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Abstract. An a priori estimate is established for the gradient of the solution to Dirichlet's 
problem for a class of nonlinear differential equations on a convex domain in the plane. The 
nonlinear operator is assumed to be elliptic in the sense of Campanato. By virtue of the 
Leray-Schauder fixed point theorem an existence result for the problem under consideration is 
derived. 
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1. Introduction 
The present paper deals with strong solutions of the Dirichlet problem for second order 
nonlinear equations of the form 

a(x,u(x),Du(x),D2u(x)) = f(x,u(x),Du(x))	ac. in ft	(0) 

Here 1 is a bounded, convex and sufficiently smooth domain, and the functions a and f 
satisfy the Carathéodory condition. Equation (0) is assumed to be elliptic in the sense 
of Campanato (condition (A) below). 

Strong solvability results for equation (0) were proved by Bers and Nirenberg [2] 
under the assumption that a and f are differentiable functions with respect to all their 
variables. A similar result belongs to Ladyzenskaya and Uralt'zeva when a and f are 
continuous functions. Imposing an ellipticity condition of special kind on a, Carnpanato 
was able to handle with operators defined by Carathéodory functions. Local existence 
results were derived in [3, 4] for domains with small Lehesgue measure. Recently, global 
strong solvability for equation (0) was proved by Palagachev in [8] if the right-hand side 
f grows strictly suhquadratically with respect to the gradient. 

Our main goal here is to improve the results iii [8] allowing quadratic gradient growth 
in f . Existence of strong solution to the Dirichiet problem for equation (0) is reached 
by Lcray-Schauder's fixed point theorem and is based on a Carnpanato's theory of 
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nearness between operators (see [3, 4]) and on an a priori estimate for the L4 (Q) norm 
of the gradient Du. In deriving this estimate we use essentially Campanato's ellipticity 
condition which enables to linearize the equation in a suitable manner and then apply 
a topological approach due to Amann and Crandall 11]. 

2. Setting of the problem and main results 
Let Q C R 2 be a bounded and convex domain of class C 2 . Suppose that a = a(x, z,p, 
and f = f(x, z, p) are real-valued functions which satisfy the Carathèodory condition, 
i.e. they are measurable in x for all (z,p,e) E R x R 2 x R4 and continuous in the other 
variables for almost all x E Q. Our aim is to study the following Dirichlet problem for 
second order nonlinear differential equations 

a(x, u, Du, D2 u) = f(x. u, Du)	a.e. in Q)

	

>	 (1) 
u=O	 on 3l. J 

Here the symbols Du and D 2 u denote the gradient and Hessian matrix of u, respec-
tively, and R 4 stands for the 4-dimensional space of real and symmetric (2 x 2)-matrices 
e = {ij},j=i with the norm II =i j= 1 ^2 . ) I. We will consider strong solutions 
of problem (1), i.e. twice weakly differentiable functions u E W2 ( S) satisfying the 
equation in (1) a.e. in Q and achieving their boundary values in the sense of Wl(), 
i.e. u E W(cl), for suitable q > 1. 

Concerning the function a = a(x, z,p,) our investigations will be carried out, 
assuming the validity of the following ellipticity condition introduced by Campanato 
(see [3]):

(A) There exist positive constants a,y and 6, y + 6 < 1, such that 

Tr() - [a(x, z, p, + T) - a(x, z, p, r)]	+ SITr(e)I 

for almost all x  Q, for all z ER, pER 2 and ,r ER4 , and a(x,z,p,0) 0. 

Concerning the function I = f(x, z, p) we impose the following requirements: 

(B) f(x,z,p)I	fi(I z I)(f2(x) + p 1 2 ), where fi E C°(R) is a positive, monotone 
non-decreasing function and f2 E L 2 (?) is positive. 

(C) —signz . f(x,z,p) <2V'detIa,IV'T for a.a. x  Q, IzI ? M and pER 2 , where 
aj j (x,z,p,) = -(x,z,p,), a,, E L(l x R x R2 x R4 ), g E L 1 () and 
h E L ( R2 ) are positive functions such that .f g(x)dx < f2 h(p)dp (see [10]). 

Let us note that, according to [8: Lemma], Campanato's condition (A) ensures that a 
a(x, z, p, ) is a Lipschitz-continuous function with respect to . Hence, in view of the 
classical Rademacher theorem, the derivatives	(x,z,p,) exist almost everywhere, 
and they are essentially bounded. 

Now we can formulate our main result.
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Theorem 1 (Gradient estimate). Assume I C 1R 2 to be a bounded and convex 
domain of class C 2 , and let conditions (A) and (B) be fulfilled. Then there exists a 
constant C = C(a,7,6,ô,f1,f2,IIuIILoo ( cl ) ) such that 

II Du IIL 4 (m)	C
	

(2) 

for each strong solution u E W 2 ' 2 (1) fl W01 ' 2 () of the Dirichlet problem (1). 

The a priori gradient estimate already stated allows us to apply the Leray-Schauder 
fixed point theorem in order to derive strong solvability of problem (1). 

Theorem 2 (Existence). Let Q c R 2 be a bounded and convex domain of class C2, 
and let conditions (A), (B) and (C) be satisfied. Then the Dirichlet problem (1) admits 
a solution u E W 2 ' 2 () fl W'2 (1).	 - 

To conclude this section let us note that the strong solution u of problem (1) is a 
Holder-continuous function u E C°"(1) for all ) < 1 in view of Sobolcv's imbedding 
theorem. Hence, u attains its boundary values on ÔQ continuously. 

In addition to the assumptions in Theorem 2, suppose that a = a(x,z,p,) is 
independent of z and p, f(x, z, p) is non-decreasing in z and Lipschitz continuous with 
respect to p. Then the solution of the Dirichlet problem (1) is unique in the wider class 
C°() fl W1 (Q). We refer to [8: Theorem 21 for the details. 

3. Proofs of the results 

We start with proving the gradient a priori estimate (2). For this goal an approach due 
to Amann and Crandall (1] will be used. 

Let u E W2,2 (Q) fl W' 2() solve the Dirichlet problem (1). The equation in (1) 
can be rewritten in the form 

a(x,u, Du, D2u) - f(x,u,Du)(f
2 (x) + IDuI2)

= 0, 
f2(x)+IDu12 

which gives 

a(x,u, Du, D2u)— 
Ex, u, Du) IDuI2—f2(x)u(x) - f(x,u,Du)f2(x) 

__	 ____________ - f2(x)u(x). 
12(x) + ID-1 2	 - 12(x) + IDuI2 

Now, defining the functions 

b(x)
f(x,u,Du)	and	

F(x) - f(x,u,Du)f2(x) 
______________ - f2(x)u(x), = -

f2 (x) + IDuI 2	 - 12(x) + [DtLI2 

the equation in (1) takes on the form 

a(x, u, Du, D 2 u) + b( x )I Du l 2 - f2 (x)u(x) = F(x),
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where, according to condition (B), we have Ib(x)I f1(I] u IIL o ) < 00 for a.a. x E ci, 
i.e. b E L OO (Q) and F E L 2 (ci). Thus, the Dirichiet problem (1) is equivalent to the 
following one: 

a(x, u, Du, D 2 u) + b(x )I Du I 2 — f2(X)tZ(X) = F(x) a.e. in ci 

	

u=O	on oci. J
Let p E [0, 1] be a parameter and consider the problem 

a(x, u, Du, D 2 v) + b( x )I Dv l 2 — f2 (x)v(x) = pF(x) ac. in ci	
(4 

	

v=0	on Oh. J 
Note that the function v = 0 solves problem (4) if p = 0. On the other hand, problem 
(4) coincides with the original problem (3) for p = 1. Thus, if we know in addition 
uniqueness result for problem (4), then the solution v of problem (4) with p = 1 will 
coincide with the solution u of problem (3). 

Proposition 3. Let v 1 , v2 e W2,2 (Q) fl W01,2 (Q)  be two solutions of problem (4) 
corresponding to the respective values P1	of the parameter p. Then 

Il v i — V211L 00 (f) 5 ( p2 — p i)[f1(II U ]Itc(0)) + II u IIL=(cl)1 .	 ( 5)
Proof. Clearly, we have 

a(x,u, Du, D 2 v i )—a(x,u, Du, D2v2) 

+b(x)[IDvi 12 — IDv2 I 2 ] - f2(X)[V1(X) — v 2 (x)] = F(x)(p i — P2) a.e. inci	(6) 
v 1 — v2 =0	 onOh. 

According to [8: Lemma], the function —* a(x, z,p,e) is differentiable a.e. with respect 
to and the derivatives -(x,z,p,) (i,j = 1,2) belong to L(h x R x R2 x R4). 
Therefore, we derive from (6) 

I Oa 
J

—(x,u, Du, s(D2 v i — D 2 v2 ) + D 2 vz)D,(v i — v2)ds 
0 

+b(x)f	Is(Dvi — Dy2 ) + Dv2 1 2 ds — f2(x)[1l(x) - v 2 (x)] = F(x)(p i — p2). 

Setting w	— v2 and introducing the notations 

A(x) 
=	

Oa 
J	(x, u; Du, s(D2 v 1 — D2 v.i ) + D2v2)ds 
0 

b(X) = 2b(x) f [s(D,v i - Dv2 ) + Dv2 ] ds, 
0
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the equation in (6) takes on the form 

Lw A,(x)Dw + b(x)D 1 w - f2(x)w(x) = F(x)(p i - P2). 

To apply the Aleksandrov-Pucci maximum principle (see [5: Theorem 9.1]) we need an 
estimate for the right-hand side F(x)(p i - p2) from above: 

f(x,u,Du)f2(x) - f2(X)U(X) 

f2(x)+lDul2 

lf(x,u,Du)1f2(x) 
2	+f2(X)I1L(X)l 

12(1) + IDul 

11 (luI)[f(x ) + lDul2]f2(x) + f2(x)lu(x)l 

f2(x)+lDul2 
f2( X ){fI(I U I) + lull 

f2( X )[f101 u 11L(11)) + llullLoo(cl)]. 

Since ( p ' - P2) is negative, we get 

Lw > (pi - P2)12(x )(f1(I1 u 11L OO (cl)) + lIullLoo(f1)] 

=	f2(X)(p2 —p l)[fl(lI u lIL oo (cl))+ llullLoo(r)]. 

Denoting M = (P2 - P1)[fI(ll u llLo0 (c)) + II U IIL OO (c)l, it is clear that 

LM = f2(X)(P2 - p 1)[f101 u 11L()) + llullLoo(cl)l 

and Lw > LM. Now applying the Aleksandrov-Pucci maximum principle to the prob-
lem

L(w—M)>O a.e. in ci 
w—M<O on 

we get w - M < 0 a.e. in ci and hence w M. Considering the same problem with 
—w instead of w, we get an estimate for w from below, that yields w > —M, whence 
ll w IILo(c) < M I 

Corollary 4. If problem (4) has a solution V E W2 ' 2 (1l) fl W,1,2 (Q) for some p E 
[0, 1], then it is a unique solution. 

Proof. It follows immediately from (5) putting p 1 = p2' 

We are in a position now to prove estimate (2). Let pi < P2 and denote the 
corresponding solutions of problem (4) by v 1 , v2 E W2,2 (Q) fl W,1,2 (Q). As above we set 
W = V1 - V2 and consider the problem 

a(x,u, Du, D2 v 1 )—a(x,u, Du, D2v2) 

= F(x)(p i - P2) 

- b(x) [IDv i 12_ lDvz 1 2 ] + 12(X) [VI (x) - v2(X)] a.e. in ci 
v 1 —v2 =0 on ôfl:
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Introduce the new function 

G(x) = (P1 - p2 )F(x) - b(x)[IDvi 12 - Dv21 2 ] + f2(x)w(x) 

and consider the equation 

LW = AW - a [a(x, u, Du, D 2 v 1 ) - a(x, u, Du, D2v2)] + aG(x). 

Having in mind that Tr(D 2 w) = Aw, condition (A), and Young's inequality we get 

=	- a [a(x, u, Du, D2 v 1 ) - a(x, u, Du, D2v2)] 2 + a2lG(x)12

+ 2 1 Aw - a[a(x , u , Du, D 2 v 1 ) - a(x , u , Du, D2v2)] IG(x)l 

<I Aw - a [a(x.u, Du, D 2 v 1 ) - a(x,u,Du, D2v2)]2 + a2IG(x)12 

+ C Aw - a[a(x,u,Du, D 2 v 1 ) - a(x , u , Du, D2v2)] 2 + jG(x)l2 

(1+ E)(yIID2wII + 8I w I) 2 + C(e, a)IG(x)12 

< (1 + E)y(y + 8 )II D2w Il 2 + (1 + c)6(6 + y )l w I 2 + C(e,a)IG(x)12 

for arbitrary c > 0. Thus 

I w 1
2dx <f ( i +	+ 8)I1D2wII2dx 

+ j ( i + E)8(8 + 7)I w I 2dx + C(a,e)f IG(x)I2dx. 

Since w E W22 (cl)flW' 2 (cl), and 1 is a convex domain, the Miranda-Talenti inequality 
(see (6, 9])

f0 
IID2wII2dx ja 

I Lw l 2d	 (8) 

can be applied. It follows 

I w I 2dx ( 1 + e)(-y + 6)2j I w I 2dx + C(a,e)j IG(x)I2dx, 

and if E > 0 is so small that (1 + E)(-y + 8)2 < 1, we obtain 

[1 —(1 +E)( + 8)2] 
in 

I w I 2dx <C(a,E)j IG(x)I2dx. 

Therefore, for a constant C1 , depending on a, e, -y and 8, it results 

in 
I w I 2dx < Cl(ae,7,b)f
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Using (8) once again, we get an estimate for D2w: 

in ll D2 ll 2x	Cl(a,E,y,6)f G(x)I2dx, 

i.e.
llD2w	

2 
" 2	^ C i a, &, .y , S )ll G (x )IIL 2 () . I1L2	 ( (1I) 

Thus, the function w satisfies the inequality 

11W11W2,2(0) 

c (i	+ lb(x) [lDv2 1 2 - IDvi 12] M L2(fl) + IIf2wItL2(1)) 

:5 c2 (iiiii, II W IIL OO (0), ll b( x)lIL)) ( 1 + liDvi 
11 2

L
 " 
(n)  + IIDwII4()). 

The L4 -norm of Dw in the right-hand side above can be estimated by the help of 
Gagliardo-Nirenberg's inequality [7]

1
2	

1 
2 ll Dw llL4 (ci	K4 IID2wlIL2(o)IIwIlL). 

In other words, utilizing (5) we derive 

IIDwIft4() < KIID2wIIL2(n)IlwIlLco(cl) 
K(p2 - pi) [fi(II U IIL OO (n)) + II t IIL c0 (n)] 11D2w11L2(cz) 

which leads to

2 lI w IIw 2 , 2	c2 11 + II Dv i I1L4(o) 

+ K(p2 - p i) [fi(II u IILo(cI)) + II u IIL(cl)1 IID2wIIL2n}. 

Thus, having in mind llD2wIIL2	:5 II'IIw(fl), we get

\ 
II D2w IIL 2 ci	C3 (i + lI Dv i II

2
L4(cI)) 

assuming in addition p2 - p '	r to be so small that C2 K(p2 - p I )[fi (IIuII L oo ( ç ) ) + 
II u IILoo(cl)] < 1. Hence 

lIDv2 
2	

< [Dy1 2 
lIL(fl) -	IIL(i) 

+ K(p2 - p i) [fi(II u IILot1)) + II U IIL OO (cI)] C3 (1 + IIDvi 
11 2 

L4(tl)) 

IIDwII2	
(9) 

IDvi IIL(i) +	L4(fl) 

2 
C4 + C5[[Dv1 IIL4(1) 

Bound (9) means that, if for some p ' E [0, 1] we have an a priori estimate for the 
respective solution v 1 of problem (4), we can get an estimate for the other solution v2 
of the same problem with p2 > p1 (P2 E [0,1]) if p2 - p'	T.
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To proceed further, we set P1 = 0 and P2 = T. In view of the uniqueness result 
(Corollary 4), the solution v0 of problem (4) with p = 0 is equal to zero and thus (9) 
yields

IIDvrII4(n) <C4	 (10) 

whenever there exists the solution v, of problem (4) with p = r. Thus, choosing p = ki 
and P2 = (k+1)T, with k = 0,1,... ,rn— 1, and repeating the above procedure m times, 
we derive the desired estimate (2): IIDUIIL4(cz) < C6. 

It remains to prove strong solvability of problem (4) with p T. This will be carried 
out by using the Leray-Schauder fixed point theorem. Consider problem (4) with p = 

	

a(x,u, Du, D2 v)+b(x)IDvI 2 —f2 ()v =rF(x) a.e. inj	
(11) 

V, = 0	on oci. J
We define the operator 

M: [0, 11 x W 1 ' 4 (IZ) -* w2,2	W 1 fl W"2(cl) 
as follows. For all a E [0,1] and y E W 14 (cl) consider the problem 

a(x,u, Du, D 2 z) = a[rF(x) - b(x)Dy( 2 + f2 (x)y] a.e. in ci	
12 

	

z=0	.	 onaQ.J 
In order to ensure solvability of this problem we need to show that the right-hand 
side of the equation above belongs to L 2 (ci). In fact, F E L2 (ci) and b E L°°(Q) 
as it was mentioned. Further on, y E W 1 ' 4 (ci) and thus IDyI 2 e L2 (cl). Finally, 
Y E w1,4 (Q) c C°(n) by virtue of Sobolev's imbedding theorem and therefore 

jf(x)y2 (x)dx	(supIy(z)I)2 jI f2 (x) 2 dx <. 

According to [4: Theorem 3] or [3: Theorem 4.4] and Campanato's condition (A) of 
ellipticity, problem (12) has a uniquesolution z E W2,2 (Q) fl W'2 (ci). This way we 
defined an operator

M : (0,1] X W 14 (cl)	W22(cl) n w'2(cl) 
by the formula M(a,y) = z. It is easily seen that each fixed point of the operator 
M(1,.) is a solution of problem (12). The existence of such fixed point will follow from 
Leray-Schauder's theorem. The condition a(x, z, p, 0) = 0 as required above shows that 
M(0, y) = 0 for each y E W' '(1l). The operator M is a continuous one as it is proved in 
[8]. Moreover, M is a compact operator considering it as a mapping from [0, 11 x W1'4(9^) 
into W"4 (ci). The last assertion is a consequence of the fact that W2,2 (Q) is compactly 
imbedded into W' 4 (1l) (Rellich's theorem). 

Finally, (10) gives an a priori estimate with a constant independent of V7 and a for 
each solution V7 E W2'2(ci)n W01,2(Q) c W1,4(Q) of the equation M(a,V7 ) = v,- which 
is equivalent to the Dirichlet problem 

	

a(x,u, Du, D2 V7 ) = a[rF(x) - b(x )1 DV71 2 +f2(x)v7] a.e. in Qj	
(13) 

	

V7 =0	 on 49Q. J 
Hence Leray-Schauder's theorem implies the existence of a fixed point of M(1,.) which 
is a solution of problem (4) with p = T. This completes the proof of Theorem 1 I



An Integral Estimate	65 

The proof of the existence result (Theorem 2) is similar to the proof of [8: Theorem 
1) and it makes use of Leray-Schauder's fixed point principle. However, in addition to 
the gradient estimate (2) we need an a priori bound for IuIILo(). 

Proposition 5. Let conditions (A) and (C) hold. Then each solution u E W2'2(Q)fl 
l'V' 2 () of problem (1) satisfies the estimate 

II tL IIL oO (Q) <M + Rdiam 

where R is such that lB h(p) dp = j g(x) dx and BR is a ball with center at the origin 
and radzus R. 

Proof. Since a(x,z,p,0) = 0, the function u	W0"2 (Q) fl W22 (cl) solves the 
problem

a'1(x)Dju f(x,u,Du) a.e. in l 
u=0	 onôl 

where a" E LOOP,

0a 
a'2 (x) =	__—(x,u(x),Du(x),sD2u(x))ds 

1, a^ij 

(see [8: Lemma]). Hence, the statement of Proposition 5 follows from condition (C) and 
[10: Theorem 2.6.11 I 
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