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Abstract. The solution of singularly perturbed convection-diffusion problems can be split into 
a regular and a singular part containing the boundary layer terms. In dimensions n = 1 and 
n = 2, sharp estimates of the derivatives of both parts up to order 2 are given. The results are 
applied to estimate the interpolation error for the solution on Shishkin meshes for piecewise 
bilinear finite elements on rectangles and piecewise linear elements on triangles. Using the 
anisotropic interpolation theory it is proved that the interpolation problem on Shishkin meshes 
is quasi-optimal in L. and in the energy norm. 
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1. Introduction 

We are interested in robust numerical methods for the singularly perturbed convection-
diffusion problem

	

Lu := —EAU - b Vu + cu = f	in Q = (0,1)2	
(1.1) 

	

u=0	onF=ô. 
J 

The analysis of such methods - both exponentially fitted methods and specially designed 
mesh methods (see [6, 7]) requires sharp estimates for the exact solution. Depending on 
the method, information about derivatives of order 2, 3 or even 4 is desirable (it is not 
very realistic to look for robust higher-order methods because, in general, the solution 
of an elliptic problem in a non-smooth domain is not very smooth). 

If smoothness conditions on the data and compatibility conditions guarantee that 
u e C kA ( ) , and in addition 11ull <C is known, then we have the rough estimate (see 
Theorem 4 in the Appendix of [6])

Il u lIk	CE	 (1.2) 
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where H I] is the maximum norm and II Ilk the standard norm in Ck(), while C is a 
generic constant independent of the perturbation parameter E. Let us now additionally 
assume

bj(x,y) ^! 2 /3 1 >0 and b2(x,y) ^! 202 >0. (1.3) 
Then the solution of problem (1.1) is characterized by exponential layers concentrated 
at x = 0 and y = 0 (see [7]), and we wish to have sharper estimates than (1.2) that 
better reflect the layer structure. For instance, we proved in [8] that 

Iu(x,y)f C (1 + exp (_Lx)) 

1 
Py))

(1.4) 
Iu(x, y )I	C i + —exp

 

using the maximum principle for elliptic systems. 

The first aim of this paper is to present precise conditions under which estimates 
similar to (1.4) also hold for second and third order derivatives. Such conditions have a 
technical character and can be justified on the asymptotic expansions which we can see 
in the paper. In the book [9], Shishkin presented estimates for the solution of problem 
(1.1) in very general situations. But unfortunately, the precise assumptions are hidden 
in the text. Moreover, sometimes smoothness of some components is simply assumed 
which makes this source inconvenient. 

For analyzing upwind difference schemes on special meshes (see [6] or [9]) Shishkin 
introduced the following splitting of the exact solution: 

u=G+E,	 (1.5) 

where the smooth part G satisfies LG = f, while the layer part (also called the singular 
part in [6]) satisfies LE = 0. Additionally, C and E and derivatives of G and E up to 
a certain order can be estimated precisely (we explain this later in detail). A splitting 
into the smooth component and the layer component allows a corresponding splitting 
in the analysis of discretization methods and is therefore extremly useful. Working 
with majorizing functions based on the discrete maximum principle, the additional 
property LE = 0 of a Shishkin decomposition simplifies the argumentation (see [6]). 
The second aim of this paper is to classify the relation between splittings based on 
standard asymptotic expansions and a Shishkin splitting. 

The estimates that we want to derive for the derivatives are the result of a careful 
investigation of an asymptotic decomposition of the solution. For transparency we 
explain the basic approach in Section 2 for a one-dimensional problem. This is much 
easier than the elliptic two-dimensional problem studied in Section 3 because in the 
1-dimensional case compatibility conditions do not play any role. In Section 4 we apply 
our a priori estimates for deriving sharp bounds for the interpolation error on Shishkin 
meshes. Such interpolation results are not trivial because a two-dimensional Shishkin 
mesh does not satisfies the standard assumptions of the finite element technology. 

For simplicity of the representation, we assume c 0. Let us further assume that b 
and f are sufficiently smooth. It would be possible to specify these smoothness condi -
tions with respect to the data, but we are mainly interested in the careful examination 
of the necessary compatibility conditions in the two-dimensional case.



with
t !± dv,_, 

p!	d z1 
d2	d and 

A priori Estimates	1003 

2. A one-dimensional problem with an exponential layer 
Let us consider the boundary value problem 

	

Lu := —cu" - bu' =	 (2.1) 
U(0) = u(1) = 0 J 

with b 2 2/3 > 0 and introduce the notation L = eL 1 + L0 . A standard asymptotic 
expansion of u has the form 

u=uo+Eui+ ... +e k u k +vo+ev 1 + ... + ek v k +eR.	(2.2) 

Here the ut are determined by 

Louo = f, uo(1) = 0 

Lou t = — L i ut_ i , u,(1) = 0 (t = 1,... ,k). 

At x = 0 an exponential boundary layer exists. Introducing =ix and considering a 
Taylor expansion of Lt in the new variable, we see that v,() satisfy 

£OVO = 0, vo(0) = —uo(0) 

	

£0v, = = £(vo,. .. ,v,_i), vt(0) = —ut(0),	lim ve(e) = 0 (e 	1,.. .,k) e 0 

Therefore, we have for all e am	 0 
< 

ax m - 

We obtain the following result. 

Lemma 2.1 (Splitting based on the asymptotic expansion). The solution u of 
problem (2.1) admits the splitting u = G +,E, where the smooth part G satisfies for any 
prescribed finite order q

	

C	for 0	q,	 (2.3) 

while the layer part E satisfies E(0)I 15 C, IE(1)I < Ce4 and 

	

JEM J < Cee	for 0 e q.	 (2.4) 

Proof. The use of a suitable barrier function (inspecting the boundary value prob-
lern for the remainder R) leads to II R I	C. Then the rough estimate (1.2) yields 

IIII	C m . Setting

G=uo+eu i + ... 

E = v0 + EVi + ... + EkVk 

Lemma 2.1 follows immediately I
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Remark 2.2. It seems to us that Lemma 2.1 is well-known, but we do not know 
its origin. It is significant that the analysis of numerical methods using a decomposition 
that satisfies (2.3) and(2.4) is simpler than an analysis based on the bounds Iu(x)1 
C(1 +e_ke_) obtained in Kellogg et al. [4]. 

In the next step we modify (2.2) to obtain a Shishkin decomposition. Let us intro-
duce, instead of (2.2),

+ekuk+ek+u+l+vo+ " VI + ... +e k Vk+E k+1 v+, (2.5) 

where u0,... , uj and v0,. . . , Vk are the standard terms of an asymptotic expansion. 
Now we define u 1 and v by

LU + i = —LIuk 

u 1 (0) = 4+(1)	}	
(2.6) 

and
= —eL(vo + evi + ... + ecvk)	

}
( 2.7) v 1 (0) = 0, v . (1) = —(vo + ev 1 +	+ Ekvk)(1) 

If we introduce
G=uo+Eu i + ... 

E = v0 +Evi + ... 

we obtain the following assertion. 

Lemma 2.3 (Shishkin decomposition.) The solution of the boundary value problem 
(2.1) can be decomposed as u = G + E, where for any prescribed order q the smooth 
part G satisfies LG	f and 

I G I :5 C	for 0 <£ q 

while the layer part E satisfies LE = 0, IE*(0)I 5 C, 1E(1)I Ce	and 

E(x)ICe'	for 0 £ q 

Remark 2.4. Lemma 2.3 generalizes Theorem 2 in Chapter 8 of [6]. But while this 
generalization is not difficult to obtain, we hope that, comparing the proofs of Lemma 
2.1 and Lemma 2.3, the reader clearly recognizes both the close similarity between a 
decomposition based on a standard asymptotic expansion and a Shishkin decomposition 
as well as the differences between these two constructions. 

Both the standard asymptotic decomposition and the Shishkin decomposition are 
useful in the analysis of discretization methods. The Shishkin decomposition (if avail -
able, see Section 3) is preferable if the method used can take advantage of the property 
that the layer part satisfies a homogeneous equation.
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3. The two-dimensional problem with exponential layers 
In this section we shall study the boundary value problem 

	

—ELu - bVu - I	in Q = (0 1)2
(3.1)

	

u=0	onô 
assuming again (1.3). The corners T1 = (0, 0), T2 = (0, 1), T3 = (1,1) and T4 = (1.0) 
play an essential rule in our considerations. Let us first state from [2] the following fact. 

Lemma 3.1. Let the smooth data of the boundary value problem 
 —eu — bVu=f inQ=(0,1)2 

	

u(s, 0) = g 3 (s), u(s, 1) = gn (s), tz(0, s)	gw(S), u0, s) = ge (s) (s E [0, 1])
satisfy the first-order compatibility conditions. Then the given boundary value problem 

	

has a unique solution u  C 3 '°()); - - -	-	- -	 - - - 
We describe the concrete form of the compatibility conditions of Lemma 3.1 at the 

corner Ti = (0, 0), for instance. The compatibility condition of order zero requires 

	

g 3 (0) - g(0) = 0	 (C1,0) 
while the first order condition additionally requires 

Eg'(0) + b 1 (0,0)g(0) +g(0) + b2(0,0)g,(0) + 1(0,0) = 0. (C1,1) 
At the moment we need Lemma 3.1 for problem (3.1) with homogeneous boundary 
conditions (later it will be invoked in a different situation). 

Corollary 3.2. If b and f are sufficiently smooth and f satisfies the compatibility 
conditions

1(T1) = 0	(i = 1,2,3,4),	 (C 1) 
then problem (3.1) admits a unique solution u E C3 101A. 

An asymptotic approximation of it is well known (compare [7: Chapter Ill/Example 

( b(0,y) \	 (  u=uo+uo(0,y)exp -	x —uo(x,0)exp - 
b2 (x,0)
 y 

	

( b 1 (0,0) \ . (—	\ -	+ uo(0, 0)exp	
E	

X) exp b2(0,0) 1/) + eR 

Here u 0 - the solution of the reduced problem - satisfies 
—bVuo=f)

(3.3) 
= tt0=1 = 0. J 

To guarantee smoothness of it0 (at present, we need u 11 e C 2(), but later we shall want 
higher-order smoothness) we need compatibility conditions at the corner T3 . Thus, let 
us additionally assume

f(T3)f(T3)0. . . (C2a) 
Then the remainder R can be estimated using a suitable barrier function. With this 
estimate II RII C and (1.2) then yields information on derivatives of R. We set 

-	G-u0 i-eR	and	E=E1+E2-i-E3...........-	. 
(the Et are the layer terms in (3.2)). Thus, we have the following assertion.
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Lemma 3.3. (Splitting based on the asymptotic expansion). Let b and f be suffi- 
ciently smooth and assume that f satisfies the compatibility conditions (Cl) and (C2a). 
Then the solution u of problem (3.1) has the representation 

u = C + E1 + E2 + E3 

where the smooth part satisfies 

uGh	C,	uG1 1	C,	uG12	Ce'	 (3.5) 

while

<Cee OxboyJI 

L^^
3'Oy3 I - 

<Cee	 (i +j <2).	 (3.6) 

I&)E3
<CE+3)ec4! OxzôyJ I - 

Remark 3.4. In the analysis of an exponentially fitted finite element method [8] 
we needed the estimates

IuI C (i + —exp (±)) 

IuyI<C(1 

1	/ /32 \\ 
-	+exP(_7Y)) 

and

	

max (u - eu - b i u h, I - eu, - b2uyh)	C. 

These estimates are simple consequences of the decomposition (3.4). Thus, the results 
of [8] hold true without the assumptions (L) and (I) used in that paper. 

If one needs better bounds than (3.5) for the smooth part of the splitting, it is 
necessary to analyse the next terms in an asymptotic expansion. Thus, let us set 

U = u 0 + Eu 1 + V0 + EVI + WO + EW1 + z0 + Ez 1 + E 2 R	(3.7) 
Now u 1 satisfies

—bVu1 = AuO 1 

	

= u1,1	
(3.8) 

0.	) 

We wish to have u 0 E C 2 () and u 1 E C 2 (?). Therefore, we require 

	

f11 (T3 ) = f1 (T3 ) = f(T3) = 0.	 (C2b) 

Now v 1 and w 1 are the next terms in the ordinary layers at x = 0 and y = 0, respectively. 
With	ix, v 1 for instance satisfies 

dv 1	 8v03b1	ôv0 
+ b i (0,y)--- = —b2 (0,y)-- - TX_ 

(0, 
ax 

v i (0,y)	—ui(0,y).	
ae }
	

(3.9)
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Thus v 1 has the structure 

v i (, y) = (A(y) + B(y)e) eb1(0i - u i (0, y)e 1"	 (3. 10)a

Analogously, with ii = y, we obtain 

wi(x,ij) = [ - u(x,0) + i1(C(x) + D(x)ri)] ei'2(1O) 17. (3.10)b 

The corner layer term z 1 ensures that the boundary conditions at x = 0 and y = 1 are 
satisfied. With = and ij = we obtain the corner layer equation 

a2 z1 a22z	 ôzo-	 -	- =	 + +	b(0,0)	b2(0,0)	
ax a7l	a77 

with the boundary conditions 

i	=	= [u i (0, 0) - 77(C(0) + D(0)i7)] e_b2(0 

=	= [u,(0,0) - e(A(o) + B(0)e)] 

The crucial question is: is Zi smooth at (0,0) (or equivalently: are the first-order com-
patibility conditions of Lemma 3.1 satisfied)? A simple computation shows that for our 
z i -problem the compatibility condition is 

A(0)b1 (0, 0) - 2B(0) + C(0)b2 (0,0) -.2D(0) = 0.	 (3.11)

But the solution of the differential equation (3.9) yields 

A(y)b i (0, y) - 2B(y) = b 2
(0, y) ôuo(0, y)

 
ay 

and analogously

C(x)b2(x,0) - 2D(x) = bi(x,0) ôuo(x, 0) 
ax 

Thus (3.11) is equivalent to 

b1(O,O)Ou0(00) + 
3x	 ay	

=0. 

But u 0 satisfies (3.3) and is smooth, and 1(0,0) = 0, so the compatibility condition 
(3.12) is automatically satisfied! Our standard arguments with respect to the remainder 
R in (3.7) and the definition

C = uo + u i +e

2

 R  

E=E1+E2+E3 1	
(3.13) 

with
E1 = v0 + cv i ,	E2 = w 0 + cw 1 ,	E3 = z0 + cz1 

result in the following main outcome of this section.
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Theorem 3.5 (Splitting based on the asymptotic expansion). Let b and I be 
sufficiently smooth. Further, we assume that the compatibility conditions (Cl), (C2a) 
and (C2b) are satisfied. Then the smooth part C of the decomposition (3.13) can be 
bounded by

IIGII	C	for £ = 0,1,2,	 (3.14)

while E 1 ,E2 ,E3 satisfy again (3.6) for i +j. 2. 
If we additionally assume that u 1 E C 3 (), we also have uGh 3	CE' and (3.6)

holds true for i +j 3 

In the two-dimensional case the derivation of a "smooth" Shishkin decomposition 
(u = G* + Et with LG f and information about bounded derivatives of G and 
E up to a certain order) seems to he complicated. If, analogously to Section 2, we 
try to introduce t4 (in G* = uo + Eu1 + e 2 u) by Lu = iu1 to guarantee LG = f, 
then compatibility at the corners Ti , T2 , T4 is a problem (in [6] the authors require 
additionally u = 0 on r, but then the estimate 11 u 11 C' used in the proof of 
Theorem 3, Chapter 12 cannot be guaranteed because Au  is not zero in T1 , T2 , T4 , in 
general; thus the conditions in [6] are not constructive). 

In [9: p. 203], quite correctly a corner singularity term in the estimate of u appears. 
But then we obtain only

G = uo + EU1 + c 2 
U 2 (3.15) 

with hI u hI C, while derivatives of u 2* are unbounded. In the splitting of E* a similar 
term arises. We call such a splitting a perturbed Shishkin decomposition (for such a 
decomposition the necessary compatibility conditions can easier be justified). As a 
consequence, Shishkin's analysis based on "perturbed" decomposition leads to very low 
convergence rates (compare, for instance, [9: Chapter Ill/Theorem 2.31 where the rates 
are or depending on the precise assumptions) because he balances the classical error 
terms (the result of a standard analysis for fixed C which is useless for extremly small C) 
with the perturbation terms of order O(E) in the decomposition. Thus the exotic rates 
seem to be the result of the method used to prove uniform convergence. Unfortunately, 
better proofs in general he  are not available yet. 

Remark 3.6. Reaction-diffusion problems in a square were already carefully an-
alyzed in [2], see Theorem 4.2. In [10] the corresponding results - especially the fact 
that existing corner singularities arise only in the corner layers and not in the remainder 
term - were used to create special meshes adapting to both the layers and the corner 
singularities. 

In a further paper [5] the analysis of [2] is extended to the case of a general polygon. 
It turns out that a small adjustment of the asymptotic expansion for angles different 
from I also leads to an expansion which can be term-wise differentiated. 

It is possible to analyse problems with a parabolic layer in a similar way. See [3: 
Chapter IV/Section 1] for a detailed discussion of the terms arising in an asymptotic 
expansion for the problem

— EIU - bu y = f in Q = (0,1)2 

u=0 on5Q..
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In the Appendix D of [9], Shishkin discusses a more general class of equations, namely 
EL2 u + L 1 u = f with a general second order elliptic L2 and L 1 u :=	'b(x)— +c(x)u 
with b 1 , ..., b,, > 0 and b+1, ..., b,, 0. But the results - "smooth" and "perturbed" 
decompositions - are very briefly described and the precise assumptions made are hidden 
in the text or not stated precisely. 

4. Interpolation error estimates on a two-dimensional 

Shishkin mesh 

Let us start from the decomposition of a given function u on Q = (0, 1)2 in the sense of 
Theorem 3.5: Let u admit the representation 

u=G+Ei + E2 +E3 ,	 (4.1) 

where the smooth part satisfies JIG11	C, u G h ' < C and uGh 2 < C while the layer
terms can be estimated by 

a+JE1 
<C 

ax'ay) - 

O'E2 <Cee	 (i + j <2).	 (4.2)
ax z ayJ - 

O'E3 < 
Ox'ôy) - 

To simplify the representation we additionally assume /3 = 02 = 1. Otherwise a simple 
scaling leads to corresponding results. 

In the following, we will describe a slight generalization of an anisotropic mesh al-
ready introduced by Shishkin [9] which can also be used for non-rectangular domains. 
Our elements are anisotropic rectangles or general triangles with local step sizes depend-
ing on their positions in the unit square (0,1)2 . Let N E N and set T = min {, 2E In N}. 
Since c is considered to be very small we assume in the following that r = 2E In N. The 
small and large local step sizes are given by h 1 = h = 11 and h 2 = H = 2(1—,-) Let 

K1 I , K121 K21 , K22 be closed polygonal subsets of Q with disjoint interiors satisfying the 
following conditions: 

(i) K11 covers (0,r) 2 and is contained in [0, C7-]2. 

(ii) K11 UK12 covers (0,r) x (0,1) and is contained in [0,cr] x [0, 11. 

(iii) K11 UK21 covers (0,1) x (0, T) and is contained in [0,1] x [0,cT].
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(iv) K11 UK12 U K21 UK22 covers Q = [0,112. 

K 12 K22 

K 11 K21

0 

For the elements in K, we state the following condition: 
Each element A of K, is contained in a rectangle with side lengths (h 8 , h,) and 

contains a rectangle with side lengths c ft (h,, h,) (i,j = 1, 2). The interior angles of A 
are bounded by 0 <ir. 

By this condition, each element A is characterized by a local step size h h(A) = 
(h e , h,) (A C K1,). For i 54 j the corresponding elements are long and thin which cause 
trouble when the classical interpolation theory is used. 

In order to state the results of the anisotropic interpolation theory, some notations 
are required. For a multi-index a E rqO2 we use

aai 

	

= h(A)' = h"h,°2 (A C K,.,)	and	Dau =U. 

The space of continuous and piecewise linear (bilinear) functions that vanish on the 
boundary O1 is denoted by S0 . Let u' e So be the nodal interpolate of the continuous 
function u. Denoting the L2 -norm on an element A by we have the following 
interpolation estimates (see [1]): 

	

Hu - U 1112 
0,A <_ C	h2a IIDa UII A	 (4.3)

Ic 1<2 

II O ( u - u ')IIA	C	h20,IDaOZUII,A	 (4.4)
IaI1 

11 5y(u - u ')IIA	C	h20 IIDa OY UIJ A .	 (4.5)
a 1= 1 

These estimates do not hold on general anisotropic quadrilaterals (see [12] for some 
results) and have enforced us to use an orthogonal mesh for bilinear elements. 

By transforming the standard inverse estimate to a.nisotropic elements we obtain 
for A C K,,

II0xUhII,A	ch 2 IIu h II ,A	for all uh E So	 (4.6) 

II ôv u hIIo,A <ch2 II u hII,A	for all up E S.	 (4.7) 

We wish to estimate the interpolation error in the L,,.-norm . the L2-norm, and the 
e-weighted H 1 -norm given by MI = {II Vv II + IIvIIfl2. 
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Theorem 4.1. We have 

Il u - u 'IIK22 <CN 2	and	lu - u IIcl\K 22 CN2 In  N	(4.8) 

and, if e In  N < C (which is practically not restrictive), 

lltz - u 'lIo <CN 2 .	 (4.9) 

Proof. Assertion (4.8) is well known [11], we stated that estimate for completeness. 
To prove (4.9), we use the splitting u = G + E of (4.1) and the corresponding decom-
position u' G' + E'. The interpolation error estimate with respect to G follows from 
the standard theory. 

Now let us consider the layer terms, for instance E1 - El. On the fine mesh K 1 I 

the standard estimate yields 

1I E1 - E[II0,K,,	Ch2 II V2E 1 110K,, < CeN_ 2 1n2 N. 

On K21 U K22 we have by definition of the sets 

11E, - Ef IlO,K2 1UK, 2	lI E1 110K2, UK22 + II E[Ilo,K21 UK22 

1I E illo,ic21u22 + 11E,111K21uK22 
< CN. 

Finally, on K12 we use the anisotropic estimate (4.3) to get 

E1	E' 2	Ch4II3E 2	+ Ch2 H 2 IIaZY E1 II O,K , 2 +	 III 2 2	CH4IIaYYEO K 12 -	b 1	K, 2	 1110K12 

Inserting the estimates for the derivatives which follow from (4.2) we obtain 

1IE1- E' 2	<CeN 4 1n4 N + CeN 4 1n2 N + CN 4 1 ll0,K,2 

Thus Theorem 4.1 is proved I 

In the next step we also estimate the gradient of the interpolation error. 

Theorem 4.2. The gradient of the interpolation error can be estimated by 

e4 II V ( u - u ')I10,K22	CN 1 and e ll V (u - u ')lIot-\K22	CN' In N. 

Proof. Again we consider only the term E1 - Ef because the other ones can be 
estimated in a simpler or similar way. On the fine mesh K11 again the standard estimate 
works:

IIV(Ei - E' )IIoK,, 15 ChIIV2E1II0,K1, ^ E C2N In N. 

On the subdomain K21 U K22 we have 

II a (Ei —EflII0,K21uK22	I1 aE1II0,K21UK22 + 1119zE(ll0,K21uK22.
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From the inverse estimate (4.6) it follows that 

II U ( E 1 - E[)II0K21U . 22	[orE1 lloK21uK22 + CH1IIE'I[O,K2IUK22 

I0z Ei IIo ,2i u 22 + CH]IEIIIK2IUK22 

C,,— '- N+ CN'. 

Finally, we apply on K12 the anisotropic estimate (4.4): 

131 ( E1 - E I[o,K,z	ChIIoXZEI lb K;. + ChHIIOXYEIII0,K12. 

Taking into account the corresponding estimates for the derivatives of E1 it follows 

11 0 ( E 1 - E[)lbo,K,z CE -2 N -1 lnN + CCN' 

Thus Theorem 4.2 is proved I 
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