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On Bernstein’s Theorem for

Quasiminimal Surfaces
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Abstract. A Bernstein-type theorem is proved for surfaces with a quasiconformal Gauss map
and with a growth condition for the total curvature.
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1. Introduction

In the present paper, a Bernstein-type theorem which was stimulated by a result in [8]
1s proved for parametric quasiminimal surfaces. Unlike [8], we assume only a growth
condition for the total curvature with respect to geodesic disks. Here, the Bernstein-
type theorem is a consequence of an apriori estimate for the mean value of the Gaussian
curvature with respect to a geodesic disk which has been derived before. In particular,
if the Gauss map of a complete quasiminimal surface S in R® omits a neighborhood of
the unit sphere and the total curvature with respect to geodesic disks does not increase
too fast, then S must be a plane. The considerations of the present paper are based
mainly on [4]. For the classification of the present paper and for the notations we refer
to [2], which is the precursor of this paper.

2. Assumptions and notations

Let S be an open oriented differential-geometric surface in IR? with three times contin-
uously differentiable representations in local parameters, where the Gauss map of S is
quasiconformal. Due to [7: Section 4] these surfaces are called quasiminimal.

Because of the orientability of S and the smoothness of its Gauss map we can regard
S as a Riemannian surface. Without loss of generality we may assume that S is simply
connected (see [2: Bemerkung 5]). Furthermore, let the Gauss map of S omit the north
pole of the unit sphere. Since S is a quasiminimal surface; the Gaussian curvature is
non-positive everywhere on S. Due to a theorem of Hadamard (see, e.g., (5: Theorem
6.6.4]) there exists a diffeomorphism of a plane to S, if S is additionally complete. This
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diffeomorphism arises from the global introduction of geodesic polar coordinates (r, 9) €
(0,00) x [0,27) on S with respect to an origin Py € S. Then, the diffeomorphism of the
plane onto the complete surface S induces a mapping h = h(r,9) : [0,00) x [0,27) — .
Note that hy - hg = G? = G*(r,9) holds with a non-negative function G = G(r,9).

As in [2], the function ¢ = g(r,9) : [0,00) x [0,27) — C is the composition of h,
the Gauss map and the stereographic projection. Denoting g = Reg and g2 = Im g we
have the relations

T = g2rg19 — g1rg29 > 0 (1)
(1+g[*)?G,, = 4T | )
919 + 935 < QTG (3)
G,r= —-KG (4)

L(r) = 2"G(r,a)am (5)

0

for all » € [0,00) and all ¥ € [0,27), where (4) is a special case of Gauss’ Theorema
egregium (see, e.g., [5: Theorem 3.8.7]) and (2) arises after expressing the surface
element dZ on the unit sphere by the area element (g;rg19 — g1rg29)drdd = T drdd
in the plane and, otherwise, by the surface element Gdrdd on S. So we get dT =
—4(|g|* + 1)7?T drd¥ and dT = KG drd9. By means of (4) this yields (2). Since the
Gauss map of S is quasiconformal and the first fundamental form of S has the structure
ds? = dr? + G*d9?, the function g = g(r,?) satisfies

2 2 '
. ~isonn
g3+ gh, + P2 920 (2 + 1)—_|9“92" 91992|

G? QG
(see [2: Formula (8)]). Using the inequality
zlglrgw — 91092r| < g2 2 gfo + 930
QG —glr+92r+ Q262

we obtain (3) by an addition of these inequalities (cf. [1:4 Formula (7)} in the case
G=r).

3. A lemma

As in.[2] and [4] we show the inequality

R , R
/QQ(T)L"(T) dr < 0’/ ®%(r)L(r) dr
0 0

where the number ¢ > 0 does not depend on the test functions ®. These test functions
® = &(r) : [0, R] — R are continuous in [0, R], possess a derivative ® (in the sense of
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distributions) whose square is integrable over [0, R], and fulfill $(R) = 0, where R > 0
has been fixed. The set of all these functions ® is denoted by Vg, for R > 0.

Starting from [2: Formula (10)] (see also [4: Formula (10)]) we get with the aid of
the Cauchy-Schwarz inequality

R 2n 2
l/ / ®(r)®'(r)(91920 — 91092)drdt91|
0o o

2n R 2n

S/R (r)Tdrdo//qﬂ( )(-"—‘gLTgﬂd 9

0

(see [1], too). In the case T = 0, the latter fraction should be replaced by zero. Actually,
(3) yields

_ 2 2 4 2)( g2 2
(.91920 T.‘hogz) < < (@ ‘*‘92)(75111‘9 + 920) < 19l?QG.
Hence, frorn [2: Formula (10)] we obtain the inequality

R 2x . : "R 2nm ’
//@%»)T drd9 < Q//¢'2(r)G|g|2drd19

Thus, we have the following result.

Lemma. Let M = sup{|g(r,9)|: 0 < r < R, 0 <9 < 2r} for an arbitrary R > 0.
Then, the function L = L(r) from (5) satisfies

R R '
/ ®2(r)L"(r) dr < 4M2Q / ®2(r)L(r) dr ©6)

for all test functions ® € Vg.

4. An apriori estlmate for a mean value of K and a
Bernstein-type theorem

By setting R ‘
/ %:const:c for0<r<p
®=3(r)=4 " &
‘ dt ' ;
—_ <R
['L(t)' ' forp<r <R

property (6) implies

I R -
- -\ M? . M
/L'(r)drgqtc—ﬁ/ﬁl(—ﬂ-L(r)dr=4 CQ L )

0
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where p € (0, R) denotes a fixed number. Because of K < 0 and G > 0 one may derive
L"(r) > 0 from (4) and (5) (see, e.g., [3: Chapter 6]). This yields n‘r—) > %% for all
r € [p, R]. So, (7) can be written in the form
P
/L"(r) dr <

0

4M2QL(R).

Rln%

The quotient L—(R@ is related to the total curvature of the geodesic disk with its center
in Py and the radius R. Actually, it holds

R 2x
L .
(TR)- <27 +//(—K)Gdrd19
0 0
due to [10: Corollary 1]. Therefore, we have the apriori estimate

p 2nm P 2 ) R 2m
//‘[K]Gdrdﬂ:/L"(r)dr < 4IMRQ 27r—//KGdrd19 ®)
00 o T 00

from which we infer the following Bernstein-type theorem.

Theorem. Let S be a (open oriented differential-geometric) complete quasiminimal
surface in R® whose Gauss map omits a neighborhood of the north pole of the unit sphere.
Py € S denotes a point on S, and Br(P,) C S denotes a geodesic disk with its center in
Py and the radius R > 0. If for any fized a € (0,00) the quotient of the total curvature
with respect to Br(Po) and In®(1+ R) tends to zero as R — oo, then S must be a plane.

Proof. Since the stereographic projection used for the definition of g maps the
- north pole to oo, the function g = g(r,9) is even bounded in [0, o0) x [0,27). Thus, (8)

yields
2x P

P
//G,,. drdd = /L"(r) dr =0
00 0

for any o € (0,1] and any p > 0. Because of (4), the (non-negative) term G,, vanishes
for all r € [0, p] and all # € [0, 27). Since we can choose p arbitrarily large, the Jacobian
of g = g(r,9) has the value zero for all r € [0,00) and all ¥ € [0,27). Therefore, as in
[2] we obtain g = const immediately. Hence, S can only be a plane. ’

Suppose now a > 1 and let

Ch(t) = [ /0 ‘ L"(r) dr] / nf(t)

for t > 1 and B € R. Setting p = V'R for R > 1 we get the inequality
27

—— +C*R

ey O]

from (8). Because of C°(R) — 0 as R — oo the term C®~!(v/R) tends to zero, too.
After a finite number of such steps one can derive C!(R) — 0 as R — oo so that the
statement of the theorem follows as in the case a € (0,1] 8

Ca—l(\/ﬁ) <8. 2a—lM2Q [
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5. Remarks

In the following, the Bernstein-type theorem of this paper will be compared with some
other results.

1. The above theorem generalizes [8: Corollary 1] not only with respect to the
growth condition of the total curvature, but this theorem also holds for a larger class of
quasiminimal surfaces than the result in [8].

2. In [9] Bernstein-type theorems were proved, too. We will show the relation of
the growth condition to Assumption III in [8: Theorem 1] and to the corresponding
assumption in [9: Section 5. The first one has the form

R
, /L(r) dr < doR? ) : 9)

for any fixed do € (0,00) and all R > 0, and the assumption in [9: Section 5] implies
even (9) (see [8: Section 3/Remark 2]). Because of the monotonicity of L and L > 0 we
infer

2R 2R
L(R)R £ /L(r) dr < /L(r) dr < 4dyR?
R 0

for all R > 0 from (9). This means L(R) < 4doR. With the aid of L(r) = [ L'(r)dr +
const the same argument leads to L'(R) < 8dp. Consequently, we have
]

Rlifxm{[/oa L"(r)dr] /1n°(1 +R)} =0

for all a € (0,00). Therefore, the growth condition used in the above theorem is weaker
than (9).

3. With regard to the function-theoretical proof of the Bernstein-type theorem for
minimal surfaces (see [6]) it is desirable to derive an analogous theorem for quasiminimal
surfaces without the growth condition in the above theorem.
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