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Abstract. For a homogeneous integral-functional equation containing a parameter, we show 
existence and uniqueness of a compactly supported solution with given value for its inte-
gral. The solution is infinitely often differentiable, symmetric with respect to the point , 
monotonous at both sides of , and satisfies further functional equations. The Fourier series of 
the periodic continuation is determined. We also investigate spectral properties of the integral 
equation and find surprising connections between the Laplace transform of the eigenfunction 
and the eigenfunctions of the adjoint equation, and also directly between different eigenfunc-
tions both in the compact and in the non-compact case. Moreover, asymptotic considerations 
are made. 
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This paper deals with the homogeneous integral-functional equation 

(t) = L(t), L(t) = b J	(r)dr	(b =a a I),	 (1) 

at—a+1 

where a is a fixed parameter with a > 1 and I E R. We mainly look for compactly 
supported solutions. By means of the Laplace transform, we show that such solutions 
exist uniquely up to a constant factor c. Obviously, they are infinitely often differentiable 
and, for c 0 0, the support is contained in the interval [0,1]. Hence, they can be used as 
test functions in the theory of distributions. Such functions are never holomorphic, and 
they satisfy (')(o) = = 0 for all n E N0 . The constant factor c can be fixed by 
the condition

I 0(t) dt = 1,	 (2) 
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which implies that the solution is a real one. Solutions with non-compact support are 
only considered in order to obtain new conclusions concerning compactly supported 
ones. 

In Section 6, we shall see that (1) has only the trivial solution (t) = 0 for 0 <a < 1, 
which explains our assumption a > 1. The case a = 2 was investigated by W. Volk in 
[7], where 0 is a function with a polynomial behaviour in all dyadic points, i.e. more 
precisely,

(m) () = 0 for n >,  and v=0(1)2" 

The case a = 3 was investigated by G. J. Wirsching in [8], where 0 is the density of a 
certain transition probability. As we shall see in Section 3, 0 is also non-negative in the 
general case a > 1, so that in view of (2) it always can be used as a probability density. 

Of course, (1) can also be written as a Fredholm integral equation on [0. 11 x [0, 1] 
with kernel k(t,r) defined by k(t,r) = bfor 0 at — a+ 1 T at <land k(t,r)= 0 
elsewhere on [0, 1] x [0, 1], but it is more natural, to consider it as a Volterra integral-
functional equation. Equations of type (1) do not seem to appear in relevant books on 
Volterra functional equations (cf., e.g., [5]). 

In the last sections, we also consider the eigenvalue problems belonging to equation 
(1) and also to the adjoint equation, and find surprising connections between different 
eigenfunctions. 

1. Existence and uniqueness 

We begin with the basic existence theorem. 

Theorem 1.1. For each a > 1, equation (1) has a unique compactly supported 
solution q, which fulfills condition (2). 

Proof. First, we assume that (1) has an integrable solution with a support con-
tained in [0,1]. By (finite) Laplace transform of (1), we obtain 

1 - e_P/b
(1.1) p/b	\.a 

where (p) = £{(t)}. In view of a> 1 and (2), we find for n —* 

(a p) =e_t(t) dt	J (t) dt = 1 

Hence, the function	
1 — eP/(2k)  

= 11	p/(ba')	
(1.2)

 k=O
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is the unique solution of (1.1) with cI'(0) = 1, so far as the product converges. This 
implies that (1) has at most one compactly supported solution satisfying (2). On the 
other side, for Rz > 0, we have the estimates 

	

1	 I 
- 

= J 
C-1 Yt < J edt 1 

z

	

10	I 

and
II	 I 1 - 1 _:_z = J(l - e) dtj <Jii - zi dt f I z i t dt = IzI. 
10	 I	0	 0 

For z = p/(bak ) with 0 < Jp and II < r with arbitrary fixed r > 0, this implies that the 
product (1.2) is absolutely and uniformly convergent, and consequently a holomorphic 
function for Rp > 0 with "(p) I 1 (cf. Knopp [6: p. 451 - 452]). The last estimate 
can be sharpened by means of (1.1) to 

ab2 :I(p) = ---(1 - e' t )(1 - e_a) (.) = 0 () 

for Qp > 0, so that I' possesses an original function 0 satisfying (1), (2) (cf. L. Berg [1: 
p. 30]) I 

Remark. In the case of a = 3, G. Wirsching has shown in [8] that the operator L 
is contractive on the convex space of functions from L'[0, 1] satisfying (2). The proof 
can be transferred to the case 2 < a, but not to the case 1 < a < 2. For the case a = 2, 
W. Volk has shown in [7] that the operator L is contractive on a certain subspace from 
C 1 [0,1] equipped with the norm 11111 := a IIfII +/31IDfII, where 0< a </3. 

2. Laplace transform and convolution 

As a finite Laplace transform, 4 is in fact an entire function. The analytic continuation 
to the left half plane can also be seen from the formula 

D(p) = e"(—p) ,	 (2.1)


which follows from (1.2) in view of 

k=0	 k=0	k=0 
II p/(bak) = H	fl p/(bak) 

Co	 —p/(ba')	°°	 eP/(6) - 1 1—e  

and 00 1	 (2.2)

k=0
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The function 4) has the further representation 

_L 
00 sinh(p/(2bac)) 

4)(p)=c 2 11 p/(2bak)	'	 (2.3) 
k=O  

which follows from (1.2) in view of

sinh(z/2) 
z	-	z/2 

with z = p/(ba') and (2.2). For a - 1, representation (2.3) implies that 4)(p) —* 
which is the Laplace transform of the distribution 8(t — 1/2). 

From (2.3) with p = ix, we obtain 

4)(ix) = e -12-- P(x) ,	 (2.4) 

where

P(x) =	
sin(x) 

.11	a—i 
k=I	TX	

(2.5) 

Note that

	

In	
00 (-4)0 B20 x212 sin x

(Ixl<7r) X	>11	(2n)!	2n n=i 
where B0 are the Bernoulli numbers 

	

B0 =1, B1 =-, B2 =, .83 =0, B4 =-, ...	(2.6) 

	

(cf. [3: p. 513], with -B0 instead of (-1)'2 B20 , n	1). Here, we have chosen the

notation of B0 from [6: p. 185] resp. [1: p. 1031. From (2.5), we get 

	

00 00	4) 0 B20 a - 1

	

2o	00 (-1) 0 B20 (a — 1)2n ( 
lnP(x)=>1>1( (2n)! 2n	2ak	 (2n)! 2n a2-1 

	

k=1 n=1	 0=1  

for lxi <2bir, b = a/(a — 1). According to (2.4) with x = -ip and B 1 = - 1/2 as well 
as B20+1 = 0, n > 1, this implies the representation

CO 

In 4)(p) =	
B0 (a-1) 

a0 — 1 p	ll <2bir .	 (2.7) E n=I 

For the next results in this section, it is useful to denote the solution of (1), (2) by 
(i, a), and its Laplace transform by 4)(p, a).



On the Solution of an Integral-Functional Equation	163 

Proposition 2.1. The solution 0(t, a) has the convolution property 

0(t, a) = afif (a(t - T),a2) OpT,a2 )dr	 (2.8) 

where o= 1+1/a, 9= l+a. 

Proof. We separate the factors in (1.2) in those with only even k and those with 
only odd k, so that we obtain

Co 1 - e''°	00 1 - e_P/(t)a2M4) 
(p, a) = fl p/(ba2) H	/(b2+') p=o 

In view of b = a/(a - 1) and aa 2 /(a2 —1) = b, /3a2 /(a2 —1) = ab, the foregoing equation 
can be written as

I(p,a) =	(,a2) i (,a2).	 (2.9) 

This equation immediately implies (2.8) by means of the inverse Laplace transform, 
using the convolution theorem and the well known property £{-yq(7t)} = (p/y) for 
arbitrary y > 0 I 

Let us mention that the function (at) has the support [0, 1/a] and (flt) the 
support [0, 11fl1, so that in view of 1/a + 1 /fl = 1, the convolution (2.8) has in fact the 
support [0,11 (cf. the first three propositions in Section 4). 

Writing the convolution as usual by means of a star, we can generalize (2.8) by 

0(t, a) = a 1 a2	a,, 0(c1 1 t,a') * (o2t,a " ) * ... * 0(a,,t,a') 

where a, = a v (1 —a")/(a— 1)for ii = 1,...,ri and n EN. 

Though we are actually only interested in the case a > 1, the power series (2.7) is 
also convergent in the case of 0 a 1 for II < 27r/(1 - a). From (2.7), we get 

,	B,, (1—a) 
ln(p, 1/a)	L	1-- a'2 p = _In '(—p,a) 

n=1 

for Il <2nb in case of a > 1. Thus, for these p, we have (p, a)(—p, 1/a) = 1 and in 
view of (2.1) the equation

'(p, a) c1(p, 1/a) = e.	 (2.10) 

In particular, we find 

-  '1(p, 0)	p 
-	1'	4(p, 1) = e''2 ,	4(p, ) =	 (2.11) 

ep - 
 

P
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(cf. (1.1)) and '( O , p) = 1. A product representation for 4) (p, a) in case of 0 < a < 1 
can be derived, writing (1.1) as

ap/b

(p, a) = 1 - e-p/t (ap, a) 

and iterating this equation. The result also follows from (2.10). 
Later on, we need the coefficients of the expansion

(2.12) 

These coefficients can be determined by means of the recursion formula 
po(a) = 1 

pn(a) =	() pn_(a) Bk	quad(n> 1)	(2.13) 

which follows from (2.7) and (2.12) in view of t1' = (ln cI by comparison of coefficients. 
From (2.13), we find that the coefficients pn(a) are rational functions with respect to a, 
in particular

1	 2a+l	 —a 
P1 (a) = - ,	

p2(a) = 6(a + 1) '
	 P3 (a) = 

4(a + 1) 
6a4 +3a3 +5a2 +2a-1	 —2a4-2a2+a 

P4 (a) =	30(a + 1) 2 (a2 + 1)	'	 12(a + 1) 2 (a2 + 1) 
According to (2.11), we have the special values 

p(0)=B, p(l)= pn(oo)= (2.14) 

where Bn are the Bernoulli numbers (cf. (2.6)). Let us mention that (2.13), for a -' 0, 
turns over into a nonlinear recursion formula for the Bernoulli numbers. 

For a > 1, the coefficients of the expansion (2.12) possess the representation 

pn (a) = (-1) I tnc( t , a) dt	 (2.15) 

i.e. (-1)'p(a) are the n-th moments of the solution 0 of (1), (2) (cf. [1: p. 87]). 
In view of (2.14) and the original functions of (2.11) (t, 1) = S(t - 1/2) as well as 

= 1 for 0 < t < 1 and (t,) = 0 elsewhere, the formula (2.15) is also true 
both for a = 1 and for a = oc. 

Considering (t, a) as probability density, the corresponding random variable has 
the expected value 1/2 and the variance (a - 1)/(12(a + 1)). 

Without proof, we mention that for a > 1 the n-th moments (-1)p(a) satisfy the 
estimate

(—l)p(a) 

	

2	 n+1 
so that in case of a ? 1 the power series (2.12) converges in fact for all p E C.
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3. Approximations 

The solution of (1), (2), a > 1, carl also be obtained by means of iteration. 
Theorem 3.1. For every non-negative L-integrable function Jo on the interval [0, 1] 

with f0 (t) = 0 for t (0, 11 and the property 

fotdt = 1,
	 (3.1) I  

the sequence I,, = Lf,_ (n > 1) converges uniformly on [0, 11 to the unique solution 
of (1), (2), which is also non-negative. 

Proof. Obviously, the iterates 1	(n >- 1) are continuous, non-negative, and 
f(t) = 0 for t	(0, 1). It can easily be seen that (3.1) is invariant concerning L,

i.e. we also have

f fn( t ) dt = 1	(n>1).	 (3.2) 

In order to prove convergence of the sequence f,, we wish to apply the selection theorem 
due to Arzelà and Ascoli. For this reason, we have to show that the functions f, 
are uniformly bounded on [0, 11 and equicontinuous. Since f(t) is non-negative, and 
satisfies f(t) = 0 for t (0, 1) as well as (3.2), we obtain for each t E (0, i) 

0< f(t) = b J f_ i (r)dr < bJ ffl_l(T)dT

at-a+1	 0 

i.e. the houndedness of the sequence. The inequality 

a(t-fh)	 a(t+h)-a-l-I 

	

If( t + h) - f,(t)I = b J f_1(r)dr -
	f	fn_i()dT <2ab2Ih[ 

at	 at-a+1 

shows the equicoiitinuity. Hence, we can select a subsequence fk(n) which is uniformly 
convergent to a non-negative function f. 

Next, we prove that this subsequence fk(n) converges to 0. For this reason we 
consider the (finite) Lapace transform F(p) = f c Pt f(t)dt. Hence, from fn = 
and f,,(t) = 0 for t < 0, we get F(p) = (1 - e_PI b ) F,1_1 () (n > 1) and it follows 
that

1 - e"" 
F,,(p) = Fo(a"p)fJ	p/(b-1) 

Since a > 1, we obtain for Ti.	00 

	

Fo(a'p) 
= 0 

e_"Ptfo(t) dt	f, (t) dt = 1



166	L. Berg and M. Krüppel 

In view of (1.2), we see that the sequence F converges to the Laplace transform of the 
solution 0, and it follows that f = 

Now, we can show that the sequence f is uniformly convergent to g. From above, 
we see that every subsequence of fr,, as sequence in C[0, 11, has a subsequence which 
converges in the maximum norm to 0 E C[0, 1]. Hence, by a convergence principle in 
Bariach spaces (cf. Zeidler [9: p. 480]) the sequence f converges in this norm to 0 1 i.e. 
the sequence f, is uniformly convergent to 0 I 

Remark. The condition fo ^! 0 is not necessary. Namely, if fo is an arbitrary 
L-integrable function on [0, 1] with fo(t) = 0 for t (0, 1), then we can introduce a 
sequence g by go = Ifol and gn = Lgn_ i , so that Ifn(t)I < g,(t), and the case is 
actually reduced to the foregoing one with some further modifications. 

4. Symmetry and Monotony 

We know that the solution c of (1), a > 1, is differentiable so that it also satisfies the 
functional-differential equation 

'(t) =ab{cb(at) — cb(at — a+ 1)]	(b=	 1 	(4.1) 

Proposition 4.1. The solution qf of (1),(2) has the property 4(t) = (1 - t), i.e. 
is symmetric (with respect to 1/2). 

Proof. It is easy to check that if a function f has the property f(t) = f(1 —t), then 
g = Lf has this property too. Thus, choosing fo symmetric, this property transfers to 
all iterates f, = Lf_ 1 and also to the limit function 0 I 

Remark. Note that the symmetry of 0 is also a consequence of (2.1). 

Proposition 4.2. In case of 1 < a < 2, the solution 0 of (1),(2) is strongly 
increasing in (0, 1/2). 

Proof. Let 1 <a <2. At first, we show that (t) is not decreasing for 0 < i < 1/2. 
We choose Jo from Proposition 3.1 symmetric with respect to 1/2, continuous and 
strongly increasing in (0,1/2). Then the iterates f, (ri > 1) are also symmetric and 
differentiable, and we show by induction that they are also strongly increasing in (0,1/2). 
By differentiation of f+i = Lfn, we get 

f 1 (t) = ab [fn( at) - f(at - a + 1)]. 

Since f is strongly increasing in (0,1/2) and fn(t) = 0 for t < 0, it follows 

= abf(at) >0 

for 0 < t < 1 - 1/a. Furthermore, each c with f, (c) = 0 satisfies f(ac) = f(ac - a + 
1). Since ac > ac — a+ 1, it follows in view of fn(1 _t) fn(t) that 1—ac = ac — a+ 1 
and therefore c = 1/2. This means that f, 1 (t) > 0 for t E (0, 1/2). As ri - , we 
obtain (t) ^! 0, so that c(t) is not decreasing for these t.
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Next, we show that (t) is strongly positive for t E (0, 1). Assume that (t) = 0 for 
0 < t <e where E is maximal. From (1) it follows that also 0(t) = 0 for t ae and thus 

= 0 in view of a > 1. The monotony of 0 implies (t) > 0 for t e (0, 1/21, and the 
symmetry transfers this property to the whole interval (0,1). 

Now, we are able to show that 0 is strongly increasing in (0,1/2). In view of (4.1), 
we have cb'(t) = ab(at) > 0 for 0 < t < 1 - 1/a, and in view of the symmetry, we have 
'(1/2) = 0. Let c be the smallest point in [1 - 1/a, 1/2] with '(c) = 0 which exists in 

view of the continuity of çb'. From (4.1) and the symmetry of 0 it follows that 

- a + 1) = (ac) = (1 - ac).	 (4.2) 

With the notation d = min(ac, 1 - ac) where d < 1/2, we have obviously ac - a + 1 d, 
so that there arise two cases. In the case ac - a + 1 < d the monotony and (4.2) 
imply qf(t)=const for ac—a+1 <td and hence q'(ac—a+1)=0. In view 
of 0 < ac - a + 1 < c, this is a contradiction to the choice of c. It remains the case 
ac - a + 1 = d, which in view of a > 1 is only possible for ac - a + 1 = ac and hence 
c = 1/2, i.e. 4'(t) > 0 for t E (0,1/2) I 

Proposition 4.3. In case of a 2 2, the solution 0 of (1),(2) has the following 
properties: 

(i) (t) is strongly increasing in (0, 1/a). 

(ii) 0(t) = b for t E [1/a, 1 - 1/a]. 

Proof. Let a > 2. In case of t < 1/a, we have at - a + 1 0. Hence, (4.1) implies 
that 4Y(t) = abd(at) 2 0, and (t) is not decreasing for these t. Analogously to the 
foregoing proof it follows that (t) is strongly positive for 0 < t < 1. For 0 < t < 1/a, 
we have 0 < at < 1 and at - a + 1 < 0. hence, (4.1) implies (t) > 0 for these I. 

On the other side, for 1/a < t < 1 - 1/a, we have at - a + 1 < 0 and at 2 1, hence 
4, = L4,, 4,(7) = 0 for r (0,1) and (2) imply for these t that 4,(t) = bf0' çb(T)dr = b 
and the assertion is proved I 

5. Fourier expansions 

For the Laplace transform 4 of the solution 4, of (1), (2), a > 1, we have in case of 
P = ix

(ix) = f e4,(t) dt 
I 

cos(xt)4,(t) di - if sin(xt)4,(t) di. 

Comparision with (2.4) and separation in real and imaginary part yields 

I
cos(xt)4,( t ) di = cos () P(x)	 (5.1)



168	L. Berg and M. Krüppel 

and

sin(xt)(t)dt = sin () P(x) f  
where P is given by (2.5). These formulas can be used to expand 0 in a Fourier series. 
For this reason, let f be the 1-periodic function with f(t) = (t) for 0 t 1. In view 
of Proposition 4.1, the function f is an even one and has the Fourier series 

f(t) = 1 + 
CO 

 E a n cos(nt) 

where in view of (5.1)

fllr a	 m	\ = 2ff(t)cos(nt)dt = 2cos	P(n),	 (5.2) 
0 

i.e. a2_I = 0 and a2fl = 2(-1)P(2nir) for all n > 1. Hence, 

f(t) = 1 +2(-1)P(2n)cos(2nt).	 (5.3) 

The foregoing way to calculate the Fourier coefficients is simpler than the usual one via 
the theorem of residues (cf. Berg [1: P . 33]) because it saves us to check the premises of 
Jordan's Lemma. In view of

00 sina	a  — =H cos — (a0) a	 2' 
11=1 

(cf. [3: p. 109]) we have the further representation 

00	"a—i P(x) = fi fl cos ç2n+Iak ) 
n1 k=1 

The last results in this section are only valid in the case of a = 2, where the foregoing 
formula simplifies to

00 .	

CO P(x) = H 
sin ---	

H cost' () .
	 (5.4) 

k=I ITT	v1 

Consequently, P(4rm7r) = 0 and therefore also a4 = 0 (cf. (5.2)). Hence, the Fourier 
series (5.3) simplifies to

f(t) = 1 +	a40_2 cos((4n - 2)t)
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with a4 .. 2 = –2P((4n - 2)7r), i.e 
co sin sin	 2n-1 

a4 _ 2 = –2	 = –2 fl cos ( (5.5) (2n-1),r	 2' 

Calculations by means of a computer yield for the following first coefficients: 
a2	= –1.10754255179	a6 =	0.09240459827 
a 10 =	0.01731373586	a14 = –0.00209896165 
a20 =	0.00071230572	a24 = –0.00059673667 
a28 = –0.00018280996	a32 =	0.00001311091 
a36 =	0.00000676768	a40 = –0.00002464224. 

Since the sign from sin(irx) is equal to (_i)k for x E (k,k + 1), it follows from (5.5) 
that the sign E4n_2 of a40 _ 2 = –P((4n - 2)7r) is equal to 

>	F2n-1	 12n-1 

E4n-2 = –(_1)'	= (_1)°	. (5.6) 

Assume that 2n - 1 has the dyadic representation 2n - 1 = d3 . . . d 1 d0 with d3 = 1 and 
d	E 10, 1}. Since the number [(2n - 1)/2 k] = d 3 . .	d,, is odd if and only if dk = 1, it 
follows from (5.6) that E4n_2 = (_i)v(2n_I), where ti(n) denotes the number of ones in 
the dyadic representation of n, i.e. v(n) is the binary sum-of-digits function (cf. [4:	p. 
293]). 

In order to obtain an estimate for IP(2n7r)I, we choose K subject to	--- < 1 
i.e. K = [ln(ri7r)/1n2]. Then we get from (5.4) the inequality 

"	2 c	2K(Ic+I)2

Ur 
 2"\ K/2	/ 2 \ K/2 

IP(2nir)I<fl—=	=—I	<1— 
-

k= I 
nit	n1'ir1 	nit)	- \.n7r 

which matches to the asymptotic considerations in Section 9.

6. Spectral properties 

Generalizing (1), we consider the integral equation 
at 

=	
(r)dr	 (6.1) 

at—u+l 

with a > 1 and supp 0 C [0 1 1], and the corresponding adjoint equation 
(,+a—I)/a 

=	J	(i)dt	 (6.2) 
na 

for 0 < r < 1. Both equations are cigenvalue problems for adjoint operators which 
are linear and compact. The compactness can be shown as in Section 2 by means of 
the selection theorem of Arzelà and Ascoli. Hence by the Fredhoim alternative, both 
equations must have the same non-zero eigenvalues with the same multiplicity (cf. 19: 
p. 789]). First, we consider equation (6.2). 
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Proposition 6.1. For JAI > 11b, the integral equation (6.2) with r E [0, ij has only 
the trivial solution (r)	0. 

Proof. A solution 0 of (6.2) is continuous. Assume that K = max (r)l on [0, 1] 
and d E [0, 1] with I'(d)I = K. From (6.2), we get 

(d+a—I)/a 

A I K = Al l(d)I	f	I(t)I di < 
d/a 

Since JAI > 11b = (a - 1)/a, this implies that K = 0, i.e. i/(r)	0 I 
Proposition 6.2. The integral equation (6.2) has exactly the non-zero eigenvalues 

A n = 1/(ba'), n e N0 , which are all simple. Corresponding eigenf-unctions are the 
polynomials

	

=() r(a)rV,	 (6.3) 

where ro(a) = 1 and the coefficients r(a) for v > 1 are determined recursively by 

v-i 
—1	1 I	1 r,. (a) =	 v + 
- 1 v+1	k ) rk(a)(a - l)v_kak .	( 6.4) 

Additionally, also A ='O is an eigenvalue of (6.2) and each integrable function L' with 
period 1 - 1/a and average 0, restricted to the interval [0, 11, is solution of (6.2) with 
A =0. 

	

Proof. Assume that 0 is a solution of (6.2) with A 54 0. Then	is differentiable.

From (6.2), we find by differentiation

(r+a- 1)/a 

A'(T) = 1 
-	f	'(t)dt, 
a

r/a 

i.e. ,/)l is a solution of (6.2) with eigenvalue parameter aA instead of A. It follows that 
n E N, is a solution of (6.2) with eigenvalue parameter an A. Since a > 1, for each 

A 54 0 there exists an Integer n such that a 'l A l > 11b. Proposition 6.1 implies that 
(n)	0, i.e.	must be a polynomial. If we make the arisatz 

Cnn = 1 

equation (6.2) turns over into the equation

(r) =	CnvTv ,

 

IL	 n	1	(T + a - 1) t + 1 - 
A	c,, r v =	c,,

ii+1 u0	i,=0
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from which we obtain by comparison of the coefficients of r' that A = , i.e; at 
most A = 1/(ba') can be an eigenvalue of (6.2). With this value for A, we obtain once 
more by comparison of coefficients recursively 

c	=	I	I c,(a - 1)alL 
\jiJ 

for ji = n - 1,n - 2, ...,O. Now, with the further ansatz c	= () r_,(a) and the

substitution ii = n - k, we get 

rfl_,L(a) = >i:
 (n - 

— + 1

	

	k	) rk(a)(a - l)n_L_k ak .	( 6.5) 
k=0  

Writing n - = v and solving this equations with respect to r(a), we immediately ob-
tain (6.4). Of course, all steps can be done in the opposite direction, so that A = 1/(ba) 
is in fact an cigenvalue of (6.2) with the eigenfunction (6.3), (6.4). This eigenvalue is 
simple, since all coefficients of On are uniquely determined. The statement with respect 
to A = 0 is obvious, so that the proposition is proved I 

Since (6.1) is the adjoint equation of (6.2), the Fredhoim theory implies that equation 
(6.1) also possesses exactly the simple non-zero eigenvalues A = 1/(a'2 b), n e N0 , but 
A = 0 is riot an eigenvalue of (6.1). From (1), we find by differentiation 

(t) = ab J	)() dT	 (6.6) 
at—a+1 

so that (n) is an eigenfuriction to A. Hence, we have the 
Proposition 6.3. Equation (6.1) with t E [0, 11 has exactly the ezgenvalues A = 

1/(a'b), n E N0 . Corresponding eigenfunctioms are (n), where 0 is the solution of 
(1),(2). 

Equation (6.2) has also in case of T E IR only the eigenvalues A = 1/(ab) with 
ii E N0 , since the proof of Proposition 6.1 can be transferred to the case K = max 
on [—M, M] with an arbitrary M > 1. This implies that the assertion of Proposition 6.2 
is also true for arbitrary real r, and the polynomials (6.3) as well as periodic functions 
with period 1 - 1/a are also corresponding eigenfunctions of (6.2) in this case. 

However, if we admit also solutions of (6.1) with non-compact support, then there 
appear further eigenvalues, which are unbounded, i.e. then the corresponding operator 
cannot be compact, and the Frcdholm alternative cannot be applied. In order to show 
this, it is useful to denote the polynomials (6.3) by	(r, a) and to introduce functions 

n E No, defined by Oo = from (1), (2) and 

= I q5,,(7-)dT	 (6.7) 

for n * > 0.
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Proposition 6.4. Equation (6.1) with a > 1 has besides 1/(a' 2 b) also the eigenval-
ues A.. fl _ 1 = a 1 /b,n E N0 , with corresponding cigenfunctions i,b(t, 1/a) and +1(t), 
if we admit that the solutions have non-compact support. 

Proof. In the proof of Proposition 6.2, we never have used explicitely the assump-
tion a > 1. Hence, the polynomials 0,(7, a) (ri e N0 ) are also solutions of (6.2) with 
A = 1/(ba") in case of 0 < a < 1, if r is not restricted to [0,1]. This means with the 
substitution a = 1/a for a > 1 that

at-a+1 

- a)	 (t, 1/a) = f	(r, l/a)dT	(n E No),	(6.8) 
of 

i.e.	,,(t, 1/a) is an eigenfunction of equation (6.1) with t E R and a > 1 to the 
eigenvalue A	aTL(a - 1) = an+l/b,n E N0 . It is clear as in (6.6) that n+1 is also

an eigenfunction to the eigenvalue A__ 1 I 

Later on in Section 9 we shall see that equation (6.1) with t E R and a > 1 has 
even all non-negative numbers A as multiple eigenvalues. Analogously as in Proposition 
6.4, we can conclude by means of the substitution a = 1/a that problem (1), (2) with 
T E [0, 11 is unsolvable for 0 < a < 1. 

7. Connections between eigenfunctions 

The next proposition shows a surprising connection between the eigenfurictions 0. of 
(6.2) and the Laplace transform	of the solution 0 of (1), (2) 1 i.e. of the elgenfunction 

of (6.1) with A = 11b and a > 1. The result, however, is also valid for 0 < a < 1 and 
all z E C. 

Proposition 7.1. The function g(7, Z) = c(T-i)z/(z) is the generating function 
of the eigcnfunctmons ,,(r), i.e. we have

	

'	',,(r) 
(z) -	 ,	 (7.1) 

'i =0 

where the power series converges for all r E R, and jzj < 2b7r, b = a/(a - 1).


Proof. Introducing the generating function of the coefficients r,,(a) 

g(z) =	 r. (a) z' 

as formal power series, equation (6.5) with n - = v yields 

1 
q(z) =	 g(az)


z(a — 1)
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Hence, in view of g(0) = 1, (1.2) and (2.1), we obtain the equation 

z/(ba'1 ) -	1	= e_z 
g(z) = fi Cz/(ba') - 1 - (—z)	4(z) 

n=O 

which implies also the convergence of (7.1) for Izi < 2b7r (cf. Knopp [6: p. 451]). By 
multiplication with the power series of e 7 , we find 

n 1 ez 
e c1(z) = 11:

v! ( - ) i 
n=O &'O 

so that, in view of (6.3), the proposition is proved I 

According to (7.1), the eigenfunctions O n are so-called Appell polynomials (cf. [2: p. 
22]). By comparison of (2.12) and (7.1), we find in view of (2.10) and b(0, a) = r(a) 
the relation

r(a) = p (i),
	

(7.2)


so that according to the first coefficients p(a) (cf. Section 2) we obtain for the eigen-
functions On ( r ) =	a) of (6.2) the representations 

ri(n - 1) a + 2 
=	-	+	12 a+1 

T2 - 
n(n - 1)(n - 2) 

T 3 + 24(a + 1) 

In particular, equation (7.1) implies in view of (2.11) that 

- (r - l)n+1 

+	
,	(r,1)= (T - 

)fl,	
(T,00) = b(T,0) = 

where Bn are the Bernoulli polynomials. Moreover, the special values (2.14) and also 
the recursion formula (2.13) can easily be transferred by means of (7.2). 

The expansion (7.1) implies some properties of the eigenfunctions	, resp. of the co-
efficients r(a) =	(0), which are generalizations of well known properties of Bernoulli 

polynomials, resp. Bernoulli numbers. 

Proposition 7.2. The ezgenfunctions O n of equation (6.2) with a > 1 have the 
properties

(i) r) = 

(ii) (1 - r) = (—i)"j.'() 

and they form with the derivatives (m) a biorthogonal system in L 2 [0, 11, i.e. 

(iii) j(m)()(T)dT = ( _ 1) m m! m,n (m,n eN0). 

Proof. Property (i) is a general one for Appell polynomials. According to (2.1), 
we have the equation g(1 - t, z) = g(t, —z), which in view of (7.1) yields the symmetry
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property (ii). For m 54 n, the functions (m)(T) and ,b(r) are orthogonal, since they 
are eigenfunctioris of adjoint equations to different eigenvalues. Now, let be m = n. 
Obviously, (iii) is clear for n = 0 in view of (2) and o(r) = 1. Integration by parts 

J(r) dr = -f 0(n) (T)Vln' + 1 (7) dT 
0	 0 

and (i) complete the proof by means of induction I 
Remarks. 1. We can easily check directly that	is also an eigenfunction of (6.2)


with A = 11(a''b). Since we know that all eigenvalues are simple, it follows that 
= k,,Ji,_ 1 with a certain constant k. Now	= n! implies Ic,, = n. 
2. Since b,,(i - T) is also an eigenfunction of (6.2) with the simple eigenvalue 

A = 1/(a m b), it follows that n(i - r) = cn'cbn(r) with c,, = 1, and therefore c, = 1 or 
—1. 

3. Note that the properties (i) and (ii) are also valid for the polynomials t,b(t, 1/a), 
a>1.

4. Of course, also the periodic eigenfunctions of (6.2) with respect to the eigenvalue 
0 are orthogonal to the eigenfunctions of (6.1). 

Formula (6.3) with T = 1 implies the relation 
n n\ 

rn(a) =(-1)"( f )r(a) 
'VI 

t'=O 

which can be used to check the already calculated r,,(a). The last relation means that 
the functions r,(a) are linearly dependent where more precisely 

n
(n) (2—	T2fl1(1) = 0	(n> 1). \v \.	n, 

From (2.9), we can derive an addition theorem, namely 
n mn\	 'a	r 
I	) a'	(a,a2)b,,_(T,a2) = (a + 1)",, I - + — , a),	(7.3) 

'=0	 13 I 

which for a = T = 0 turns over into a nonlinear formula for r. (a). Moreover, from (7.1) 
and (2.10) it follows that 

n 
I

/fl\ 

()	
a),,_(r,1/a) = (a + r - 1)", 

V = 0 

and the general formula for Appell polynomials 
n

ffl\)i	V 
0"1I'n_,,(7-, a) = On(a + r, a), 

which is equivalent to Proposition 7.2/(i) in view of Taylor's formula.
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8. Polynomial relations 
By means of certain relations between eigenfunctions, we can derive some polynomial 
relations for the solution 0 of the initial problem (1), (2). 

Proposition 8.1. The eigenfunctions On (n e N) of (6.1) with a > 1 have the 
representations

( !±. 1	n	—n a 2 (a – i) (a t,a) for Oia-1 
O.M=	1	

_1(t, i/a)	for 1 <j	
(8.1) 

(n–i). 
Proof. The first equation in (8.1) can easily be proved by induction, since it is an 

identity for n = 0, and the induction step can be performed by means of (6.6) and 

() 
=bf(r)dT	(0<t<a-1).	 (8.2) 

(n) The second equation follows from cb,, (t) = 0 for t > 1, so that çb for these t is 
a polynomial of degree at most n - 1. This polynomial remains an eigenfunction of 
(6.1) to the eigenvalue a"/b also under the restriction t > 1, i.e. in view of (6.7) 
On( t ) = knbn i (t, 1/a) since, as in the proof of Proposition 6.2, polynomials which are 
eigenfunctions of (6.1) are uniquely determined up to a constant factor. The factor is 
fixed by

	

kn (n - 1)! = kn (n-1)n-1 (t, i/a) =	(t) = J O (r) dT = 1 
0 

for t > 1 (cf. (2)) I 

The two representations of On in (8.1) imply the 
Corollary. For a > 2, the solution of (1), (2) has the representation 

OW 
=	,bi(ant, 1/a) a - 1 

for	<t<—	(8.3) 

	

(ii - 0! a(3)/2 (a - 1)n	an - - a" 
with n E N. 

For n = 1, we know this already from Proposition 4.31(u) in view of o(t) = 1. In 
case of a > 2 1 it can be shown by means of (8.2) and 

(t+a 1)b))d 	for 2–a<t<1 

that 0 is a polynomial of degree n in all 2" intervals which can be attained from (, 1– 
by n applications of the mappings 

t	 t+a–i t —* –  and t— 
a	 a 

in an arbitrary order, n E N0 . The union of these intervals is an open Cantor set of 
Lebesgue measure 1. For a = 3, the last results are well-known from [8]. 

As generalization of the second representation in (8.1), we have
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Proposition 8.2. The egenfunctions On (n e N) of (6.1) with a> 1 possess the 
property

(t) - (-1)(l - t) = (n - 1)!
	

1(t, 1/a)	 (8.4)


for all t e R. 

Proof. First, we prove (8.4) for 0 < t < 1 by induction. For n = 1 the equation 
is true in view of (6.7) and the symmetry property (t) = (1 - t) as well as (2) and 

= 1. According to (6.8) and Proposition 7.2/(i), we find by integration of (8.4) 

+ 1 (t) + (-1)+(i - t) = I	1/a) + c 

with a certain constant c. For t = 1 we get	+(i) =	1/a) + c and, by 
comparison with (8.1), we obtain c = 0. Thus equation (8.4) is proved for 0 t	1

by means of induction. 

For t > 1, equation (8.4) is already known from Proposition 8.1 and	- t) = 0.

But (8.4) is also valid for t < 0, in view of Proposition 7.21(u) U 

Remark. Though we have derived (8.4) by means of Proposition 7.2/(i), (ii) and 
used that (8.1) is already known for t > 1, representation (8.4) implies conversely in 
view of definition (6.7) both properties (i), (ii) in Proposition 7.2, and for t > 1 also the 
second formula in (8.1). 

Corollary. For a > 3/2, the solution 0 of (1), (2) has the property

 7.) 
( 1 + r) + (-1)'	-	=	o n — i (1/2 + ar, 1/a)	

(8.5)
2an (ri - 1)! an('-3)/2 (a - 1)" 

for 171 < a"(a - 3/2) and n E N. 

This follows from (8.4) and the first equation in (8.1) with t = 1/2 ± ap r, where 
0 < 1/2±a"r <a—i implies that (8.5) is valid for ri a"(a-3/2) and Irl 5 1/(2a"). 
But the last condition is unnecessary in view of (8.3). 

Generalizing the first equation in (8. 1), we have for all t and n E N the representation 

iii = aT_3V2(a - 1)	
( - a 1 b -	- T)'	(8.6) 

where the sum has only finitely many non-vanishing terms for fixed t. This equation 
can be proved by induction as the first equation in (8.1), if we use instead of (8.2) the 
relation

i-L'(a-I) 
bfc(r)dr=b

f	
q(r)dr=>ct(.t__) 

0	 "— t—(&'+i)(a—i) 

which is valid for t > 0. 

Representation (8.6) together with the second equation in (8.1) imply the
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Corollary. For a > 1, the solution 0 of (1), (2) satisfies the polynomial relation 

(
-	1/1	-	-	=	t,b_i(a'1t, 1/a)	

(8.7)

an- l b	b	(n—i)! a(a - i) 

for t>1/a,nEN.	 - 

For n = 1, we find in view of io(t) = 1 that the solution 0 of (1), (2) with arbitrary 
a> 1 satisfies the equation

(8.8) 

for all real t, which for 1/a < t 1 follows directly from (8.7). Equation (8.8) can 
be used to check the orthogonality property mentioned in Remark 4 of the previous 
section. 

The last results in this section concern some special properties of the polynomials 
0,(t, 1/a) with a> 1. 

Proposition 8.3. The eigenflLnctzons l,b(t,1/a) (n EN0 ) of (6-1) with a>1 have 
the representation

1/a) = J(t - r)(r) dr	 (8.9) 

with the solution 0 of (1), (2). Moreover, the polynomials	1/a) (n E N) are positive 
and strongly increasing for t > 1/2. For n -+ +, we have	1/a) -* 0 uniformly 
in 0 < t < 1 and	1/a)I - +oo for each t V [0, 11. 

Proof. According to (2.10) and (7.1), we have 

0. (t, 1/a) e1z4(z) =EO n! 

i.e. ettI(z) is the generating function of the eigenfunctions b(t, 1/a). On the other 
hand, we obtain

1 

00 
n

 1 

	

et(z) = / e _r)zq(r) dr =
	

- r)(r) dT 

hence, comparison of coefficients yields the representation (8.9). 
Since 0(t) > 0 for 0 < t < 1, equation (8.9) implies that for even n, we have 

O n (t, 1/a) > 0 for all t. In view of Oo (t) = 1 and 0 1 (t) = t - 1/2, Proposition 7.2/(i) 
and (ii) yield the assertions concerning the monotony. 

For 0 t 1, we get from 

	

1/a)I = f(t_ +)(r) dr Pr t )n 0(r) d7-	 -
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in view of 0 < (t) < b (cf. Section 4) the estimate 
t"' + (1 — 

	

1/a)I	+ 1	b	(0 <t	1)	 (8.10) 

with b = a/(a — 1). Hence, /(t, 1/a) converges to 0 uniformly in [0,1]. Now let 
1 <i <2, i.e. i = 1 + c with 0 < c < 1. From (8.9), we obtain in view of the monotony 
of (t) for t E [0, 1/21 that

c/2
	no	cOn (i + c,	> f(i + c — T)(T)dT ^ (1 +

	
(), 

c/4 

i.e. /'(i + c) —* +oo for n —* +00. This implies in view of the monotony of &(t, 1/a) 
for i > 1/2 and Proposition 7.21(u) the divergence 1 ' (t, 1/a)] — +oo for t [0, 1] I 

According to 1) (t — 1/2)" and çti(T, 1) = (T — 1/2), formula (8.9) is true 
also for a = 1, but not the assertion concerning the divergence for n — +00. For t = 0, 
formula (8.9) reduced to (2.15). 

9. The truncated equation 

It is useful to compare the solutions of the differentiated equation (6.1) 

,\	'(t) = a((at) — ct(at — a + 1)) (9.1) 
with the solutions of the truncated equation 

)tg'(t) = ag(a)	(a > 1,	\ >0). (9.2) 
We look for solutions with supp C [0,00), which possess a Laplace transform G. Trans-
formation of (9.2) yields ApG(p) = G() with the general solution 

G(p)	Go(p)Q (-) ,
	

Go (p) =p"exp(-131n2 p), 
Ina

(9.3) 

where
1	lnA	 1 a= – ----,	/3=— 2	Ina	2lna (9.4) 

and where Q is an arbitrary 1-periodic function.	It can easily be seen that C0 is a 
Laplace transform with the original function 

C+zOO 

=
exp(pt — 131n2 p)p°dp, (9.5) 

c> 0, g(t) = 0 for t	.0, and that further solutions of (9.2) for t	0 are 

I	,	
( Ina)
lnr g(t) 

=	
g0 (t - T)P	dr j  

with an arbitrary (and for simplicity) continuous function P(t) = P(t + 1). 
Next, we want to study the asymptotic behaviour of go(t) for t — +0.
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Proposition 9.1. For t - +0, the function (9.5) has the asymptotic behaviour 

	

go(t) 	t(_1nt)6exp (_13ln2 (__-))
	

(9.6)
In t

with

	

=-2––,	8=+a-2/3ln(2/3),	
1 

2 
Proof. According to L. Berg [1: Theorem 47.31, we have 

c+ ioo 
±	 exp[pt+f(p)]dp 1 I 27ri	 ,[2irfh'(x) 

C - OO 

for t - +0, if x = x(t) - no with t + f'(x) = o(V/j )), and if some further 
assumptions are satisfied. Since the check of these assumptions is only a question of 
routine, we drop it and restrict ourselves to the necessary formal calculations. In view 
of

1(r) = alnp–ln2p, fl(p) =	–2lnp), f"(p) = (2lnp+2–) 

we choose x = –(213/t) in t, so that In x '- - In t for t -* +0 and therefore f"(x) 
t 2 /(-20 In t). Hence, the condition 

t	I 
t + f'(x) =	Iln(-2fllnt) -

	o () lnt L 

is satisfied, and in view of

2/3lnt\ –ln2 
(_2i3lnt) 

xt+f(x)=_2int+ln( _	) 
/ — t \ 1 ) 

	

= –ln2 I	+ ( + 1)lnt + (o -
	

ln(lnt) + ( -	1n(2) 
\ in t J 

and ',/7) t/-/-2J3 —In t, we obtain (9.6) after elementary calculations I 

It can directly be checked that the right-hand side of (9.6) satisfies equation (9.2) 
asymptotically for t -* +0. 

The results about the solutions of (9.2) can be used to obtain new informations 
concerning the solutions of (9.1). It is clear that all solutions of (9.2) with g(t) = 0 
for t	0 are C°°-functions, they satisfy g((0) = 0 for all n E No, and they satisfy 
also (9.1) for t	1 - 1/a. Obviously, all these solutions of (9.2) can be continued to 

solutions of (9.1), defining (t) = g(t) for t < a - 1 and (t) = (t - a + 1) + 
for t > a - 1. Since all these solutions are also solutions of (6.1) and in -case of A	0

also all (a - 1)-periodic integrable functions with average zero, we have proved the
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Proposition 9.2. Considering integral equation (6.1), a > 1, in the non-compact 
case, all A > 0 are multiple eigenvalues of it. 

Finally, we return to equations (1), (2) and the Laplace transform (1.2) of the 
solution. This corresponds to the special case A = 11b in (9.1), so that a = 1/2 - 
(ln(a - 1))/a in (9.4). 

Proposition 9.3. For positive p, we have the representation 

G(p) 

	

41 W = 00	 .	 (9.7) 

II (1 - e_P(2k/b) 

k=1 

with G from (9.3), a suitable function Q there and a = 11b in (9.4). 

Proof. As already in Section 2, we write equation (1.1) for the (one-sided) Laplace 
transform of 0 in the form

	

ap	wiap) 

	

= 
T (1 - e_P0/)	 (9.8) 

Since G from (9:3) with A = 11b in (9.4) is the general solution of G(p) =. , G(ap), the 
general solution of (9.8) reads (9.7), if we do not specify Q. Hence, also (1.2) has the 
form (9.7) with a special 1-periodic function Q in (9.3) which can be represented as 

Q(t) = at0t D0 
11:/b

 
H (1- e_0) 

and the statement is proved I 

If we introduce the functions

G(p) 

F1 (1 - eP1k/) 
k= I 

with Fo(p) = G(p), then for n E N we have r0 (p) 
= F;:i(	and the corresponding


original functions

=(t - -)	 . 

converge to (t) for every fixed t after finitely many steps. 

For Rp —* co with I argp 9 < we find from (9.7) that c(p) G(p) with (93). 
Hence, we expect that 0 has an asymptotic behavior as go in (9.6) up to a factor which 
is both bounded and bounded away from zero.
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