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A Characterization of the Dependence of the
Riemannian Metric on the Curvature Tensor by
Young Symmetrizers

B. Fiedler

Abstract. In differential gecometry several differential equation systems are known which allow .
the determination of the Riemannian metric from the curvature tensor in normal coordinates.
We consider two of such differential equation systems. The first system used by Giinther (8]
yields a power series of the metric the coefficients of which depend on the covariant derivatives
of the curvature tensor symmetrized in a certain manner. The second system, the so-called
Herglotz relations [9)], leads to a power series of the metric depending on symmetrized partial
derivatives of the curvature tensor.

We determine a left ideal of the group ring C[S-4+4] of the symmetric group Sy44 which is
associated with the partial derivatives 8 R of the curvature tensor R of order r and construct a
decomposition of this left ideal into three minimal left ideals using Young symmetrizers and the
Littlewood-Richardson rule. Exactly one of these minimal left ideals characterizes the so-called
essential part of 8 R on which the metric really depends via the Herglotz relations. We give
examples of metrics with and without a non-essential part of 8 R. Applying our results to the
covariant derivatives of the curvature tensor we can show that the algebra of tensor polynomials
R gencrated by V(; ...V, yRijx and the algebra R* generated by V(;, ... V;, RIH,-,N‘,_“),
fulfil R = R*.

Keywords: Calculation of a melric, curvalure tensor, partial derivatives of the curvature ten-
sor, covariant dertvatives of the curvature tensor, algebras of tensor polynomials,
Herglotz relations, power series method, minimal left ideals, Young symmetrizers,
Littlewood- Richardson rule, use of computer algebra systems.
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1. Introduction

Several investigations in differential geometry and general relativity theory make use
of certain differential equation systeins which allow to determine a pseudo-Riemannian
metric from its Riemannian curvature tensor in normal coordinates. P. Gilinther has
established the following construction of a differential equation system of such a type
in [8: Appendix IJ.

Let (M, g) be an n-dimensional analytic pseudo-Riemannian manifold with metric
¢ and Levi-Civita connection V, and let {U,z} be a normal coordinate system of (M, g)
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around the centre P € U C M, i.e. z(Py) = 0. If we choose an orthonormal basis
{v1,...,un} C Mp, of the tangent space Mp, of the manifold M in the point P, and
carry out a parallel transport of this basis along every geodesic starting in Py, we obtain
n smooth vector fields {X,...,X,} on a suitable open neighbourhood U’ C U of P,
which form an n-frame in every point of U'. We denote by Ty, 4, := T(Xay,---yXa,)
the coordinates of a covariant tensor field T of order r with respect to {X1,...,Xa}
and by T;, ., 1= T(0i,,. .., 8;,) the coordinates of the same tensor field with respect to
the basis vector fields 9; := 9/8z" of the normal coordinate system {U,z}. Then there
hold true the relations

9y = UxAU,BQAB y  gAB = 0;10{;9.'] (1.1)
with the transformation matrices') ¢ := (¢/) and 0! := (0%,) defined by
& = ol Xa Xa = 040,
The coordinates g4p in (1.1) fulfil

+1 if A=18B
gap = const = { 0 if A#B (1.2)

where the number of +1 and —1 in (1.2) is given by the signature of the metric g.
P. Gunther has shown in [8: Appendix I} that the matrix o satisfies on an open
neighbourhood of Py the relation?

XX(o)+X(o)+0-Q = 0 . (1.3)

Here X denotes the vector field X := z'0; formed from the normal coordinates z'.
Further, @ is an analytic (nxn)-matrix-valued function with power series @ = 372, Quy
the summands Q) of which are obtained by the equation Q) = o™ (Fy) - Ry - o(Pa)
from analytic (n x n)-matrices R(;) which depend on the covariant derivatives of the
Riemannian curvature tensor®) Rk according to

&
&
LS}
Gl

Il

(Ratus(Po) 22 ) (1.4)

a,b=1,.,n

Ry = ((‘T‘,z)—!(v.l...V,,_,Ra,v,_l.',b)(Po)z“...z") ,1>3.(1.5)

ab=1,..,n

Often, investigations in differential geometry usc the algebra

R = (g,],g'J,R,'jkI; V,’l...v,'rR,']kl,r21> (1‘6)

Y The matrix (o) can be regarded-as the matrix of the parallel transport along the family
- of geodesics, described above, with respect to the basis vector fields 8. A vector field Z which
is parallel along this family of geodesics fulfils Z = 2* X, = (2%0%)0; with z* = const.
) Important results on relations of type (1.3) have been published by P. Giinther in [7).
%) We use the convention IZ,-]k’ = o Fék —O,T} + T, - l‘;,[‘fk with the connection coef-
ficients T, = L g*'(8ig;1 + 9j9u — Digy; ).
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of all such tensor expressions which are complex linear combinations of expressions
formed from the tensor coordinates in {...) by arbitrary multiplications and index con-

tractions. Taking into account the so-called Ricci identities for the Riemannian curvature
tensor

1 r
ViV Vi Vi By 50 = =3 Z R,y ™ Vi .V Vi Ry,

t=1

4
1
—5 Z Rnbj,m‘vil s vierl Mg g

t=1

we see that the algebra R is gencrated already from g;;, ¢", Rijxs and the symmetrized
covariant derivatives of the curvature tensor,

R = (gi,97, Rijkes Vi, - VipRije, 72 1) (17
because the Ricci identities yield

Vi ViRj . = Vi, - VihR;

+ terms with covariant derivatives of R of order r<r—-2

(We denote by (...) or {...] the symmetrization or anti-symmetrization, respectively.)
Considering (1.5) we find out that the analytic matrix function Q in (1.3) depends
only on the stronger symmetrized covariant derivatives

Vi - Vi Ryayi

ri1irs2)b

of the curvature tensor which lie in the algebra
R* = (6ij, 975 Vi, Vi Riajiyprivgnp, 7 2 0) (1.8)

formed from the generating tensor coordinates by the same operations like R. (The
notation |a| means that the index a is excluded from the symmetrization.)

Obviously, R® is a subalgebra of R. Now the question arises whether the algebra
R* is equal to the algebra R. We show the equality of these two algebras by considering
a more general situation.

Besides (1.3), another differential equation system allowing the calculation of the
Riemannian metric from the curvature tensor in normal coordinates is given by the
so-called Herglotz relations [9] which we describe in Section 2. The Herglotz relations
are non-linear differential equations and yield power series of the metric which are
determined by the symmetrized partial derivatives of the curvature tensor

Ay - Ok, Ryayi, yri, o 2)8(Po)

The partial derivatives of the curvature tensor &, .. 8;, Rijii satisfy the same symmetry
properties like V... Vi Rijkt with the exception of the second Bianchi identity

ViR + ViR + ViRyie = 0
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such that the situation given by the Herglotz relations is algebraically more general than
the situation in the case of (1.3). '

Using the representation theory of the symmetric group S,, we can clear up the
connection between 0;, ... 0;, Rijii and 9y, - 0i, Riali, 11, 42)b- The partial derivatives
0;, ... 0;, Rijii induce group ring elements which lie in the direct sum

T & Jiry & Jir)
of three minimal left ideals of C[S,44] and the transition to the symmetrized partial
derivatives ;, ... 0i, Rjaji, , i, ,,)b corresponds to a linear mapping
I @I ® Ty = Jin-e , [ fre, e€ClSp

which maps j(r) G)j(,) to 0. In the case of V(;, ... V; )Ry and Viiy - Vi, Rpai, 11ivga)p
only the ideals J, and J(,) - € are associated with these covariant derivatives. The
inverse mapping J(;) - € — J(; gives us a relation between V; - Vi Rijr and
V(,'I “e VirRlali,+li,+z)b which inldS R =R

2. The Herglotz relations

In this section we give a short summary of the paper (9] in which G. Herglotz states his
method of determination of a Riemnannian metric from the coordinates of the Rieman-
nian curvature tensor in normal coordinates.

Proposition 2.1. Let (M,g) be an n-dimensional pseudo-Riemannian manifold
with metric ¢ and Levi-Civita connection V, and let {U,z} be a system of normal
coordinates on a normal neighbourhood U C M with centre Py € U, i.c. z(Py) = 0. If
we form the differential operator X := 2'0; and the (n x n)-matrices

G:=(g9;;) , K:= (R,-“]zk:nl) . trowindex , 7 column index

from the coordinates gij, Rixij of the metric g and the Riemannian curvature tensor R
with respect to {U,z}, then on U there holds true the so-called Herglotz relation!)

XX(G)+ X(G)-1X(G)-G™' - X(G) = -2K . (2.1)

Now we assume the g;; to be analytic functions on U and make usc of the facts that
8:9jk(Po) = 0 in normal coordinates {U,z} and that the metric coordinates gij(Po) in
Py may be transformed into

G(Py) = F = diag(1,...,1,-1,...,-1) (2.2)

by an allowed linear coordinate transformation. The numbers of 1 and -1 in the diagonal
matrix F' are determined by the signature of the metric ¢g. Thus we can write G as a
matrix-valued power series

G=FE-T) , I'=)>Y T (2.3)
k=2

D The dot -7 denotes the matrix product in (2.1).
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where E denotes the unit matrix and the I'x are matrix-valued homogeneous polynomials
of order k. Equations (2.1) and (2.3) lead to ' :

XX(T)+X(T)+ 1 X(T) - (E-T)""-X(T) = 2F K . (2.4)

If we use the formulas

i

X(Tx)
XX(T%)

k Tk
KTk

the Frobenius series

G'=(E-T)'F = (E+iF’)F ,
=1

the formula o 7 N N N o N 7 a 7 ) 7 )

X(T)-(E-T)""- X(I) KIT:-(E-T)"'- Ty

2
> > LTy Ty

a<ksfz] NN

NIE

>
T~
Il

N

3
n

and the power series development of K

K = ) Ki (2.5)
k=2

with matrix-valued homogeneous polynomials K of order k, then we obtain the recur-
sive relations

m=23: ;fz(m +1)T, 2F RKNnp (2.6)

2F Km—2 Y > LTy Ty

a<kg(z] T EETT

m>4: m(m+ 1),

N —

In [9] G. Herglotz has proved the following facts about a metric ¢ which is determined
by (2.6).

Theorem 2.1. Let {U,z} be a chart of an n-dimensional differentiable manifold
M with z(Pp) = 0 for Py € U. Further let ;51 be the coordinates of a covariant tensor
field of order 4 which are analytic functions with respect to {U,z} and which possess the
symmetry properties of the Riemannian curvature tensor, i.e. Kijki satisfies

Kijkt = —Kjiet = = Kijix = Ktij (2.7)
end the first Bianchi identity
Ko+ Ky + Kage = 0. ‘ (2.8)

- If we consider the Herglotz 7elation (2.1) with a right-hand side K := (Kijnzizk) and
search for a solution G by means of an ansatz (2.3), then there hold true:
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1. The equations (2.6) yield a uniquely determined formal power series solution
(2.3) of (2.1).

2. The convergence of this formal power series solution (2.3) follows from the con-
vergence of the power series I on a suitable open neighbourhood U' C U of P,
by means of a comparison method.

3. The Riemannian metric g;; given by the calculated solution of (2.1) fulfils

(955 — 9ii(Po))z? = 0

that means the coordinates ' are normal coordinates with respect to the con-
structed metric g;; if we restrict us to a star-shaped open neighbourhood U" C U’
of Po. The centre of these normal coordinates is Py. '

If we calculate the Riemannian curvature tensor Rijki of the metric gij which we
have determined according to Theorem 2.1, then the Herglotz relations (2.1) hold true
with R;jx too such that

R,’jklxjitk = I\'gjkll'jzk (29)

follows. But we will have Rijkt # Kijw in general. In the next sections we work out a
characterization of the difference between Rijki and Kijx.

3. The decomposition of the partial derivatives of the
Riemannian curvature tensor

Although a motive of our investigations arises from techniques of differential geometry
which use normal coordinates, the considerations of this paper do not require normal
coordinates. If a special coordinate system is not explicitely defined, we assume always
that our coordinates belong to an arbitrary chart {U.z} of a differentiable manifold M.

In the following, we use statements about the connection between covariant tensors
of order r and the group ring C[S,] of the symmetric group S, which we have given in

Let T be a covariant complex-valued tensor on a vector space V on C and b :=
{vi,...,v;} C V an arbitrary subset of r vectors from V. Then T and b induce a
complex-valued function T, on the symmetric group S,

T(, : S,- — (C s Tb B 2 d Tb(p) = T(UPU)" . ,‘Up(,.))

which we will identify with the group ring clement ZPES, Ty(p)p denoted by T, too. If
T is a differentiable tensor field on a differentiable manifold M, then we obtain a group
ring element T}, for every subset b= {5, . .. :vr} C Mp of the tangent space Mp of any
point P € M.

The action of a group ring element, « = > pes. Up)p € C[S,] on a tensor or a tensor
field T is defined by

a:T—alT | (aT), ., = Z‘ a(P) T,y i

PES,
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Further, we use the mapping

+:CI5]-ClS) , a=) alpp — a =) app

PES. PES,

Then there holds true the relation® (5]

(aT) = Tp-a* . (3.1)
The power series?)
Riju = Z % Gi, ... 0i, Rijxi( Po) ' (3.2)
r=0

of the Riemannian curvature tensor R around P, € U is determinéd by the partial
derivatives

(B R)iyiniginis.irga 1= Big---0iry Riyigini, , 0OR:=R (3.3)

of Rin P € U. Since we will not make any coordinate transformation, we can consider
the (8 R)i, izigi,is...ir 4. as the coordinates of a ’covariant tensor field’ of order r + 4
on U with respect to the basis {8;,...,8,} of the given chart {U,z}. Now we will

investigate the left ideals of the group ring C[S,+4] in which the group ring elements
(8" R) lie which correspond to the 8(" R.
Let » > 1. We consider the stability subgroups

34 = (Srf4)5,...,r+4 ) S’T = (ST+4)1,.4.,4 (34)

of Sr4+4 which fix the numbers 5,...,7 + 4 or 1,...,4, respectively. We denote by ¢, -
the group ring elements §y € C[S4], y» € C[S,] which are obtained from the Young
symmetrizers of the standard tableaux®

13

94 12...(r=1)r (3.5)

of 84 , Sr by means of the natural embeddings Sy — Sr44 and S, — Sr4q
1...4 1...45...7r+4
— . . P
i]...i4 21_...145...7‘4—4
1...7r 1...4 5 ...r+4
2 —_ ) »
1) ... 1y 1...42,+4...:,+4

) We use the convention (pogq) : i — (po g)(i) := p(q(i)) for the multiplication of
permutations.

) In (3.2) we add up on the indices i1, ..., i, according to Einstein’s summation convention.

3) About Young symmetrizers and Young tableaux see, for instance, [2, 5, 6, 10, 11, 13, 14,

15, 16, 17). We use the definition y, := ZPE’N( quv. x(q)p o g of a Young symmetrizer of a

~Young tableau t¢.-Here-H:, V; are the groups of the horizontal and vertical permutations of ¢
and x(q) denotes the signature of the permutation g.
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Obviously, we have

§ o= (id+(13)) (id+(24)) (id—(12)- (id — (3 4)) (3.6)
g = > P (3.7)
pES,

where we have used the cyclic form of the permutations in (3.6). If r = 0, we consider
only Sy = 8;.

Proposition 3.1. Let {U,z} be a chart and r > 1. Then the group ring element
(6 R), € C[Sy+4] is contained in the left ideal

Iiry = C[Sr+a] -9 4r (3.8)

of C[Sr14]) for every set of vectors b= {vy,...,v,44} C Mp, P U. If r = 0, then
every ('Y R)y = Ry € C[S,] lies in
Loy == C[S4) 3 . (3.9)

Proof. Let r > 1. Obviously, the symmetry of (80 R)i,iyiziais...ivsq iD 25, - -« yirta
and (3.7) yield

g1 (0WR) = y.(8DR) = r1dOR . (3.10)

From equation (3.6) we obtain §*(8(" R) as a sum of 16 summands for r > 0. Then we

find
y*(0MR) = 1207R (3.11)
by expressing all summands of §*(8(") R) by the two terms
(3(')13){,i,isi.,is...s,+. , (a(r)R)i.isi,i.,i,...‘,“

using the identities (2.7) and (2.8). Thus there follows from (3.1), (3.10) and (3.11) for
r>1

1201 (07 R)y = (475" (07R)), = (3R - ¥ -4
and forr =0
12Ry = (y"R)s = Ry-y N

An other proof of (3.11) follows from [6: Theorem 2.1 and remark at page 1162] (see
Section 6).

Let be r > 1. We consider the representations
&: 84 = GL(C[S4] 9) , &(f):=p f (3.12)
&:S8, - GL(C[S/]-9r) , as(f):=p f (3.13)
7808 = GL((CIS4) - )@ (TS 4.)) » wslf-H=p-ff (314)
B:Sris = GL(C[Sr4a)-¥-Yr)', Bp(f):=p-f . (3.15)



Curvature Tensor and Young Symmetrizers 143

Obviously, the subgroup H := Sy - S, C Srta is the direct product of the subgroups
Sa, Sr C Sr44. The tensor product in (3.14) is realized by the group ring multiplication
(f,f)— f - f. This tensor product fulfils

CiS1 - 8] - § - 9r = (CS) @ C[SY))  § - ¥ = (CISa] - §) ® (CISV] - ¥r)

The representation v is the outer tensor product of the representations & , & (i.e.
¥ = & # & in the notation of [11]) since there holds true

Yos(f-f) = @ ) (B f) = &(f) é5(f)
Further, the representations &, & are irreducible because their representation spaces are

left ideals generated by Young symmetrizers. Now the following lemma says that the
representation 3 is induced by the representation vy (i.e. 8 =7 T Sr44)-

Lemma 3.1. Let G be-a finite group, H C G a subgroup of G and_a € C[H| an
element of the group ring of H. If we consider the representations

B:G— GL(V) , By(v):=g-v
a:H-—-GL(W) , ap(w):=h-w ,

with the representation spaces V := C[G)-a, W := C[H] - a, then the representation 8
is induced by the representation a, i.e. f=a T G.

Proof. Obviously, there holds true B4 (W) C W for all h € H. We choose a system
of representatives R of the left cosets p- H of G relative to H. Let W, := L{a} be the
1-dimensional vector space on C spanned by a. Then we can write

V=g W= .Y prWa=) p-W=EPBW) .

g€eG PERKEH PER PER

The last calculation step is correct because p- W C p-C[H] = L{p- H} forallpe R
and since C[G] = @, L{p-H} 0

Obviously, (3.14) and (3.15) satisfy the assumptions of Lemma 3.1 since
i-dr € ((CI3:)- ) @ (€IS - 9r)) = CSs - 8194

Thus we obtain 8 = v T Sp4q4 = (& # &) T Sr44. Now we will determine a decompo-
sition of the left ideal I(, into a direct sum of minimal left ideals (or, equivalently, a
decomposition of 3 into irreducible representations). '

Because the representations &, ¢ are irreducible we can determine the Young frames
of the irreducible subrepresentations in the decomposition of 8 from the Young frames
(3.5) of &, & by means of the Littlewood-Richardson rule (see [13: pp. 94], [11: Vol. I,
p. 84), [14: pp. 68] and [6]). From (3.5) the Littlewood-Richardson rule yields exactly
the three frames '

r+1 r
r+2
PN

a a ... a a a ... a

0O O aa ... a

O
s a
0o O

e D00
"e DO
‘s DO

Thus we have
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Proposition 3.2. Letr > 2. Then the representation according to (3.15) can be

decomposed in ezactly three mutually wmequivalent irreducible subrepresentations which
are characterized by the partitions

(r+22),(r+121),(r22) F r+4 . (3.16)
In the case r =1 we have only two irreducible subrepresentations qiven by the partitions

32,221 F 5 . (3.17)

Corollary 3.1. From Proposition 3.2 there follows:

o Forr > 2 the left ideal I(,) can be decomposed into three mutually inequivalent
manimal left ideals the equivalence classes of which are characterized by (3.16).
e Forr =1 the left ideal I(;y can be decomposed into two mutually inequivalent
minimal left ideals the equivalence classes of which are characterized by (3.17).
o The left ideal I(oy is minimal since it is generated by a Young symmetrizer.

The minimal left subideal of I(,) corresponding to the partition (r+2 2)can be
explicitly determined.

Proposition 3.3. Let r > 0. Then the Young symmetrizer y, € C[Sr+4] of the
standard tableau

13 _ 1356 ... (r+4)
ig = 2 4 t, = 9 4 r Z 1 (318)
generates that minimal left subideal Ji,) of I;y which corresponds to the partition

(r+2 2)ofr+4.

Proof. A proof is necessary only for » > 1. We show that there is a ¢ = const #0
such that

Ye, 'Y Yr = Ccyr, . (3.19)

Then there follows from (3.19) that the minimal left ideal Ky ;= C[Sr+4] - ye, 15 a
subideal of I(,). But because the decomposition of I,y 1nto a direct sum of minimal
left ideals contains exactly one minimal left ideal J(r) corresponding to the partition
(r +2 2), the ideal K(r) has to coincide with that idecal J(,y.

Let us prove (3.19). We denote by Pyi,,...ix} the subgroup of S,44 consisting of all
those permutations from S,44 which fix all numbers in {1,...,r + 43\ {71,...,ik}. Now
let H,, be the group of the horizontal permutations of the tableaux ¢, and let R be a

system of representatives of the left cosets of P(1,3,5,6,...r+4) relative to Py, 33 Then we
can write

,,,,,

doop o= ) s-(id+(13) (id +(24))

PEH(, SER
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and

v = 3 s (id+(13) - (id+(24)- (id - (12)) - (id - (34)) ,

SER

Y, = Z sy - (3.20)

SER
Since § - ¥ = py with a constant u # 0, we obtain from (3.20)
Ve U Ur = DS Y YU = p s Yy = AV Y - (3.21)
SER SER

Now let R be a system of representatives of the left cosets of P{1'3,5'6’__4"r+4} relative to
Pis,....r+4)- Then there holds

Sop =) §54-(1d+(24) = (id+(24))- Y 5-yr
PEH,, SeER SER

Denoting the group of vertical permutations ofit, by Vi, and taking into account that
¥Yr+q=q-yr for all ¢ € V,_, we can write ‘

v, = > Y x(@p-q = @Gd+Q24)-> > x(9)5-q-¥r

PG"“:, qEV,, §e1'zq€Vg,

Then this relation and (3.21) yield

p(d+(24)-> Y x(@)§-q - ¥r

Ye, y ‘Y =
SER 9EV:,
= purlGd+(24) ) > x93 ¥
SER9EV:,

= prly, @

4. The essential part of the partial derivatives of the
Riemannian curvature tensor

Since the right-hand side of the Herglotz relation is the matrix with elements R,'jklzj:ck,
the Riemannian metric ¢ does not depend on the partial derivatives &;, ... 8;, Rijxi(Po)
of the Riemannian curvature tensor but on the symmetrized partial derivatives

(B Ry igigiaisoivsa = Olis -+ OirpoRyis lizia)ia (4.1)

(a(O)R)ixmiq = Ri,...i. = Ri,(i,is)i, ‘ X (42)

of the curvature tensor at the centre Py of the normal neighbourhood U.

Let now {U,z} be an arbitrary chart which do not have to be a normal coordinate
system. In this section we investigate the left ideal of C[S,44] which contains the group
ring elements (8 R), induced by 8" R and a vector set b = {v1,...vr44} C Mp, .
PeU.
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Lemma 4.1. Let be r > 0. We denote by C the subgroup of S,y4 which fizes the
numbers 1 and 4 and by € the sum of all elements of C,

C = P{2’3,5 ,,,,, ,.+4] , € = Z c . (43)

Then the group ring element (07 R)y induced by 8V R and a set b = {vi,...,vr44} C
Mp of vectors of the tangent space Mp lies in the left ideal Iyy := I(yy - € of C[Syy4] for
every vector set'h. .

Proof. Becausc there holds true VR = (8 R)/(r + 2)! and €* = ¢ we obtain
the assertion from
(O R = gy (OVR)), = g (O Ry

We consider the decomposition of I,y into minimal left idecals

Iy = Jn®Jin @ Jiry (4.4)

according to Corollary 3.1. Let the correspondence between the minimal left ideals and
their characterizing partitions be

J(,.) =4 (T+2 2),

Joy & (r+121),

Jy & (r22) .

If r =1, then j(r) does not occur in (4.4).
From (4.4) there follows a decomposition of f(r)

Iy = U 90U 9@ (e (4.5)
which is certajnl'y a direct sum since the minimal left ideals are mutually inequi.valent.
Now the question arises whether one of the ideals (J(,) - €), (J(r) €, (J(r) - €) vanishes.

Theorem 4.1. For r > 0 there holds true

i(r) = Jiry € = ClSr4a] - ye, - €

that means all other minimal left ideals in (4.4) are mapped to 0 by f — f - e.

Proof. Step I : First we show that y,, -€ # 0. We use the notations ¢, , H,, , V. of
Section 3. Denoting C' := Py 3y if r =0, C' := Py 35, r44) if 7 > 1 and taking into
account C' = (12) - C - (12) we can write for the sum of the horizontal permutations of
the tableaux ¢, (3.18) . . - i

b= s+ Y s-(24) = (12)-e-(12)-(id +(24))

pEH, seC’ seC’
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Because (12) is a vertical permutation of t,, there follows on the other hand

v, (12) = 3 Y x@pa-(12) = x((12) 3, D X@)p g = —ve

g€V, pEM,, . qEV,, PEM,,

Thus we obtain

v v = 9. Y. x(@yip-g

g€V, pEH,,
=y, (12)-€-(12)-(id +(24))- D x(9)q
g€V,
= v (12) (zd+(24)) > x(@q - (4.6)
) g€V,

But this yields y, - € # 0 since y, -y, # 0. Consequently, the ideal J(;) - € has to occur
in the decomposition (4.5).

If r = 0, Theorem 4.1 follows from I(g) = J(o) Thus we can assume 7 > 1 in the
following.

Step 2: Using the hook length formula (see {11: Vol I, p. 81], [1: pp. 101} and [6])
we can calculate the dimensions of the left ideals J(r)s J(,), J( y from the Young frames
of these ideals or, equivalently, from the partitions (3.16). The results are

(r+4)(r+1)

P30 = d o= dimdgy = : (4.7)

r>1 = | d, = dimJ,) = (T—H);L& , (4.8)

r32 s doi= dimdy = oAU “;23)’“ -1 (4.9)
Furthermore, the left ideal L(,) := C[Sr+4] - € has the dimension

I, == dimLyy = (r+4)(r+3) . (4.10)

Cons1der a system of representatives R of the left cosets of Sy44 relative to C. Then

= {p-e|p € R} is a system of generating vectors of L(). But on the other hand B
isa system of linearly independent vectors since the vectors p- € lie in pairwise distinct
cosets. Thus B has a basis of [R| = (r + 4)(r + 3) vectors.

The left ideal I(,) is a subideal of L,y such that dim I(,) < dim L(,y. Further, the
linear mapping f — f - € maps a minimal left ideal either onto 0 or onto an equi-
valent minimal left ideal. In Table 1 we have listed the first values of the dimensions
dr, d,, d,, l,. Since these dimensions are monotonically increasing functions of r and
I(r) has a subideal of dimension d, for all 7 > 1, we read from Table 1 that for r > 4
subideals of dimensions d, , d» can not occur in I(,) Moreover, for r = 3 a subideal of
I( r of dimension d3 = 35 is impossible.

Step 3: We handle the remaining cases of the left ideals J(,),J(g),J(g),J(;,) by a
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Table 1. The dimensions d,, J,- ,d, , I, for low r.

A WN —
-
o
o
N
—
-
&

27 105 120 72

computer calculation applying our Mathematica package PERMS (4]. To determine gen-
erating idempotents of these left ideals we consider the Young standard tableaux

13 136 13 1 37
24, 24 , 2.4 ., 24 . (4.11)
5 5 5 6 5 6

Let y run through the set of the four Young symmetrizers of the tableaux (4.11). Then
we find by means of PERMS

Y-y yr#0 and y-y-¢.-y#0
for all those four Young symmetrizers y. There follows from the second of these relations
that y - § - yr is an essentially idempotent element generating a minimal left subideal
of I,y of the equivalence class of y'). But since I(;y has at most one subideal from the
equivalence class of Y, these essentially idempotent elements are generating clements of
the left ideals J(,), J(2), J(2), J(3)- Now another calculation with PERMS yields
Yy yr-e=0
- for all y. Thus the ideals (j(l) <€), (j(g) -€),(Ji2) - €),(J3) - €) vanish B

Definition 4.1. Let y,. be the Young symmetrizer of the standard tableau (3.18).
We call y,‘r(a(')R) the essential part of 8V R and 8" R — ;. (87 R) the non-essential
part of (MR,

Obviously, the mapping f +— f - ¢ is an isomorphism of the minimal left ideals J(r)
and (J(,) - €), describing the equivalence of these ideals. From this fact there follows

MR = const e(y; (0'R)) -, comst#0 . (4.12)

We finish this section with a formula for the inverse of this mapping.

Proposition 4.1. Let 7 > 0 and denote y,, the Young symmetrizer of the Young
tableaw (3.18) and € the group ring element according to (4.3). Let further be?)

.= (12)-(d+ (24)) - (id — (12)) - (id — (34)) . (4.13)

Y This situation is a special case of Proposition 3.1 in [5].
B In the cyclic form of a permutation we write the image of a number left from the inverse
image.
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Then there holds true
Yo, € = —pry,  with pr=2(r +3)(r +2)7! (4.14)

such that the mapping J(,) - € = Jiry, h— —(1/pr) h -7 is the inverse of the mapping
Jiry = Jiry - €5 f = f e From (4.13) , (4.14) there follows

(r+2)- (ve, (a(r)R))n,i2i3i4i5 depa .

+(B M R)ivinininis.ives — (O R)iziviaisis.ivgs = (0 R)ivigigisis. ivqa (4:15)

F(O R)ivigigivis.ivgs + (07 R)isisisisis.iv e — () R)ieiviinis..irsa
(6(')1?).‘,.',,“.',.'5 .,+4 ((9( )R);‘ailui;i_’, R oY

Proof. Equation (4.14) follows from (4.6), definition (4.13), cquation (4.7) and

(r+4)

YooY, = prye, withope=t—
.

d,- = dim J(r) . (4.16)

The formula for s, in (4.16) is given, e.g., in {1: p. 103]. R
We denote by e, é, ¢ the generating idempotents of J(,), J(,),J(,) corresponding to
the decomposition (4.4) of I(,). These idempotents fulfil

— 1 5 — > —
€=y, é-e=0, é-e=0

Furthermore, we can write for every vector set b = {v1,...,vr44} C Mp of the tangent
space Mp

(OR), = (B7R) e+ (@R)-é+(OVR & . (4.17)
Then using equation (4.14), (4.17) and e (0'R) = (r +2)! ) R we obtain

(Wi (@7R)), = (R y, = (0" R)y-e-e-n = —(87R)y-¢-7n
| = —((@"R)), n = —(r+2)1 (@R -7
= —(r+ 28" 1)),

and conscquently

yr (OR) = —(r +2)! n°(8R)

This together with
pt o= —id 4 (12) + (34) — (14) — (12)(34) + (124) + (143) — (1243)

yields (4.15) 8
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5. The occurrence of the non-essential part of the partial
derivatives of the Riemannian curvature tensor

In this section we discuss the question whether examples of metrics can be found for
which the (8" R), of the partial derivatives of the curvature tensor possesses non-
vanishing parts lying at least in one of the left ideals J( y or J(r) First we give a case
for which the (8 R)s are contained exclusively in Jery-

Proposition 5.1. We assume that the Riemannian metric g is decomposable into
a sum of 2-dimensional metrics ¢V, i = 1,...,m, that means around every point Py of
the underlymg manifold M a chart {U z} can be found such that the metric takes the
form

: ds® = gopdz®dz’® Z g5, (2% dz™ dzP (5.1)
a,Bf€{l,...,2m} a,,ﬁ.,‘yie{2z—1,2i}
Then there holds true with respect to {U,z}
(O'VR)y € Jiry =ClSi] e, (5.2)

for v > 1 and every b= {vy,...,vr44} C Mp, P € U. In particular, a 2-dimensional
Riemannian manifold fulfils (5.2).

Proof. If we calculate the Christoffel symbols and the coordinates of the curvature
tensor and its partial derivatives for a decomposable metric (5.1), we obtain that at
most those coordinates

p,v,(‘Lm) » Reoniwan (") ) Oa, Reaipini (27) 0a; 08, R aipivi (™) ...
do not vanish, the indices of which lie in one of the sets {2: — 1,2}, i.e.
Qi Biy Vi ay Ay i, b € {2 — 1,21}, i=1,...,m

As in_the proof of Proposition 4.1 we denote by e,é,¢é the generating idempotents of
J(r)s J(,) J(r) corresponding to the decomposition (4. 4) of I(,y. The left ideal J(r) belongs
to the equivalence class of minimal left ideals of the partition A = (r +121). The left
ideal

= @ csiow (5.3)

teSTy

contains all minimal left ideals of the class of A (see, e.g., (1: p.58 and p.102]). In (5.3)
ST, denotes the set of all standard tableaux of the partition A and y, is the Young
symmetrizer of the standard tableau t. Since é € I, we can write

éE = Z T¢- Yt ‘ (5.4)

teEST,H
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with certain group ring elements z, € C[S;].
Now, equation (5.4) yields

&R = Y yi(zi(dR)

teSTa

z3(8'7 R) is a linear combination of certain coordinates of 9" R with permuted indices.
The application of y; to z}(8 R) brings an anti-symmetrization of three indices about
every summand of z}(8!” R) because every standard tableaux ¢t € S7y has three rows.
But a non-vanishing coordinate of 8" R can not have more than two values among its
indices, so y; (z; (8 R)) = 0 for all t € ST,. Consequently, there follows *(0MR) =0
and (amR),, é = 0 for all vector sets b = {vy,...,vr44} C Mp. .

By the same arguments we can show that (8(')R)b é=0foralldb= {vy,...,vr44} C
Mp. Taking into account (4.17), we obtain (3" R), = (8" R)y - e € J(,) B

An example of a metric such that (8" R), have a part in the ideal j(,) &) j(,) can
be found in the class of Riemannian manifolds for which the R;jxiz’z* are polynomials
in normal coordinates z'.

Proposition 5.2. Let {U,z} be a chart of a 3-dimensional analytic manifold with
x(Py) = 0 for a point Py € U. Consider the Herglotz relations (2.1) with a right-hand
side

1 if i=j

N = (1\'.Jk12:11k) with  Nijee = 6ubje — 8ikbji =, 65 = {0 i oA

(5.5)

If we determine the formal power series solution G of (2.1) to a positive definite metric
g from (2.6) and choose") an open neighbourhood U' C U of Py € U such that the series
of G converges on U' and the chart {U',x} is a normal coordinate system of the meiric
g, then the Riemannian curvature tensor R of the celculated metric g fulfils

Vr>1,Vh={v,... JUria} C Mp, - (6(')12),, € j(r) D j(,.) . (5.6)

Furthermore, there holds (3 R), # 0 at least for 1 = 2,4,6 and for suitable chosen
vector srts b={vy,...,v44} C 7\/Ip ' ‘ ‘ .

Proof Obviously, the matrix K from (5.5) ﬁatlsfles

KN K =K with v:=/(2")? +(22)2 + («3)* . - (5.7)

Taking into account (5.7) and F = E = (6i5), Ko = K, Ky = 0 for 77;_ > 3 we obtain
from (2.6) ' '

[_‘2m+l =0 _
| e PPN, ¢ = const ’ m=12,. (5-8)

Y I'his is possible on the basis of ‘T'heorem 2.1.
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This yields
G = E+f(r)K (5.9)
with a convergent power series f(r) for wich a more precise calculation!) gives
fr) = =3+ 5 + gt + it + L (5.10)
The metric g;; defined by (5.9) is centrally symmetric and turns into
ds® = dr® 4 h(r){d§® + sinde?} | h(r) :=1% + 11 f(r) (5.11)
if we introduce spherical coordinates
z! =7 cosd siné , ' =rsingsiné . =7 cosh

The non-vanishing Christoffel symbols of a metric (5.11) are

roo o _ M0 o _ KO
Toe = —3h(r) : Tre = o) » Tre = mmem
7, = —3k(r)sin’d r{Y = —sinfcosf |, Fgé = cotf

The only non-vanishing coordinates of the curvature tensor of (5.11) read?

_ ) R e WY »
Rrgrg = —~ - Zh(r) rore = Rrgrgsin“d | Rgope = ( 2 —h(r)) sin‘f .
Now we calculate from (3.10) and (5.11)
h! 2
,%—h(r) = —r'4+%r6—21—7r8—ﬁr10+... (5.12)
Since the coordinate transformation
Rosso = 0oz'0sz'09z* 0z’ Ry, 4,7,k,1 € {1,2,3)

produces a multiplication of the coordinates R, ;i relating to {U',z} by a factor 7,
we see from (3.12) that the power series of the coordinates Rk contain homogeneous
polynomials of orders 2 , 4 and 6 in the coordinates z!,z?,z%. From this there follows
'™ R|p, # 0 for m =2.,4,6.

But because Ri]km:’z" 1s a quadratic polynomial in the coordinates z' we have
™ R|p, = 0 for m > 1. Then (4.13) yields y; ('™ R)|p, = 0 and consequently
(8™ R), € j(m) % j(m) for all b = {vi,...,um4a} C Mp, and m > 1. Furthermore,
there exist non-vanishing group ring elements (9™ R), for at least m = 2,4,6 since
O™ R|p, # 0 for thesc rn-values B

') We have done the calculations of (5.9) and (5.12) by means of Mathematica (18].

“ The I';, and the Rj.u, have been calculated by means of the Mathematica package
MathTensor [3]. :
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Remark 5.1. The metric (5.11), (5.10) possesses a non-constant scalar curvature
7. Using Mathematica and MathTensor uvne obtains

—4 h(r) — h'(1)? + 4h(r) R"(7)

2 h(r)? ’
and the replacement of A by its power series development, determined from (5.11) and
(5.10), leads to

7= g% Riju =

— _§ _ 5,2 _ 8.4 _ 123
T = —6-37 1357 11340 | +O(r)

Consequently, the metric (5.11) is not contained in several classes of Riemannian spaces
which require a constant scalar curvature 7. Obviously, (5.11) is not an Einstein space
or a space of constant curvature. Furthermore, (5.11) is not a D’Atri space (see [12: p.
250]); thus the properties of local symmetry and local isotropy are also excluded (see
[12: P: 251]). Finally, metric (5.11) can not be locally homogeneous, too.

Remark 5.2. For all dimensions dim M > 3 there exist also examples (M g) of
Riemannian manifolds such that the ( (')R)b have a part in the ideal J(,) %5} J(,) For
instance, such an example is given by a product manifold (M, g) = (M',¢') x (M",g¢")
which is formed from a 3-dimensional Riemannian manifold (M', g') according to Propo-
sition 5.2 and a flat Riernannian manifold (M",¢"). Let us assume that {M',z'} is a nor-
mal coordinate system according to Proposition 5.2 with centre P’ € M'. Then we can
determine a product chart z = ' xz" of M' x M" around any point (P',P") € M'xM"
which is a normal coordinate system with respect to g. At most the coordinates

Rijpr(z®) , d,¢j K, 0'=1,2,3,

of the ctiryature tensor do not vanish with respect to z. We see from the proof of
Proposition 5.2 that the R, j & contain homogeneous polynomials of orders 2, 4 and
6 in z',z%,z° such that there holds 8™ R|(p: pny # 0 for m = 2,4,6. On the other
hand, the expressions R,-:J-k;:zfzk = R,-/J-:k:pzj/z"' arc quadratic polynomials in the
coordinates z', 2%, 2%, and the expressions R;jxz’z* vanish if 2 > 3 or { > 3. Thus we
obtain @™ R|(p: puy = 0 for m > 1. But then the same arguments which we used in the
proof of Proposition 5.2 tell us that (8™ R), € j(m) ) j(m) for all b= {vy,...,um4+4} C
(M’ x M")(p+ pry and m > 1, and that non-vanishing (8™ R), exist for at least m =
2,4.6.

6. The equality of the tensor algebras R and R?®

Now we return to the question whether the tensor algebra R (1.6) is equal to the tensor
algebra R* (1.8). To answer this question, we use the following proposition which follows
easily from results of [6)].

Proposition 6.1. Let VE;)R denote the symmetrized covariant derivative of order
T of the Riemanniun curvature tensor with coordinates Vi ...V R i, Further,

we put VE[;)R := R. Then there holds true for v >0

VIDR = W VPR L ue=20 3@+ (61
if yo, 15 the Young symmetrizer of the standard tableau t, (3.18).
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Proof. We will carry out here those steps of the proof which are not given ex-
plicitely in [6]. .

In the case r = 0 the assertion follows from Proposition 3.1, (3.9). Thus we can
assume r > 1 in the following.

Definition 6.1. We denote by 7, gV the vector space of complex-valued covariant
tensors T of order r + 4 on a vector space V over C which have the following properties:

1. Every T € 7, gV possesses the symmetry properties of the Riemannian curva-
ture tensor relating to the indices zy,..., 1, i.c.

T‘112i3i4i5~~vir+4 = —leiliai4is»~»lr+q = _Tinzlualsmi.-+4 = Tialqilizis...i,.H .

2. Every T € 7, gV satisfies the first Bianchi identity relating to the indices 15,173, 14
and the second Bianchi identity relating to the indices 13,14, 25, 1.€.

Tiviziginis.ivgs T Titigiginis. irga + Tﬁi,i;ingg,‘..i,+4 =0

and

ﬂ.izi3i4l_r,,..i,+4 + Ti,zzi4i5i3...i,+4 + Tlltzz513|4...x,+4 = 0.
3. Every T € 7, gV 1s symmetric in is5,...,tr44.

Furthermore, we assume that there is given an order relation < in the set of the r + 4
index names of a T € T, gV. Let a« < b < ¢ < d < e be the 5 smallest index names.
Then there is proved in [6: p. 1154]:

Proposition 6.2. Every coordinate T; . ;. ,, of a tensor T € T, gV with an arbi-
traty arrangement of its indez names can be cxpressed as a linear combination of the
follounng types of coordinates:

Tabcdc,.

Tavcia . with d < i
Tar:bdam

Tacbidm with d < 1

y atbjc--- with ¢ <1 < 7

The dots represent the ordered sequence of the remaining index names. The number of
these special coordinates is

1) (r+ D +4)

Il+7+ 1+ + 5 = 2

(6.2)
Another result of [6: p. 1162) rcads:

Proposition 6.3. If T is an arbitrary covariant tensor of order v + 4 on 'V, then
y;. T lies i T, V.
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Let Q C S, 14 be the set of all permutations which transform the ordered sequence of
the r + 4 index names of a covariant tensor T of order r +4 into the index arrangements

given in Proposition 6.2. Then there follows from Proposition 6.2 that every T € 7;,8V
satisfies

Vp€Srs: pT = Z apeqT , ape€C (6.3)
9€Q
with coefficients a,, which are independent on T'. Taking into account the relation

Vb= {vi,...,0r44} CV ,VYp,s €Srsa: (sTh(p) = Ts(pos) ,

which 1s a consequence of

(sT) =To-s" = Y. T(p)pos™ = Y T(pos)p,

P ESr 44 PESr 44
we obtain from (6.3)

T, = > (Th(id)s = D Y aw@hiid)s = D To(@)u, (64)

SES, 44 S€ES 14 9€Q q€Q

where ug := Zses,“ Uyq S.

Now, let Wg(V) := L{Ty | T € 7.8V , b = {v1,...,vr44} C V} be the vector
subspace of C[S,+4] generated by all T, of the tensors T € 7,5V . Then equation (6.4)
yields Wg(V) C L{u, | ¢ € Q} and dimWp(V) < |Q| = (v +4)(r +1)/2.

Proposition 6.3 means that (y; T)s € Wg(V) for all subsets b = {vy,... ,Ur4a} C
V. In the following we assume dimV > r + 4. Then there exists a vector set by =
{vy,...,vr44} C V such that C[Sr+4] is generated by the Ty, of all covariant tensors T
of order r + 4 (sec [5: Lemma 2.1]) and consequently the left ideal Ji;) = C[Sr+a] - ye,
is spanned by the Ty, -y, = (y;.T)s, of all covariant tensors T of order r + 4. Thus
we obtain J(,y € Wg(V). But since dim Ji,y = (r +4)(r + 1)/2 because of (4.7), there
follows J(,) = Wg(V).

In the case m := dimV < r + 4 we introduce an (r + 4)-dimensional vector space

V which we map linearly onto V by means of a lincar mapping ¢ : V — V defined on
given bases {u1,...,um} of V and {iy, ..., lrsq} of V by the rule

S(iiy) = u;, if e=1,...,

P =10 ifi=m+1,...,r+4
Then the pull back. (@*T)(01,...,0r44) = T(d(D1)y-- - $(Tr4a)) , Ti € V, of every
tensor T € 7.5V lies in T, gV. Eve ry vector set b= {vy,...,vr+4} C V corresponds
to a uniquely determined vector set b= {1y, Ura} CL{E, .-y ilm ]} Via v = $(Di).

Thus there holds true Ty = (¢*T); € WB(V) J(r) forcvery T€ T, gV ,bC V.
Let now V = Mp b( a tangent space of our differentiable manifold M in a point
P € M. Then therc is V "R € T, sMp. This leads to (V( 'R, € Jiry = C[Sra] - ve,,

that means (VK)R)(, = z -y, with some z € C[Sr44]. Now taking into account (4.16)
and (4.14) we obtain

(e V'R = 290, - ye, = e (VT R)s

for every vector set b= {vy,...,v,44} C M, by which Proposition 6.1 is proved B
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Now the version of Proposition 3.1 for V(r)R reads

Corollary 6.1. Let r > 0. Then the group ring element (V(r)R)b € C[S,44] 13
contained in the left 1deal

Iy = ClSria] - ye,
of C[Sr+4] for every set of vectors b= {vy,...,v,44} C Mp, P € M.
Since J(,y is minimal, the problem of decomposition of J(r) does not arise.

Theorem 6.1. We denote by VIR the 'stronger’ symmetrized covariant deriva-
twve of the Riemannian curvature tensor of order r the coordinates of which have the
form

(v(r)R)ili2i3,4,5,__{,+4 = V(i5~~~vtr+4R|i1[igi3)i4

(VOR), i, = Ry i, = R; (iyis)is

Then there holds true for r > ()
2242 (VI R)
+(v(" )leluus Trga (v(r)ﬁ)izili;;ﬁi;,,,.i,.f.., - (v(r)}\‘z)”i““,is drga (65)

tyfpintats..dpqpq

_(V(T)R)i:xlzlqili5~~~ir+4 + (v(r)R)i:xixi4i2i5---ir+1
As a consequence of (6.5), we obtain R = R°.

Proof. For every subset b = {vy,...,v,44} C Mp of the tangent space in an
arbitrary point P € M there holds true

Wi, (VR = (VG R)s and (VOR) = i (€(VOR)),
Then using (4.14) 'we can write
m(VG R = i (VR = (V5 Ry, = ~ (VR we, e
= (YL VPR = ~(" (VTR
=+ 2 (VO R,
Now equation (6.5) can be proved by the same arguments whx(‘h we applied to show

(4.15)m
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