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1. Introduction 

In the present paper, a Bernstein-type theorem which was stimulated by a result in [8] 
is proved for parametric quasiminimal surfaces. Unlike [8], we assume only a growth 
condition for the total curvature with respect to geodesic disks. Here, the Bernstein-
type theorem is a consequence of an apriori estimate for the mean value of the Gaussian 
curvature with respect to a geodesic disk which has been derived before. In particular, 
if the Gauss map of a complete quasiminimal surface S in R3 omits a neighborhood of 
the unit sphere and the total curvature with respect to geodesic disks does not increase 
too fast, then S must be a plane. The considerations of the present paper are based 
mainly on [4). For the classification of the present paper and for the notations we refer 
to [2], which is the precursor of this paper. 

2. Assumptions and notations 

Let S be an open oriented differential-geometric surface in 1R 3 with three times contin-
uously differentiable representations in local parameters, where the Gauss map of S is 
quasiconformal. Due to [7: Section 4] these surfaces are called quasiminimal. 

Because of the orientability of S and the smoothness of its Gauss map we can regard 
S as a Riemannian surface. Without loss of generality we may assume that S is simply 
connected (see [2: Bemerkung 5]). Furthermore, let the Gauss map of S omit the north 
pole of the unit sphere. Since S is a quasiminimal surface, the Gaussian curvature is 
non-positive everywhere on S. Due to a theorem of Hadamard (see, e.g., [5: Theorem 
6.6.4]) there exists a diffeomorphism of a plane to 5, if S is additionally complete. This 
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diffeomorphism arises from the global introduction of geodesic polar coordinates (r, t9) E 
(0, ) x (0, 27r) on S with respect to an origin P0 E S. Then, the diffeomorphism of the 
plane onto the complete surface S induces a mapping h h(r, 19) (0, oo) x [0, 27r) -* S. 
Note that h,, h,, = G2 = G2 (r,i9) holds with a non-negative function C = G(r,i9). 

As in [2], the function g = g(r,t9) : (0,) x [0, 27r) - C is the composition of h, 
the Gauss map and the stereographic projection. Denoting g = Reg and g = 1mg we 
have the relations

	

T = ggi - g irgz 2 0	 (1) 

(1 + g1 2 ) 2 Grr = 4T	 (2) 

g 2 19 + g,, QTG	 (3) 

Grr'= —KG	 (4) 
2 7r 

L(r) 
= J 

G(r,9)dt9	 (5) 
0 

for all r E [0,) and all 9 E [0, 27r), where (4) is a special case of Gauss' Theorema 
egregium (see, e.g., [5: Theorem 3.8.7]) and (2) arises after expressing the surface 
element dE on the unit sphere by the area element (92rgl,, - g irg2t,)drd9 = Tdrdt9 
in the plane and, otherwise, by the surface element C drth9 on S. So we get dE 
-4(1g1 2 + 1) 2 Tdrd79 and dE = KGdrth9. By means of (4) this yields (2). Since the 
Gauss map of S is quasiconformal and the first fundamental form of S has the structure 
ds2 = dr2 + G2 dt9 2 , the function g = g(r,9) satisfies 

+g g	, gir+g2r + ,,	 _____________ 
C2	

(Q2 ± 1) I91r g2 - 9192rI 
QG 

(see [2: Formula (8)]). Using the inequality

g12 2 '1rg2t9 —gIg2rI	g±g	+ 
QG	 r	r+ 

Q2G2 

we obtain (3) by an addition of these inequalities (cf. [1: Formula (7)] in the case 
C = r). 

3. A lemma 
As in.[2] and [4] we show the inequality 

f
2(r)L)d < aJ2(r)L(r)dr 

where the number a > 0 does not depend on the test functions '1. These test functions 
= 1(r) : [0, R] -* R are continuous in [0, R], possess a derivative V (in the sense of
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distributions) whose square is integrable over [0, R], and fulfill 4(R) = 0, where R > 0 
has been fixed. The set of all these functions is denoted by VR, for R> 0. 

Starting from [2: Formula (10)] (see also [4: Formula (10)]) we get with the aid of 
the Cauchy-Schwarz inequality 

[1 7(r) ' (r)(glg2 - 12)drd] 2 

R 21	 I?2,r 
ff2(r)T drd9 III	 - T 91092 )2 drth9 

00	 00 

(see [1], too). In the case T = 0, the latter fraction should be replaced by zero. Actually, 
(3) yields

(gig, - 9192)2 < ( g? + g)(g,, + g) < IgI2QG.
T	 T	- 

Hence, from [2: Formula (10)] we obtain the inequality 
R 27R 2 

JJ
2 (r)Tdrd19 <QJJcII2(r)GIgI2d7.d9 

Thus, we have the following result. 
Lemma. Let M = sup {g(r,t9)I : 0 r R, 0 5 i9 <2r} for an arbitrary R >0. 

Then, the function L = L(r) from' (5) satisfies 

/ 2 ( u d <4M2QJI2(r)L(r)dr	 (6) 

for all test functions I E YR. 

4. An apriori estimate for a mean value of K and a 
Bernstein-type theorem 

By setting

1L(t)_const=c for 0<r<p 

for p<rR 

property (6) implies 

-- I L"(r)dr	
= 4M2Q
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where p E (0, R) denotes a fixed number. Because of K S 0 and G > 0 one may derive 
U(r) > 0 from (4) and (5) (see, e.g., [3: Chapter 6]). This yields y y ^	f or all

E [p, R]. So, (7) can be written in the form 

<4M2QL(R) 

The quotient R is related to the total curvature of the geodesic disk with its center 
in P0 and the radius R. Actually, it holds

R 27 

^27r+Jf(_K)Gdrdt9 

due to [10: Corollary 1]. Therefore, we have the apriori estimate 
p 27	 p	 112ir 

JJ I K I GddI9 = / L"(r)dr < 
44 

(21r - If KGdrdi9)	(8) 

from which we infer the following Bernstein-type theorem. 
Theorem. Let S be a (open oriented differential-geometric) complete quasiminimal 

surface in R3 whose Gauss map omits a neighborhood of the north pole of the unit sphere. 
Po E S denotes a point on 5, and BR(PO) C S denotes a geodesic disk with its center in 
P0 and the radius R > 0. If for any fixed a E (0, no) the quotient of the total curvature 
with respect to BR(PO) and ln(1 + R) tends to zero as R - no, then S must be a plane. 

Proof. Since the stereographic projection used for the definition of g maps the 
north pole to no, the function g = g(r, 0) is even bounded in [0, no) x [0, 27r). Thus, (8) 
yields

ffG,r drdt9 
= I L"(r) dr = 0 

for any a e (0, 1] and any p > 0. Because of (4), the (non-negative) term Gr, vanishes 
for all r e [0, p] and all 19 E [0, 27r). Since we can choose p arbitrarily large, the Jacobian 
of g = g(r,i9) has the value zero for all r E [0,00) and all 0 E [0, 27r). Therefore, as in 
[2] we obtain g const immediately. Hence, S can only be a plane. 

Suppose now a> 1 and let 

C(t) = 
[ t f L"(r) di-] / In(t) 

for t> 1 and /3 € lit Setting p = '/ for R> 1 we get the inequality 

C_1(v) 8 . 2_1M2Q 
I In' (R) + 

CCr(R)] 

from (8). Because of Cc (R) -+ 0 as R -* no the term C i (v) tends to zero, too. 
After a finite number of such steps one can derive C 1 (R) -* 0 as R - no so that the 
statement of the theorem follows as in the case a e (0, 1] 1
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5. Remarks 

In the following, the Bernstein-type theorem of this paper will be compared with some 
other results. 

1. The above theorem generalizes [8: Corollary 11 not only with respect to the 
growth condition of the total curvature, but this theorem also holds for a larger class of 
quasirninimal surfaces than the result in [81. 

2. In [9] Bernstein-type theorems were proved, too. We will show the relation of 
the growth condition to Assumption III in [8: Theorem 1] and to the corresponding 
assumption in [9: Section 5]. The first one has the form 

f
L(r)drdo R2	-	 ( 9) 

for any fixed d0 e (0, ) and all R > 0, and the assumption in [9: Section 51 implies 
even (9) (see [8: Section 3/Remark 2]). Because of the monotonicity of L and L > 0 we 
infer	 2R	2R 

L(R)R < J L(r)dr <JL(r)dr <4d0R2 

for all R> 0 from (9). This means L(R) <4d0 R. With the aid of L(r) = f L'(r) dr + 
const the same argument leads to L'(R) 8do. Consequently, we have 

lim{[1L"(r)dr] / In* ( 1+R)} =0 

for all a E (0, oo). Therefore, the growth condition used in the above theorem is weaker 
than (9). 

3. With regard to the function-theoretical proof of the Bernstein-type theorem for 
minimal surfaces (see [61) it is desirable to derive an analogous theorem for quasiminimal 
surfaces without the growth condition in the above theorem. 
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