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Abstract. A class of explicitly solvable models including those of low-dimensional systems in 
a magnetic field is considered. The spectral analysis of these models is reduced to the investi-
gation of the spectrum of an ordinary differential operator perturbed by a point potential with 
varying support. The complete analysis of the variation of the eigenvalues and elgenfunctions 
with position of the potential support is given. 
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0. Introduction 
We start with an example of special interest to low-dimensional system physics. Con-
sider a two-dimensional electron system (5] in the presence of a uniform magnetic field 
parallel to the system plane. The problem to describe the spectrum of the system arises 
in studies of the optical and transport properties of two-dimensional charge carriers 
subjected to a uniform in-plane magnetic field (see, e.c., [3 - 5, 8, 14, 20, 23, 33]). The 
most frequentlyused picture of the spectrum is that obtained by means of a perturba-
tion with respect to the field strength. Unfortunately, such perturbation methods are 
satisfactory in a rather restricted region of weak fields only [5]. The reason is that an 
arbitrary small variation of the field strength leads to an arbitrarily large variation of 
the vector potential of the field. In fact, the Hamiltonian H3 of a charged (charge e) 
particle of mass in in the considered system can be chosen in the form 

h2 [(a	ieB \2	a2	91 
H3 = —	—+	 + A8(y).	 (1) 

2m ox ch 

Here B is the strength of the uniform magnetic field which is parallel to the z-axis, 
8 is the Dirac delta function, and A is a coupling constant of the system confinement 
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potential U(x,y,z) = A5(y), A <0. In the momentum representation with respect to 
the momenta p and Pz, the operator (1) has the form 2 

h2 52 MW  
H3 = - --- + ----(y +q)2 +A8(y)+ 1 P2 (2) 

where w = is the cyclotron frequency and q = -. is the y-coordinate of theWM CM.
classical cyclotron orbit centre [181. From (2) we obtain the following dispersion lows 
for the energy spectrum of H3:

En (q,p) = E(q) + 1 
2 2m 

where {E(q) : ii E N} is the set of all the eigenvalues of the perturbed harmonic 
oscillator

h2 a2 MW  
H03 =—--—+------y2+A6(y—q). 

It is important to note that choosing A > U in (1) we get a Hamiltonian of magneto-
surface states in the presence of an in-plane magnetic field [7]. So in both cases (A > 0 
and A < 0) we come to the spectral problem for an operator of the form 

H=—+V(x)+A8(x—q)	 (3) 

where the unperturbed operator - + V(x) has a discrete spectrum. The princi-
pal interest in studying H is investigating the q -dependence of the eigenvalues of the 
operator H. 

Here are more examples of quantum mechanical systems for which the spectral 
analysis reduces to the study of an operators having the form (3). 

1. Narrow conducting channel in an inversion layer or heterostructure subjected 
to a quantizing magnetic field perpendicular to the layer plane. The Hamiltonian of a 
charged particle in the system has the form 

	

h2 1i'	ieB \2	521 
H3=-- [

r) +j 
+A8(y).	 (4)2rn 

The recent progress in fabrication of two-dimensional electron systems with additional 
one-dimensional structures makes the possibility of experimental studying quantum 
transport in systems with Hamiltonian (4) (see, e.g., [25, 30, 31]). 

2. Taking A > 0 in formula (4), we obtain a model of edge states in a two-
dimensional system at the presence of a magnetic field 121, 27], and the model of 
tunneling between quantum Hall systems [16]. 

3. Equation (3) describes a short-range impurity in a potential well. In this case 
V(x) is the confining potential of the well and A is the strength of the impurity potential 
(A < 0 for attractive impurities and A > 0 for repulsive ones). The considered model
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was employed, e.g., in [10, 19, 22, 24]. Besides, taking A > 0 we obtain the Hamiltonian 
of a charged particle tunneling through a moving barrier [6, 29]. 

Figure 1: The plot of the eigenvalues Ea (q) as functions of q in the case of A < 0 

In the papers cited the q-dependence of the spectrum of H has been studied by 
iiiiiiierical methods. In the case of a harmonic oscillator potential V (V(x) 

= 4 
the 

typical plot, of the eigerivalues E,1 (q) as functions of q is presented on Figures 1 - 3. 

Figure 2: The plot of the eigenvalues E,(q) as functions of q in the case of A > 0
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They present the case of A < 0, A > 0 and A = 0, respectively. On these figures, 
are the levels of the harmonic oscillator: E,, = The peculiarities of the plots are 
used for explanation of series of experimental data (see, e.c., (8, 14, 33)). As far as we 
know, there is no strict mathematical analysis of these peculiarities in the general case. 
For the case of a harmonic oscillator potential V(x) such an analysis is presented in 
(13); detailed proofs are contained in [11]. The proofs of main results of the mentioned 
paper are based on specific properties of the Green function of the harmonic oscillator 
and are not extended to more general potentials V(x). The aim of the present paper 
is to present strict mathematical results explaining the above-mentioned peculiarities 
in the case of a sufficiently general form of the potential V(x) in equation (3). We use 
an approach based on operator extension theory 12, 28). In this approach, the Krcin 
resolvent formula for selfadjoint extensions of symmetric operator plays the crucial role 
[17]. The possibility to use the Green function version of this formula for operators of 
the form (3) follows from results of [1, 12]. 

Figure 3: The plot of the eigenvalues E(q) as functions of q in the case of A = U 

1. Preliminaries 

In this section we introduce basic notations and state some auxiliary results (we refer 
to 19 1 26] for details). During the paper, H0 denotes a self-adjoint operator in the 
space L 2 (a. b) (—oc < a < b < + oo) generated by a formally self-adjoiiit differential 
expression r of order 2i.: 

r(f) = ( 1)V(pof()	+ ( -1)(p f(-i))(-l) + ... + pf. 

To avoid some pathologies we suppose that the following conditions are valid:
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(Li) The derivatives (in sense of distributions) of the functions Pk (0 < k < ii - 1)
up to order ii - k - 1 are locally absolutely continuous functions on (a, b). 

(L2) p0 (x) 54 0 for all x E (a, b). 

(L3) Pt.' E L0(a, b). 

In particular, under these conditions we have 

C°(a,b) C D(Ho) C C(a,b),	 (5)

where D(Ho) is the domain of H0. 

As usually, a(Ho) denotes the spectrum of the operator H0 , p(Ho) = C\a(Ho), and 
Ro(() denotes the resolvent of the operator H0 : Ro(() = (Ho By I we denote the 
interval (a, b) with added regular endpoints. The operator R0 (() has an integral kernel 
Go(x, y; () (the Green function of Ho), this function satisfies the following conditions: 

(Gi) f IG0 (x, y; I 2 dy < oo for all z E I and ( E p(Ho). 

(G2) If rn, ri E N and in + n < 2y - 1, then all the functions ôOGo(x, y; () are 
continuous in the region I x I x p(Ho) and holomorphic in ( E p(Ho) for any 
fixed x and y. 

Finally, the following supposition will be always assumed: 

(S) The spectrum of the operator H0 is discrete and bounded from below: a(Ho) = 
n E N} where .'\ <.X 1 < ... ' Z A n < 

We shall denote by k(n) the multiplicity of the eigenvalue ),,; it is well-known 
that i(n) < 2v. For every n we fix an orthonormal system 'n,k (k = 1,.. . , k(n)) of 
cigenfunctions of the operator H0 corresponding to the eigenvalue A,. Then 

oo K(n)  

	

Go(x,y;() = i	-	' n,k(x)nk(y),	 (6)
n0 k=1 

and by virtue of the Mercer theorem the series 

oo n(n)  

	

i: 1: I(	- )n,k(X)I'n,k(y) 
,i=0 k=1 

converges locally uniformly on I x I x p(Ho). 

Let q e (a, b) and -oo < p < +o, p 54 0. We shall consider the self-adjoint 
operator H H(q, u) in the space L2 (a, b) formally defined by the expression 

H(q,i) = H0 + ji8(x - q). .	.	.	 (7)
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To attach a rigorous mathematical meaning to the expression (7) we shall use the Krein 
resolvent formula [17]. According to that formula H is defined by its resolvent R(() 
which has the integral kernel 

G(x, y; () = Go (x, y; () — [Q(() + 1i']Go(x, q; ()Go(q, y; ()	(8) 

where Q(() is the so-called Krein function. Using equation (2) and property (Gi) we 
can show that Q(() has the form Q(() Q((, q) = Go(q, q; () (see [12] for details). 
Hence

oo ,c(n) 

Q(() = i: I(71 —	I4fl,k(q)2.	 (9)
n=0 k=I 

Formula (8) allows one to consider the operator H(q,J2) at /i = + 00; it can be shown 
that in this case H(q, ) is the direct sum of two operators on the intervals (a, q) and 
(q, b), respectively, with Dirichlet boundary conditions at the point q. 

We start with some auxiliary assertions. 

Lemma 1. Let P0 and P1 are orthoprojections in a Hubert space, and let a E C. 
If P0 + aP1 is an orthoprojection, then a equals one of the numbers 0, 1, —1. 

Lemma 2. For every x 0 E (a, b) the relation	,k(xo)	0 is valid for infinitely 
many values of the index ii. 

Proof. Otherwise, we obtain from (5) that there exists a function h E C(a, b) 
which is a finite linear combination of functions ',,k and obeys (x 0 ) = ( hIp) for all 
'p E C000 (a, b). Obviously, this is impossible  

Lemma 3. For a fixed q E (a, b) the following statements are true: 

(i) ( i* Q((, q) is a meromorphic function of ( E C with infinitely many simple 
poles. The poles of this function are exactly those points A for which there exists 
k E {1,. . . ,tc(n)} such that dIk(q) 0 0. 

()	q> 0 if C E p(Ho) nUt 

(iii) For real E the function E i— Q(E, q) increases from —oo to +00 as E varies 
between any two neighbouring poles. 

(iv) For every ( E p(Ho) the function x i—+ Go(x, q; () do not vanish identically on 
the interval (a, b). 

(v) Q((. q) —* 0 as	—00 locally uniformly with respect to q on the interval 
(a, b). 

Proof. It follows immediately from Lemma 2 and formulae (6) and (9) I 

The following theorem establishes a relation between formulae (7) and (8); the proof 
of the theorem can he found in [1]. Before to formulate the theorem, we remind that 
the symbol Q(H) denotes as usually the form domain of H.
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Theorem 1. Let It 54 +. Then the following statements are true: 

(i) Q(H0 ) = Q(H) C C(a,b). 

(ii) If 0 e Q(H), then h(t/') = ho(0) + Ib(q)I 2 where h and h 0 are the quadratic 
forms associated with the operators H and H0 ; respectively. 

(iii) The quadratic form kV( q )1 2 (' E Q(Ho)) is infinitesimal small with respect to 
the form h0. 

2. Spectral properties of the operator H(q, ) for fixed q 

Fix a point q E R, and let A 3 < A,,, < < A,,,, < ... be the increasing sequence of 
all the poles of the function ( i-* Q((, q) (by virtue of Lemma 3 this sequence is infinite). 
We shall assume further that if a point ( = A n does not belong to the sequence, then 
the function Q((, q) is equal to its continuous .extension to the point. In the spectral 
analysis of the operator H(q, p), the key part is played by the following equation with 
respect to the spectral parameter ( (known as dispersion equation): 

Q((,q)+i 1 =0.	 (10) 

For any ( 54 A,,,, the function Go(,q ) () does not vanish identically (Lemmas 2 and 
3). Hence by virtue of formula (8) every ( satisfying equation (10) is a pole of the 
resolvent R(() and therefore belongs to the spectrum a(H). Thus equation (10) has 

only real solutions. It follows from Lemma 3 that for every i this equation has exactly 
one solution in each interval (A,, 0 , A,,,), (A,,,, A,,2).....We arrange these solutions in 
an increasing sequence E 1 (q) < E2(q) < . .. . If y > 0, equation (10) has no other 
solutions; otherwise it has an additional solution Eo(q) lying in the interval (—oo, A,,0). 

Theorem 2. The spectrum of the operator H(q, z) is a discrete one and consists 
Of four non-intersecting parts 0k (k = 1, . . . ,4) which are described as follows. 

(1) The part or , consists of all the solutions E3 (q) of equation (10) which are dif-
ferent from the eigenvalues An of the operator H0 . Each solution E(q) is a simple 
eigenvalue of the operator H(q, t), the corresponding normalized eigenfunction has the 
form	 - 

^P j = Go (x.. q; E(q)) [(Ei (q) q)] 
2 

(ii) The part a2 consists of all the eigenvalues Am of the operator H0 satisfying 
equation (10) and such that 'm,k( q ) = 0 for all k 1, . . . t(m). Each point of a2 is 
an eigemvalue of the operator H(q, i) of multiplicity k(m) + 1; an orthonormal bases of 
the corresponding eigensubspace is spanned by the functions rnk and the function 

-i 
= Go (x, q; Am) [(Am q)] 

2

aE 

(iii) The part 93 consists of all the ezgenvalues A,,, of the operator H 0 which do not 
satisfy equation (10) and such that	= 0 for all k = 1, . .. I K(m).  Each point of
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0`3 is an eigenvalue of the operator H(q, ) of multiplicity i(m); an orthonormal bases 
of the corresponding eigensubspace is spanned by the functions 

(iv) The part a 4 consists of all the eigenvalues Am of the operator H0 for which 
#c(m) > 2 and which are poles of the function ( —* Q((, q) (i.e., for which m,k(q) 54 0 at 
least for one k). Each point of 94 is an ezgenvalue of the operator H(q,u) of multiplicity 
K(m) — 1; the corresponding ezgensubs pace is the orthogonal complement of the function 

= m1 (q) m,1 (x) + ... , +m K(m)(q) m(m)(X) 

in the eigensubspace of the operator H0 associated with Am. 

Proof. It is convenient now to rewrite the Krein formula (8) in the operator form 

R(() = Ro(() — [Q((,q) + z]gq(()(gq(()j . )	 (11)

where gq(() = G0 ( . , q; (). Let us introduce the notation 

A(() = 

Further, we shall use the following well-known assertion: the orthoprojector P on the 
eigensubspace of a selfajoint operator T corresponding to an isolated point E0 of its 
spectrum has the form

P = —Res[(T — ('; Eo] .	 (12) 
If E3 (q) 54 A,, for all n, then from (11) it follows immediately that E(q) is a pole of 
the resolvent R(). In this case equation ( 12) determines the orthoprojector P on the 
subspace spanned by the vector gq (Ej (q)). An elementary calculation of the residue 
leads to the expression P = q (Ej (q)) (q( E(q) ) I ) where

-i 
q (ej (q)) = g q (E(q))M'e (q),q)] 1' ' 

Let now E(q) = Am where Am is not a pole of the function ( i- Q((, q), i.e. let 
'm,k(q) = 0 for all k = 1, ... , K(m). Then in a neighbourhood of the point Am we have 

Q((, q) + ii' = a i (( — Am) + a2 (( — A,. )2+ 

where a =	(A m ,q) > 0. Thus Res[A);A m ] = aP1 where a > 0 and P1 is the
orthoprojector on the subspace spanned by the vector gq (A m ). Hence —Res[R); Am] 
Po + aP1 , where Po = —Res[Ro((); A,,,]; P0 is the orthoprojector on the subspace 
spanned by the functions- mk (k = 1,. . . , k(m)). Using Lemma 1, we obtain that 
a = 1. Therefore

P —Res[R((:Am] = P0 + P1. ( 13) 
It follows from equation ( 13) that P is the orthioprojector on the subspace spanned by 
the functions (F ,,k and the function 'I',,, from item (ii) of the theorem. 

Let us suppose now-that A,,, is not a pole of the function ( -* Q((,q) and is not 
a solution of equation ( 10), i.e. it is not equal to any E(q). Then Res[A((; Am) = 0,
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therefore —Res[R((); Am] = — Res(Ro); Am]. Thus Am is an eigenvalue of the operator 
H associated with the eigensubspace spanned by the vectors 

Finally, let Am be a pole of the function ( - Q((,q), i.e. 4m,k(q) 540 at least 
for one k E {1,.. . ,i(rn)}. Then Am is a pole of the function ( '-b g((; the cor-
responding residue we denote by Fm. Hence Res[A((); Am] = /3P1 where 3 0 0 and 
P1 is the orthoprojector on the subspace spanned by the function Fm(x). Therefore 
P —Res[R((); Am] = P0 + 0P1 . Because P is an orthoprojector and P 0 Po, then by 
virtue of Lemma 1, 3 = ±1. Since the range of P1 is contained in the range of Po, then 

= —1. Since P i is a one-dimensional projector, dim RangP = dim RangPo - 1. The 
theorem is proved I 

3. The dispersion laws E,, (q) 

Our next aim is to analyse the q-dependence of the eigenvalues e(q). Since the set 
{Ank } of the poles of the function ( .-+ Q((, q) depends on q, the use of the eigenvalues 
E(q) is not relevant to the study of their q-dependence properties. In this connection 
we give another parametrization of the eigenvalues of H. As a preliminary step we 
introduce the notations 

A_ 1 = -oo 
X i = IR 
Xn ={qER: cI(q)0 for all j=1,...,K(ri)} (n>0). 

Since each function 4 ,, is a solution of a linear differential equation, the sets R \ 
X. are discrete. The function E '-p Q(E,q) is continuously differentiable on each set 
(Ak_I, Ak) x (Xk_ 1 fl Xk) and real-analytic on the interval (A k _ i , Ak) as a function of E 

for any fixed q E Xk_i fl X,. As is shown above, equation (10) for any q E Xk_1 fl X 
has just one solution belonging to the interval (Ak_ i ,Ak); we denote this solution by 
Ek (q). Recall that the index k runs from 1 if p > 0 and from 0 if p < 0. Because 
29 0 0 on the set (Ak_ i ,Ak) x (Xk_ 1 flXk ), the implicit function theorem implies that 
Ek (q) is a continuously differentiable function on the set Xk_1 fl X,. 

Proposition 1. Each function E k (q) has a continuous extension on the whole real 
lime R. 

Proof. We fix s E R \ Xk_I fl Xk and choose a sequence (qn) C Xk_i fl Xk, with 
qn - s. From Lemma 3 it is easy to show that the sequence Ek (q) is bounded, hence, 
we can extract a subsequence Ek (qn ) converging to a limit which we denote by E. To 
complete the proof of the statement we need two lemmas. 

Lemma 4. The following assertions are true: 

(i) The number E is not a pole of the function ( i.-4 Q((, s). 

(ii) If Ak_I < E < A k , then - ( = E is a solution of the equation Q((, s) + 
= 0 (see (10)), and there exists no other solutions of the equation on the interval 

(A k _ i , Ak).
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(iii) If E = Ak_I, then limE_(Q(E,$) +	>0. 

(iv) If E = Ak, then lim_[Q(E, s) + i] 0. 

	

Proof. Assertion (i): Let f(()	(( - A,_ ! )(( - Ak); we consider the function 

Q((,q) = [Q((, q) + i jf),	 (14) 

which is continuous on the set (Ak_2, Ak+1) x R. Since Q,(Ek (qn ),qn ) = 0, then by 
passing to the limit rn -* : we obtain

= 0.	 (15) 

If E is a pole of the function ( '-* Q((, s), then Q L (E, s) 54 0 by virtue of Formula (14), 
what contradicts to the equation (15). 

Assertion (ii): Taking into account Lemma 3/(ii), we obtain the statement of the 
item by passing to the limit in the equality Q(Ek(qn ),qn ) +,U — '  = 0. 

Assertion (iii): By virtue of item (i) the function ( -* Q((, s) is continuous in a 
neighbourhood of Ak_I, therefore, the limit limE_Ak_,(Q(E,$) + iL) L exists. Let 
us assume that L < 0, then we have Q(Eo,$) + < 0 for some E0 E (Ak_l,Ak). 
Hence for some m the inequalities Q(Eo,$) + p < 0 and Ek (qn ) < Eo are satisfied 
simultaneously. Since Q(E, q) increases on the interval (Ak_ i , Ak) as function of E, we 
obtain the contradiction 0 < Q(Ek(qn),qn,,,) +	< Q(Eo,q,,,,,) +	' < 0. 

Assertion (iv): The proof of this item is similar to that of item (iii) I 
Lemma 5. For any sequence (s,,) C Xk_l fl X, converging to s the relation 

Ek(s) - E takes place. 

Proof. Suppose that for some sequence (se ) C Xk_1 fl Xk we have s,, - s, but 
Ek(s ) 74 E. Then we can choose a subsequence (sfl k ) such that Ek(Sfl m ) -* E, and 
E	E. Suppose that E > E. 

Taking into account Lemma 41(u) and the fact that Qis strictly increasing of E, 
we show that E = A k _ I or E* = A k . In both cases we have 

	

urn [Q(E,$) + _i] ^! 0	and	lirn [Q(E,$) + i'] <0.	(16) 

Let us take some numbers E1 and E2 so that E < E1 <E2 <E. Then from (16) with 
regard to the strict monotonicity of Q as function of E we have 

0 Q(Ei ,$)+i' <Q(E2,$)+i' <0. 

This is a contradiction. Taking into account Lemmas 4 and 5, we complete the proof of 
the Proposition 11 

The theorem below is the main result of this section.
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Theorem 3. For each fixed 0	E (—oo, +j there is a sequence (E(q)) of
continuous functions of q E R such that the following properties are satisfied: 

(i) A_ 1 :5 E(q)	A n for all n. 

(ii) En (q) < E i (q) for all admissible values of ri. 

(iii) For each q the set consisting of all E(q) and all the numbers Am with K(m) 2 2 
is the complete collection of all the eigenvalues of the operator H(q, ji). 

(iv) If A_ 1 < E(q) < A,,, then En (q) is the unique solution of the dispersion 
equation (10). 

(v) If An is a pole of the function (	Q((, q) (i.e. if ',(q) 54 0 at least for one 
k), then A,,_ 1 < En (q) < A,,.	 - 

(vi) Provided that An is not a pole of the function (	Q((, q) (i.e. 4 ,,, ( q ) = 0 
for all k), we have the following: 

(a) IfQ(A,,,q)+p 1 <0, then En (q) = A n <E,,i(q). 

(b) If Q(A,,,q)+f >0, then En (q) < A n = E,,i(q). 

(c) If Q(A,,,q) +	= 0, then En (q) = A n = E,,i(q). 

Definition. The points q for which condition (iv) of Theorem 3 is satisfied we 
shall call the non-singular points of the function E,,(q). If condition (vi)/(a), (vi)/(b) or 
(vi)/(c) is satisfied, then q will be called singular point of kind (a), (b) or (c), respectively. 

Proof of Theorem 3. By virtue of Proposition 1 each function En(q) can be 
extended by continuity on the whole real line R; the extension we denote by En(q) 
again. Properties (i) and (ii) of the function En (q) are obvious, property (iii) follows 
from Theorem 2 and properties (iv) and (vi). Properties (iv) and (v) follow immediately 
from the definition of the functions En (q) and Lemma 4. It remains to prove property 
(vi).

Let A n be not a pole of the function ( -* Q((, q), and let Q(A,,,q)+ jf I <0. For 
any positive integer m we choose a number Em such that An -_!Ln < Em < A,,; then 
Q(Em ,q) + p' < 0. Further, we choose points q,,, E R for which A,,_ i and A. are 
not the poles of the function ( '- Q((,qm) (that is q,,, E Xm_i fl Xm), and such that 
I q - mI <	and Q(Em ,qm ) +	< 0. Then En (qm ) is a solution of the equation 
Q(E,qm ) + = 0 laying in the interval (A,,_ 1 , A,,). Since Q is a strictly monotone 
function of E in this interval, the inequalities Em < E,,(qm ) < A n take place for all m. 
Thus En (qm) - A n and q,,, - q as m - ; therefore A n = En (q) by the definition of 
the function E,,(q). According to Lemma 4/(iii), Q(A,,,q) +	> 0 if A n = 
therefore A n < E,, i (q). Thus item (vi)/(a) is proved. The proofs of items (vi)/(b) and 
(vi)/(c) are similar I
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4. Properties of the dispersion lows E(q) for Schrödinger 
operators 

Here we consider the most important class of operators H0 , namely Schrödinger opera-
tors on the real line R. Throughout the section, H0 denotes the operator in L2 (R) given 
by the differential expression

(17) 

where the potential V belongs to the space L 0 (R) and is bounded from below. In the 
considered case the expression (17) defines an essentially selfadjoint operator on C°°(R). 

We need some additional restrictions on the potential V. First of all we shall assume 
that the condition 

(Vi) lim_± V(x) = +oo 

is fulfilled. Under this condition the operator H0 has a simple discrete spectrum, and 
each eigenfunction 4 m m,1 has strictly rn zeros on the real line. In addition, we can 
suppose that all the functions 4m are real-valued ones. 

In the case of the Schrödinger operator, the following representation of the Green 
function C 0 is convenient. Let (0 E p(Ho). Then the equation H0 1F = (0 '.F has up 
to a multiplicative constant only one non-zero square integrable solution P+(x; (o) and 
F_(x;(o) on the half-lines (0,+00) and (-00,0), respectively. Let 

= W('I'+(x;(o),1'_(x;(o)) 

be the Wronskian of these solutions. Then 

Co(x,y;(o)	
IJ+(max(x,y);(o) W_(min(x,y);(o)

(18)= 

(see [321). In a neighbourhood of the point (o the functions 'Ii(x; () and ''_(x; () can 
be chosen to be analytical ones of (. In addition, the function w(() has only simple 
zeros, and these zeros coincide with the eigenvalues A of the operator H0 . From (18) 
we obtain

Q((q) =	
(q;	(q; 	

(19) 

Let ( e R and ( Then the functions 'P(x; () and P_(x; () can be chosen to 
be strictly positive for all x E R. For the same values of (, the Green function G0 is the 
integral kernel of a positive operator, therefore 

Q((, q) = Go(q,q;() >0	 (20) 

for all q E R. On the other hand, by virtue of Lemma 3, 22 > 0 and	Q((, q) =
0, hence for all q E R and for the same values of (, we have 

Q((, q) = Go (q, q; () > 0.	 (21)
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In particular, we have
W(C) > 0.	 (22) 

The case of even potentials V(x) is of principal interest. In this case the functions 
2m are even and 12m+I are odd. Besides, we can assume tP_(q;() = 

therefore
Q((, q) =
	 (23) 

Lemma 6. Let the potential V(x) be an even function. If m(q) = 0, then 
Q(A m ,q) = 0. 

Proof. Let	,(q) = 0. Then c1,,,(_q) = 0 because m(X) is either odd or even. 
It is known (see, e.g., [311) that for some neighbourhood U of A,, there exists a family 
'I'(q; ) which is analytic with respect to (E U, and such that 'I'(q; Am) = m(q) and 

= 'I'+(q;() for ( 54 Am. Since the function () has a simple zero at the point 
Am, then the statement follows from equality (23)1 

Lemma 6 implies the following refinement of Theorem 2. 

Proposition 2. The following assertions hold: 

(i) If H0 is the Schr5dinger operator, then the set 174 from Theorem 2 is empty. 

(ii) Let the potential V(x) be an even function. Then the following assertions take 
place:

(a) For ,i 54 +oo all the eigenvalues of the operator H(q,u) are simple and belong 
either to the set a l or to the set 173 from Theorem 2. 

(b) For ju = + 00 the set 173 is empty, and all the ezgenvalues Am from the spectrum 
of H(q, p) are doubly degenerate. 

(c) A 0 does not belong to the spectrum of all the operators H(q,p), while every 
eigenvalue of the form A2m+i belongs to the -spectrum of any operator H(O,p). 

Note that in the case of the Schrödinger.operator, the number of the singular points 
of each function E(q) is finite and does not exceed n. Moreover, in this case it is easy 
to establish the following statement. 

Proposition 3. If the potential V(x) is a function of the class Ck (0 < k < 00) 

on some interval (c, d), then the functions E(q) belong to the class C 2 on the set of 
all non-singular points of this interval. If V(x) is a real-analytic function on an interval 
(c, d), then the functions E(q) are real-analytic at all non-singular points of the interval 
as well as at all singular points of the kind (a) or (b). In particular, for p 54 +00 the 
functions Ek (q) are real-analytic if the potential V(x) is a real-analytic function. 

Proof. For non-singular points the statement of the proposition immediately fol-
lows from formula (19) and the implicit function theorem. Let now qo be a singular 
point of the kind (a) for the function Ek (q). We consider the function Q,,((, q) defined 
by the equality

Q,((, q) =w)(Q((,q) +p').	 (24)
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In some neighbourhood of the point (.\k,qo) the function Q is analytical, and in some 
neighbourhood of the point qo the function Ek (q) is defined as an implicit function by 
the equation

Q,(E,q) = 0.	 (25)

It remains to verify that

m,qo)$0.	 (26)

We have

=	 )-(E)+(Q+-')'(E). 

Because (A,qo) <	, we have	(Am,qo)w(.)m) = 0. Since 4(() has a single 
zero in the point An, then (. .)' (Am) 0 0. Besides, Q + j.i does not vanish in the point 
(A,qo). Thus relation (26) is proved. In the case of points of the kind (b) the proof is 
similar I 

As a corollary of Theorem 1 we obtain the following statement. 

Proposition 4. For all q E R the inequality 

-	<Eo(q)	 (27) 

holds 

Proof. We denote by B the selfajoint operator in L2 (R) associated with the quad-
ratic form B(b) = 110,112 + u I'(q )I 2 It follows from Theorem 1 that B	H. The 
ground state of the operator B is equal to -	(see [2]). Hence we obtain (27) I 

Further we shall use the following hypothesis about the potential V: 

(V2) The set of all discontinuity points of the function V(x) is finite (possibly, empty); 
V(x) decreases on the half-line x <0 and increases on the half-line x 0. This 
function is differentiable at continuity points. 

(V3) There exists a point x0 > 0 such that the derivative V'(x) is a locally absolutely 
continuous function for lxi > x 0 , and fkI>	

5V'2(x)	V" (XI
 -	V(x) dx < oo. 

For convenience, the partial derivatives of the function Q((, q) with respect to q are 
denoted by a prime:	= Q'((,q), etc. aq 

Lemma 7. Suppose that condition (V2) is fulfilled. Then the following statements 
are true:

(i) For all ( E p(Ho) the function q Q((, q) has the continuous second derivative 
Q"((, q) at all the continuity points of the function V(q); at the discontinuity points there 
exist the one-sided limits Q"((, s - 0) and Q"((, s + 0). 

(ii) Let E ER and E 56 A n for every n. IfJI+(s;E) 0 0 and Q'(E,$) 0 (s ER), 
then Q"(E, s ± 0) < 0.
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(iii) Let E E R and E < .\. There exists at most one point qo e R such that 
Q'(E,qo) = 0. If Q'(E,qo) = 0, then Q'(E,q) > 0 for q > qo, and Q'(E,qo) < 0 for 
q <qo. 

Proof. Assertion (i): If condition (V2) is fulfilled, then each solution of the equation 
Ho  = (F has piecewise continuous second derivative F", and in each point s E IR there 
exist the one-sided limits F"(s - 0) and F"(s + 0). Therefore assertion (i) follows from 
equality (19). 

Assertion (ii): Using equality (19), we obtain in a neighbourhood of s 

Q'(E,q) 
= [4"(q; E)'Ti_(q; E) + 4'(q ) E)4'(q; E)j (28) 

w(E) 

and

'P(q; E) 'IJ _(q; E) + '^(q; E) 'I'(q; E) + 2'I'(q; E) 'I'.(q; E) 
Q"(E,q) = w(E) 

= 2 (V(q) - E)	(q; E) T _(q; E) +	q; E) V_ (q; E)	
(29) 

w(E) 

if q is a continuity point of the function V. From the equality Q'(E, .$) = 0 and equality 
(19) we obtain

V_  E) 
- 'J4(q; E)

+o(1)	as q — s. -	- -	'4'+(q;E) 

Substituting this expression into (29), we obtain 

(V (q) - E)'F^(q; E) - 'I'(q; E)

	

+o(1)	(30) Q" (E, q) = 2'Ji_(q; E)	
Lo (E) W(q; E) 

as q - .s. Denote
f(q) = (V (q) - E) 'P	'I" (q; E) - + (q; E). 

We have, at the continuity points q of the function V, 

f'(q) = V'(q)'I'.(q; E) + 2(V(q) - E) 'P(q; E) 'P(q; E) - 2'Ji(q; E) '4'.(q; E) 

	

= V'(q) 'F(q; E) + 24" (q; E) [(V(q) - E) 'P(q; E) - 'P . (q; E)]	(31) 

= V'(q) 'J.'(q; E). 

Thus f'(q) ^! 0 at the continuity points q of the function V obeying q ^! 0. Since V(q) 
has positive jumps provided q ^! 0, the function f(q) increases for q ^! 0. Now we shall 
prove that

liminf 1(q)	0.	 (32) 
q -+ 

Let us rewrite f(q) in the form 

f(q) = g(q) - 2 1P + (q; E)	where g(q) = (V(q) - E) 'P.(q ) E) + 'F ' (q; E).
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To prove (32) it is sufficient to show that 
liminfg(q) < 0.	 (33) q — +oo	- 

In order to prove this, we show that fg(x)dx < +00 for some a > 0. Since the func- 
tion ; E) is square integrable on the half-line (0, +oo) and %P-( - E) L2 (0, +00)1 
then 'I'(x i ;E) < 'P_(x i ;E) for some x 1 > 0. Similarly 'Ii+(x 2 ;E) > 'I'_(x 21 E) for 
some x2 < 0. Therefore there exists xo E [ x 2 , x 1 ] such that 'I'+(xo; E) = 'I'_(xo; E). 
We define now an auxiliary function h as 

h(x)- { 1TI+(x;E) for x 
- 'I_(x;E) for x<x0. 

It is easy to show that for any function p E D(H0) 

(hI(Ho - E)ço) = — y(x0),	 (34) 
where -y is the jump of the function h' at the point xo. From (34) and Theorem I we 
obtain that h  Q(H0 ), therefore the function (V(x) - E)h2 (x) + h'2 (x) belongs to the 
space L'(R). Hence g E L'(xo,00) and the relation (32) is proved. Since f increases for 
q ^! 0, then f(q) 0 for all q ? 0. Let us suppose that f(q) = 0 for all q ^! qi. Without 
loss of generality we can assume that V(q) is continuous for q ^! q i . Then V'(q) = 0 
for the same q (see equality (31)), i.e. the function V(q) is constant for q ^! qi, but 
this contradicts to condition (Vi). Thus f(q) < 0 for all q > 0. Remember that for 
E < A0 the values of the functions 'I'(q; E), 'I'_(q; E) and w(E) are strictly positive. 
Therefore for all points s > 0 statement (ii) follows from (30). For points s < 0, we 
argue similarly. 

(iii): It is sufficient to prove the uniqueness of the point qo for which Q'(E, qo) = 0. 
Note that qo is an isolated zero of the function Q 1 (E, .); otherwise, we have Q"(E, qo - 
0) = OorQ"(E,qo+O) = O with contradictory to statement (ii). Let Q'(E,q i ) = Owhere 
q i is such a point that qi > qo and Q'(E, q) 54 0 if q E ( qo, qi) . Then Q" (E, qo + 0) < 0 
and Q"(E, q - 0) < 0 simultaneously, hence for sufficiently small 6 > 0 we obtain 
that Q'(E,qo + 6) < 0 and Q'(E,q i - 6) > 0. Therefore Q'(E,q) = 0 for some q E 
(qo + 6, q - 6). This contradiction completes the proof I 

Lemma 8. Suppo3e that the conditions (Vi) and (V3) are fulfilled. If E E R \ 
cr(Ho), then Q(q,E) -* 0 as q -* ±00. 

Proof. It is known that under condition (V3) the following asymptotics take place 
as x -+ +00 (see [15,32]):

-	exp [J V(x) - (dx] (1+ 
ZO  

-	exp [±1 V(x) - (dx] (1+ 

From this asymptotics we obtain that, for a fixed E E R, E 

Q(E,q) --- V(q) _1 2	for q -* ±00.	 (35)
From (35) and assumption (Vi) the lemma follows I
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The following theorem is the main result of the paper. 

Theorem 4. For the Schr5dinger operator H0 the functions Ek (q) have the follow-
ing properties: 

(i) Let p < 0 and k > 1. Then the function Ek (q) attains the maximum Ak at 
those points q E R for which 4(q) = 0 and has no other points of local maximum. 
Besides, Ek (q) > Ak-I for all q E R. 

(ii) Let 0 < p c_ and k 2 1. Then the function E k (q) attains its minimum Ak_i 
at those points q e IR for which 4)k-l(q) = 0 and has no other points of local minimum. 
Besides, Ek (q) < A, for all q E R. 

(iii) Let p = _- and k > 1. Then: 
(a) A0 < E l (q) for all q E R.	 - 

(b) The function E l (q) attains its maximum which is equal to A 1 at that point q for 
which i( q ) = 0 and has no other points of local maximum. 

(c) For k 2 2 the function E k (q) attains its minimum Ak_I at those points q E IR 

for which cI_ i ( q) = 0, and attains its maximum Ak at those points q E R for which 
= 0; this function has no other points of local maximum or local minimum. 

(iv) Let the conditions (V2) and (V3) are fulfilled. Then: 

(a) If 0 < p	, then Iimq _± Ek (q) = A k _ I for k 2 1 

(b) If p < 0, then limg _± oo Ek (q) = Ak for k 2 0. For the same values of p, there 
exists a unique point qo such that E(qo) = 0, moreover, E(q) > 0 if q > qo, and 
E(q) <0 if q < qo. 

Proof. (i) - (iii): These assertions immediately follow from Theorem 3 and Lemma 
71(u). 

(iv): Let p < 0; we shall consider the function Ek (q). Take E E (Ak_i, A k) . By 
virtue of Lemma 8 there exists qo E R such that all points q > qo are non-singular ones 
for the function Ek (q), and at these points 

Q(E,q) +p <0.	 (36) 

Since Q increases as a function of E, we obtain from (32) that E' < Ek (q) < A, for all 
q > qo . Thus for p < 0 we have lim g _	Ek (q) = A k . If p > 0, we argue in a similar 
manner. Let now it < 0. Then -	Eo(q) < Ao for all q, therefore the function Eo(q)
has at least one minimum. From (10) we obtain 

E(q) = —Q'(Eo(q), q) [(Eo(q) q)] 

hence the reference to Lemma 7 completes the proof U 

Acknowledgments. Time work is partly supported by RFFR and Russian Ministry 
of Education.



54	V. A. Geyler and I. V. Chudaev 

References 
[1) Albeverio, S., Fenstad, J. E., Høegh-Kron, R. and T. Lindstrom: Nonstandard Methods 

in Stochastic Analysis and Mathematical Physics. New York et al.: Academic Press 1986. 
[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and H. Holden: Solvable Models in Quantum 

Mechanics. Berlin et al.: Springer-Verlag 1988. 
[3] Altarelli, M.: Electronic states in semiconductor superlattices and quantum wells: an 

overview. In: Springer Ser. Solid-State Sci. (Electronic materials) (eds.: I. R. Che-
likowsky and A. Franciosi). Berlin et al.: Springer-Verlag 95 (1991), 215 - 232. 

[4] Altarelli, M. and C. Platero: Magnetic hole levels in quantum wells in parallel magnetic 
field. Surf. Sci. 196 (1988), 540 - 544. 

[5] Ando, T., Fauler, A. and F. Stern: Electronic properties of two-dimensional systems. In: 
Rev. Modern Phys. 54 (1982), 437 - 672. 

[6] Bagwell, P. E. and R. K. Lake: Resonances in transmission through an oscillating barrier. 
Phys. Rev. B46 (1992), 15 329 - 15 336. 

[7] Beenakker, C. W. J. and H. van Houten: Quantum transport in semiconductor nanos-
tructures. In: Solid State Phys., Advances in Res. and Appl. (eds.: H. Ehrenreich and 
D. Turnbull). Boston et al.: Acad. Press 44 (1991), 1 - 228. 

[8) De Dios Leyva, M. and V. Galindo: fnterband optical absorption in superlattices in an 
in-plane magnetic field. Phys. Rev. B.48 (1993), 4518 - 4523. 

[9] Dunford, N. J. T. and Schwartz: Linear operators. Part II: Spectral Theory. New York et 
al.: Interscience 1963. 

[10] Gerard, G.-M. and J.-Y. Marzin: Optical study of probability densities in quantum well 
eigenstates. Surf. Sci. 229 (1990), 433 - 438. 

[11] Geyler, V. A. and I. V. Chudaev: The spectrum of a quasi-two-dimensional system in the 
presents of a parallel magnetic field (in Russian). Zhurn. Vych. Matem. i Matem. Fiz. 
37 (1997)2, 214 - 222; Engl. trans!. in: Comput. Math. and Math. Phys. 37 (1997), 210 
- 218. 

[12] Geyler, V. A., Margu!is, V. A. and I. I. Chuchaev: Zero-range potentials and Carleman 
operators (in Russian). Sibir. Matem. Zhurna! 36 (1995), 828 - 841; Engl. trans!. in: 
Siberian Math. J. 36 (1995), 714 - 726. 

[13] Geyler, V. A., Margu!is, V. A. and I. V. Chudaev: harmonic oscillator with a moving 
point perturbation (in Russian). Matem. Modelirovanie 7 (1995)5, p. 45. 

[14] Gumbs, G.: Self-consistent density of states for a single- and double-quantum-well struc-
ture in a parallel magnetic field. Phys. Rev. B54 (1996), 11354 - 11358. 

[15] Hartman, P.: Ordinary Differential Equations. New York et al.: J. Wiley & Sons 1964. 
[16] Ho, T.-L.: Oscillatory tunneling between quantum Hall systems. Phys. Rev. B50 (1994), 

4514 - 4533. 
[17] Krein, M. G. and H. K. Langer: On defect subspaces and generalized resolvents of an 

Hermitian operator in the space II,. Funct. Anal. App!. 5 (1971), 59 - 71. 
[18) Landau, L. D. and E. M. Lifshitz: Course in Theoretical Physics. Volume III: Quantum 

Mechanics. Oxford: Pergamon Press 1977. 
[19) Leavitt, R. P.: Exactly solvable one-dimensional model for impurity binding energies in 

quantum wells. Phys. Rev. B37 (1988), 7118 - 7120. 
[20] Lee, H. R., Oh, H. G., George, T. F. and C. 1. Um: Electron energy levels in a quantum 

well within an in-plane magnetic field. J. App!. Phys. 66 (1989), 2442 - 2445.



Schrödinger Operators	55 

[21] Levinson, Y. B. and E. V. Sukhorukov: Bending of electron edge states in a magnetic 
field. J. Phys.: Condensed Matter 3 (1991), 7291 - 7306. 

(22] Maan, J. C.: Two-dimensional systems, heterostructures, and superlattices. In: Springer 
Ser. Solid-State Sci. 53 (1984), 183 - 191. 

[23] Maan, J. C.: Magneto-optical properties of superlattices and quantum wells. Surf. Sci. 
196 (1988), 518 - 532. 

[24] Maan, J. C.: Optical studies of tunneling in a magnetic field. Physica B 201 (1994), 391 
- 396. 

[25] Montambaux, G. and P. B. Littlewood: "Fractional" quantum Hall effect in a quasi-one-
dimensional conductor. Phys. Rev. Lett. 62 (1989), 953 - 956. 

[26] Naimark, M. A.: Linear Differential Operators. New-York: Ungar 1968. 

[27] Niu, Q . and D. J. Thouless: Quantum Hall effect with realistic boundary conditions. Phys. 
Rev. B35 (1987), 2188 - 2197. 

[28] Pavlov, B. S.: The theory of extensions and explicitly solvable models. Russian Math. 
Surveys 42 (1987), 99 - 131. 

[29] Pimpale, A., holloway, S. and R. J. Smith: Tunneling through moving barriers. J. Phys. 
A24 1991, 3533 - 3550. 

[30] Prange, R. and S. M. Girvin: The Quantum hall Effect. New-York et al.: Springer-Verlag 
1987. 

[31] Smith, C. C. et at.: Transport in a superlattice of JD ballistic channels. J. Phys.: Condens. 
Matter 2 (1987), 3405 - 3414. 

[32] Titchmarsh, E. C.: Eigenvalues Expansions Associated with Second-Order Differential 
Euations. Oxford: Clarendon Press 1946. 

[33] Zheng, H. and H. Zhou: influence of a parallel magnetic field on localization of disor-
dered two-dimensional electrons in CaAs/A1,Ga i _As heterostructures. Phys. Rev. B41 
(1990), 1140- 1143. 

Received 24.04.1997


