2 in (12) (but not in (15)), and if we consider only the Kuratowski measure, 
we loose the same factor in (16) (but not in (11)). Thus it is usually the best idea to 
verify the conditions of Theorem 2.4 for the Kuratowski measure of non-compactness, 
and to use the conclusion for the Hausdorif measure of non-compactness. 

Theorem 2.4 gives the following essential sharpening of Corollary 2.2: 

Corollary 2.3. Corollary 2.2 holds even if condition (iii) is replaced by condition 
(v) with q < c. 

Proof. The operator x xo + Dx + Hx in the proof of Corollary 2.2 is condensing 
by Theorem 2.4, if the considered interval is sufficiently small I 

We emphasize that the operators K(t) in the previous corollary need not even be 
condensing: They must just satisfy some '(uniform) a-Lipschitz condition' (this is some 
analogy to the finite-dimensional case). The price that we have to pay for a larger 
'Lipschitz'-constant q is that in general the interval of existence of the solution becomes 
correspondingly smaller. 

The main difference of Corollary 2.3 to the results [3, 121 (see also 5: Subsections 
2.1 and 8.1] and Li: Subsection 4. 1 1, and the references therein) is that we have replaced 
'uniform continuity' of K by 'uniform (local) integrability'. Note that for uniformly 
continuous g(i,u) = K(t)u with precompact K(t)M the range g(I x M) is precompact, 
contrasting Example 2.1. 

3. Checking the conditions 
The crucial point in the application of Theorems 2.1 - 2.4 is of course to check condition 
(iv). This condition is two-fold: 

1. K: T - B(M,V) is measurable 
and

2. the integral of II K ()II over T (which exists by Condition 1) is finite, i.e. 

J
sup  II K (t )u II di < oc.	 (17) 
uEM 

While, for applications, (17) usually is obvious, the first condition might be very hard 
to check: If the image space is not separable, measurability of a function K is a very 
restrictive condition. For example, in U = L 1 ([O,1]), V = R, the harmless looking



32	M. Vath 

family of linear integral functionals K(tu j• u(s) ds (t E [0, 1]) satisfies conditions 
(i) - (iii) and has uniformly bounded norm, but it is not measurable with respect to 
the uniform convergence, since it is not essentially separable-valued (sec [14: Example 
5.1.2]. 

To check measurability, Proposition 1.1 might be useful. Sometimes it is more 
convenient to check its conditions not for K : T -p B(M, V) but just for K T - 
CC(M, V) or K: T - !3C(M, V). This is sufficient: 

Proposition 3.1. Let W be a subspace of 13(M, V), and K: T -* W. Then K is 
measurable if and only if K : T - B(M, V) is measurable. 

Proof. The proposition is an immediate consequence of Lemma 1.1 U 

Proposition 1.1 implies that in the typical situation the only problem that might 
occur is that K is not essentially separable-valued (as in the above example): 

Theorem 3.1. Let M be separable with respect to some topology. Let K : T - 
13(M, V) satisfy condition (i), and assume u K(t)u is sequentially continuous with 
respect to this topology for almost all t. Then K is measurable if and only if it is 
essentially separable-valued. 

Proof. 1. Let us first show that any open and separable subset 0 of a metric space 
X is the union of countable many closed balls. Indeed, let (x,, I be dense in 0. Let r 
be the supremum of all radii r such that the ball {x : d(x, x) < r} still is contained in 
0. Then B = {x : d(x,x)	are the desired balls: Given x e 0, there is some

r > 0 such that d(x,y) < 3r implies y E 0. Choose some n with d(x,x) r. Then 
r > 2r, whence x E Br,. 

2. By Proposition 1.1 we just have to show the sufficient part of the theorem, and 
it remains to show that K'(0) is measurable for any open set 0 c 13(M, V). Without 
loss of generality, let KT be separable, and assume K(t) is sequentially continuous 
for each t. Since 0 fl KT is separable [2: Lemma 2.6/(2)] and open in KT, it is the 
union of countable many balls closed in KT. Thus, it remains to show that K 1 (A) is 
measurable for any closed ball A in KT. 

Let A be the closed ball in KT with center C E KT and radius r > 0. Then 

K'(A)= {tET: II K ( t ) — C II <r} = fl { tET: II K (t )u — Cu II <r}. 
uEM 

Let {u} be dense in M. Then, by the continuity of K(t), 

K'(A) = fl it E T: II K (t )u n - Cu <r}. 
nEN 

By condition (i), each of these sets is measurable  
For the application of Theorem 3.1 it is worth noting that the measurability of 

K : T - 13(M, V) does not depend on the topology on M. This means the condition 
that M be separable is not very restrictive: We just have to find some separable topology 
on M such that K(t) is sequentially continuous. Since in our situation K(t) E CC(M, V) 
is a 'good' operator, this might be an essential weakening of the separability assumption:
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Example 3.1. Let M be the unit ball of U = L([O, 1]), and K : T -* CC(M, V) 
satisfy condition (i). Assume, moreover, that u, - u in L 1 already implies K(t)u,, 
K(t)u (remember, e.g., the remark following Corollary 2.1). Then K: T -i 13(M, V) is 
measurable if and only if it is essentially separable-valued. 

However, we remark the condition that K: T - 8(M, V) be essentially separable-
valued is quite restrictive in most applications, even if K: T -* CC(M, V) and V = 

Example 3.2 [16). Let U have infinite dimension, and M ç U contain interior 
points. Then CC(M, IR) is not separable. Indeed, there exist 5 > 0 and a sequence 
{u} C  with J jUn - ukII > 25 for n 34 k. For N c N define a continuous map 
XN : U -* tO, 5] by -N(U) = >nEN max 16 - Il u - u,, 0}, observing that at most one 
term does not vanish. Since x N(u ) = S for n E N and XN(Un) = 0 for n V N, we have 
II X N, - x N211 ^! S for N1 54 N2 . Since the XN E CC(M,V) are uncountable, CC(M,V) is 
not separable (this conclusion only needs a countable form of the axiom of choice [14: 
Lemma A.1.1]). 

Since we want to have that almost all N(t) belong to a separable subspace of 
CC(M, V), it might be useful to know 'canonical' examples of such subspaces. One 
is the closure of the set of polynomials: 

Example 3.3 [16]. Let L c U and V c V be separable, and M c U be bounded. 
Then the closure of the set 

I

X X(U) 
= k=1 

(nk
) Vk (n;nk EN, lkj EL, Vk e ) } 

is a separable subset of CC(M, V). Indeed, if Ci c L and C2 c V are countable and 
dense, the set of all functions of the form 

X(U) 
=( 1 lkiu) Vk 

with lkj E Ci and Vk E C2 is countable and dense. 

4. An example: Uryson operators 

The most important examples of compact nonlinear operators are Uryson operators. 
We consider a family of such operators 

K(t)u(s) 
= IR k(i, s, a, u()) da	(s E S).	 (18) 

Here, S and R are arbitrary o-finite measure spaces, u takes values in a finite-dimension-
al space W, and k takes values in a Banach space Z.
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We consider K(t) as a mapping from M c U into V, where U and V are normed 
linear spaces of (classes of) measurable functions, V being even an ideal space, i.e. V 
is complete, and for any measurable function w satisfying a.e. 1w(s)II	11v(s)II for 
some v E V, we have w e V and JJwJJ Il v Il . Assume that convergence in U implies 
convergence in measure on sets of finite measure, and that M c U is bounded in norm. 
Let almost all k(t,.,.,.) satisfy a Carathéodory condition, i.e. k(t,.,.,w) is measurable 
(on S x R), and for almost all (s, a) E S x R the function k(t,s, a,.) is continuous on W. 
Then, typically (if k is not 'too singular'), K(t) is compact and continuous and even 
transforms sequences converging in measure on sets of finite measure into sequences 
converging in norm. Thus, if the measure space R is separable (or, equivalently, L, (R) 
is separable), we may equip M with the separable topology generated by 'convergence in 
measure on sets of finite measure', and apply Theorem 3.1. It thus remains to check that 
K is essentially separable-valued and that t -+ K(i)u is measurable for all u E M. For 
the latter, it is natural to assume that k even satisfies a joint Carathéodory condition 
on (T x S x R) x U, i.e. additionally k(, , , u) is measurable on T x (S x R) for each u. 

However, there is another approach: Under the 'typical' conditions guaranteeing 
the compactness of K(t), the author has shown in [13] by a different method that 
K : T - B(M, V) is measurable, if Ic satisfies a joint Carathéodory condition (even if 
R is not separable). Thus, under these assumptions, the conditions of Theorem 2.1 (or 
Theorem 2.2 in case T = I) are equivalent to the finiteness of the integral (17). 

We give a special case of this result for L spaces, which is sufficient for most 
applications (cf. the example in [131): 

Example 4.1. Let U = L(R,W) and V = L 9 (S,Z), with 1 < p,q < oo. Let 
1 Pt , and a: Tx R - IR be measurable such thai esssup ETlI a( t ,.)IIL, < . 
Let measurable Zt: S x R - IR be given such that the so-called Zaanen norm 

I1 ZtIIz(L, 1 ,L q ) = sup VR Izt(, a)Iu(a) da
IIuII <I 	I1 

is a.e. bounded by an integrable c(t), and

Q=SxR,SjO 
lI PQn Z tII2(Lpt L q ) - 0	whenever	or I Q=SxR, RJ,O. 

This is satisfied, for example, if Pt > 1 and for	+	= 1 the function 

c(t) = min (j

	

	Izi(s, a)[ da) ds)
	(fR (L Izt(s, a)1 9 ds) da) } 

R 

(IS (L I zi(s, a) I' da) ds) 1 if 

Pr = (fR(JSIztsI9ds) da)
	if p>q
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is dominated by an integrable function. Then for any Carathéodory function k: (T x 
S x R) x W -i Z satisfying the growth condition 

II k ( t , s, cr, w )Il	Zj(S, u )l ( I a( t , ) I + IIwlI) 

the corresponding family of Uryson operators (18) satisfies conditions (iii) and (iv) of 
our main Theorems 2.1 and 2.2 for any bounded M C U. In particular, in case T = I, 
the operator (3) defines a completely continuous mapping H : C(I, U) -+ C(I, V). 
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