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Essential Properties of L' -functions 

U. Felgenhauer and M. Wagner 

Abstract. The paper deals with local characteristics of L°°-elements given as equivalence 
classes of measurable, essentially bounded functions f: R"' -+ R. Besides of essential lower 
and upper limit functions we introduce a new set-valued map carrying the information on 
a class, the essential limit set at a point, and analyze their main properties. Criteria for 
qualifying the continuity of function representatives are appended. The results can be applied 
e.g. in control theory to intcrprete "almost everywhere" conditions. 
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1. Introduction 
In recent time the spaces of essentially bounded, measurable functions find application to 
a growing extent in different fields of mathematics such as nonsmooth analysis (occuring 
there as generalized derivatives of Lipschitz functions) or in differential inclusions. In 
many cases, problems of optimal control under inequality constraints may be adequately 
described only by use of L"-spaces. Typical examples are problems involving state 
functions from the Sobolev space W" (p < oc) under box constraints leading to 
appropriate essential control bounds. Another reason may be seen in the fact that in 
contrast to spaces L (1 p < oo), in L the cone of essentially nonnegative functions 
has a nonempty interior, i.e. the feasible set for the related optimal control problem has 
desirable regularity properties. 

In connection with these applications usually two types of questions arise: 
1) Often one has to assess the local ("pointwise") behavior of the considered L°°-

functions. As far as their values are determined only "up to sets of zero measure" in fact 
one has to consider not "individual", proper functions but related equivalence classes. 
Therefore, tools are needed which allow to characterize local properties valid for all 
representatives of a given L`-class. 

2) For many problems it is of importance whether a given equivalence class includes 
representatives with specific analytical properties like continuity in a certain point or 
area, semicontiriuity, Riernann integrability etc. 
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In order to contribute answering these questions we propose the following concept. 
In a first step (Section 2) we introduce essential upper and lower limit functions (Defi-
nition 2.1) which turn out to be measurable and semicontinuous (Theorem 2.5). The 
pair of these essential limit functions yield a complete characterization of an L°°-element 
(Theorem 2.3). Secondly, in Section 3 we define essential limit sets (Definition 3.2) as 
objects carrying the whole information on the local behavior common for all functions 
belonging to a given equivalence class. We show that they are compact sets (Theo-
rem 3.8) containing the function value of a particular representative at almost every 
point (Theorem 3.6). Assembling them to a set-valued mapping on the whole range of 
definition, we again obtain an one-to-one correspondence to the underlying L°°-class 
(Theorem 3.10). In addition, this mapping is upper semicontinuous (Theorem 3.11). 
Section 4 is dedicated to answer the second kind of questions, e.g. to the formulation of 
conditions under which a given equivalence class in L contains continuous (Theorem 
4.5) or Riemann integrable representatives (Theorem 4.6). Finally, we consider inequal-
ities involving L°°-arguments which are valid only almost everywhere. We prove for 
them an insertion rule extending the validity to the whole domain (Theorem 4.8). 

Notations. Suppose there is given a range of definition ci representing the closure 
of a bounded domain in Denote by K(to, 5) the intersection of ci and the open ball 
with centre t 0 and radius 5. Further, let A be the rn-dimensional Lebesgue measure, 
and 1Z the a-algebra of Borel subsets of ci extended by A-null sets. Instead of A(A), 
we write shortly I A 1. Concerning the boundary Oil let us assume that for any t E Oil 
and arbitrary S > 0 the relation I K(t, 5) 1 > 0 is satisfied. For example, this is true 
for Lipschitz domains (in strong sense) or domains having the "cone property" [1: 
p. 66j. We define L°°( 12, , A) as the Banach space of equivalence classes of functions 
f 11 -* R which are A-essentially bounded and measurable. Two functions f and f2 
fall into the same equivalence class if and only if the set { t E Ii: f1 (t) A f2 (t) } is 
a A-null set. In the forthcoming, we will distinguish between an individual essentially 
bounded, measurable function f and the equivalence class f as element of L°°( 11, ¶B, A) 
containing the individual function f. The norm in L'( Q, B, A) is given in the usual 
way by II f 11 = ess sup { I f(t)	t E ci } with f chosen arbitrarily from f. 

2. Essential limit functions 
Let f: 11 - R be essentially bounded and measurable. For arbitrary given S > 0 denote

G1 (to,5) = esssup 1(t)	and	g1(to,5) = essinf 1(t). 
C K(t 0 ,6)	 i C K(t06) 

As a result of our assumptions on 12, these expressions are well defined for any to E Q. 
For fixed to and a monotonically decreasing sequence S, 1 0 the corresponding sequences 
{G1 (t 0 ,S)} and {g1 (t 0 ,S)} are monotone and bounded. 

Definition 2.1. Let the function f be essentially bounded and measurable on Q. 
Then the real-valued functions 

(t) = lim G 1 (t,fi)	and	q(t)= lim gj(t,5) 
5-0+0	 5-0+0
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are called the essential upper limit function and essential lower limit function of 1, 
respectively. 

If the functions 1' and 12 belong to the same equivalence class I E L°°( ci, , A) 
then the values G j,(t,5) and C 12 (t, 8) coincide for all t E ci and arbitrary S > 0, and 
the same is true for g, (t, 5) and g 12 (t, 8). Consequently, all individual functions in an 
equivalence class have the same essential limit functions. To avoid confusion, we will 
write 5Pf (t) and 45 1 (t) to underline the relation to the original function whenever this is 
necessary. 

Lemma 2.2. Let A' c ci have positive measure. Then a subset A ç A' of equal 
measure exists with the property 

(*) For all t E A and arbitrary 5 > 0 the set A fl K(t, 5) has positive measure. 

Proof. Consider the set B of all points t E A' such that a radius 5(t) > 0 exists 
with I A' fl K(t, 5(t)) I = 0. Obviously, I B fl K(t, 8(t)) I = 0 holds for all t E B. On the 
other hand, the balls K(t, 5(t)) form an open covering of the set B. Since ci as a metric 
subspace of R is separable, we may apply Lindelöf's theorem 3: p. 46] and choose 
from { K(t, 5(t)) } an at most countable subcovering for B. If ti denote the centers of 
the balls used herein, we obtain I  I I  fl K(i,8(t 1 ))l = 0. Taking A = A'\ B, 
we conclude that for all t E A and arbitrary 5 > 0 the relation I A' fl K(t, 5)1 > 0 holds. 
But then from I B = 0 we get IA fl K(t, 5)1 > 0 so that A is a set with the desired 
property (*) U 

Remark that under our assumptions ci itself is a set with property (*). 

Theorem 2.3. Two measurable, essentially bounded functions Ii and]2 belong to 
different classes ft 12 if and only if there exists a point to E ci where at least one of 
the relations çb1., (to) 54 O f2 (to) or /j (to) 54 O f2 (to) holds. 

Proof. Assume (without loss of generality) that the set A' =. { t E ci : Ii (t) < 
f2 (t)} has positive measure. At least one of the sets A'(e) = {t E ci: f2 (t)—f1 (t) C } 
(which are measurable since the functions f and 12 are such) has positive measure then. 
Denote this set. by A'(,-o). Due to Lemma 2.2, A'(,-o) contains a subset A(co) of equal 
measure but with property (*). For arbitrary to E A(Eo) the estimate 

G 12 (to, 5) = ess sup f2 (t)	ess sup f1 (t) + Co = G 11 (to, 5) + Co 
tEK(t 0 ,6)	 IEK(to,6) 

holds, so that 12 (to) - 1,( t 0 )	Co. Analogously, in the case. that {t E ci : f 1 (t) >
f2 (t) } = B' is asct of positive measure one can find ato E ci where O f,(t0)-12(t0) 

On the contrary, let (without loss of generality) iP f, ( to) < 0f, ( to) in a point to E Q. 

Then choose a sequence 5,, 10. From the monotonicity of G 1 we deduce the existence 
of a neighborhood K(to,5,,) of to where 

G 1jto,5) = ess sup f 1 (t) < 12 (to)	esssup f2(t). 
I E K(t 0 6)	 t E K(i06) 

Consequently, the functions fi and 12 must be distinct on some subset of K(t0,5) 
having nonzero measure so that they cannot belong to the same equivalence class in 
Loo ( ci, 'B, A). The proof for the case that çb j', (to)	

O f, ( to) is analogous U
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Lemma 2.4. 

(1) If two measurable, essentially bounded functions f and 12 satisfy the relation 
f1 (t)	f2 (t) almost everywhere on Q then for all t E Q the inequalities	(t)	12(t) 
and Of,(t)	0 j2 (t) hold. 

(2) For all t E l and arbitrary 6 > 0 the following estimates hold: 

- f	ess inf 1(t)	g 1 (t, 6)	q(t)	(t)	G1 (t, 6)	esssupf(t)	f LEt?	 LEt? 

Proof. Both assertions follow directly from Definition 2.11 
Theorem 2.5. For any sequence t, - to, 

Jim sup (t)	(to)	as well as	lirninf cb(t)	(to). 

Therefore, the functions 0 and 0 are upper resp. lower semicontinuous, measurable and 
bounded functions on ft 

Proof. Suppose the contrary, i.e. the existence of a sequence t -* t 0 such that I
'M SUP _	(t) - ( i 0 )	e > 0. Then { t, ) must contain some subsequence { tj } 
with (i 1 )	(to) +e/2. Consequently, for arbitrary given 6 > 0 there exists an index 
i such that, at first, t 1 E K(to, 6), and secondly, 

G1(to,6) = ess sup 1(t)	(t1) =	Jim	ess sup	f(t)	(to) + e/2. 
t C K(t 0 6)	 y-0+0 K(t,-y) C K(:06) 

This leads to the contradiction 

	

= lim G1 (to, 6)	lim inf (t) > 
!-00 

In analogous manner the respective relation for ç may be proved. Thus the func-
tions and Q. are semicontinuous and, consequently, belong to the first Baire's class 
[3: p. 403 / Theorem 3] what particularly yields that 0 and 0 are measurable. The 
boundedness follows from Lemma 2.4 U 

Lemma 2.6. For any given t 0 E Q there exist a sequence t, -* to with the property 
lim	(t) = (t0 ) and a sequence t, -* to with the property urn (t,) = 

	

Proof. Suppose the contrary, i.e. limsup_	(t) < (t 0 ) for any sequence t It 0 what means the existence of some e > 0 with 0 (to) > (t)--E for all t E K(t 0 ,6) (6 > 
0). Then for every t E K(to.6) we find a ball K(t,-y(t)) with the property G1(t,-y(t)) < 

- e/2. From this family of balls we select a countable subfamily (with centres t1) 
covering the original set K(t 0 ,6). Then we obtain a contradiction by 

41 (to)	Gí(to,6) = esssup 1(t) 
t E K(Lo,6) 

sup	ess sup 1(t) = sup G1(t,-y(t)) 
I	LEK(L,-1(t1)) 

Analogously one can show the relation for th, and hence the lemma U
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The essential limit functions 0 and 0 and the usual limit functions 

P(t 0 )	tim	sup f(t)	and	V/ (to) = tim	inf	1(t), 
6-0+0 1  K(t 0 ,6)	 6-0+0 t  K(10,6) 

interpreted as functions with values in R u{-,+}, are connected by the inequalities

(t)	(t)	and	(t)	W(t) 

for all t E Q. Indeed, the relations 

G 1 (to, 6) = ess sup f(t)	sup f(t) 
tEK(i 0 ,6)	 iEK(t0,6) 

and
inf	1(t)	essinf 1(t) = g1(to,6) 

tEK(1 0 ,6)	 IEK(10,6) 

remain to be valid in the limit for 6 10. The example of the function 

f(x)={(_2) 	for x=(2k+1)/2" (n.EN,kEZ) 
0	elsewhere 

given on ci = [-1, 11 shows that usual and essential limit functions may differ on the 
whole domain Q. Indeed, Of(t) = 

O
f(t) 0 but 4 1(t) -oo d j(t) +oo. 

Remark that a function h is upper semicontinuous at an accumulation point to of 
its range of definition if and only if h(to) = Wh( to), and lower semicontinuous in the 
case h(to) = Oh (to) (see [3: p. 127]). 

Theorem 2.7. The inequalities 

(t)	f(t) e	(t)	and	gj(t,S)	f(t)	G1(t,8) 

are valid for almost every t E ci with arbitrary positive 6 

Proof. The proof is based on the following theorem [3: p. 410/ Theorem 7]: 
Assume that the set A is measurable and of nonzero measure. Let f be a measurable 

function on A which is equivalent to some finite function, and e any positive constant. 
Then a perfect set 13' c A with I A /2 I B' I < I A I exists such that the restriction fIB' 
is finite and continuous. 

We have to show that the set A' of the points with f(t) > Of (t) has zero measure. 
Supposing the contrary, Lemma 2.2 yields the existence of a subset A c A' having 
equal measure and satisfying condition (*). Consider now the restriction fI A which 
is equivalent (on A) to soirie bounded, measurable function. The above cited theorem 
allows to find a subset B' ç A with I A 1/2 113' I < I A I where fI B ' is continuous. 
According to Lemma 2.2 this set also contains a subset of equal measure with property 
(*), say B. Restricting f to B we see that 

lim	ii-if	f(t) = i,bfIB(t) = fI B ( t ) = !PIIB (t) = tim	sup	f(t). 
60+0 f E I( to.6) C 13	 60+0 t E K(to,6) fl 8
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Since B has the property (*), the values u I B(t) and fIB(t) are well-defined for arbitrary 
E B. From V'fIB(t) 1(t) I113(t) < ! hfIB( t ) we deduce fIB( t ) = fIB ( t ) = 
flB(t) for all t E B. Finally, we conclude 

= lim	ess sup f(t)	lim	ess sup f(t) = Of (to) 
5-0+0 t E K(t 0 ,5) n 13	 6-0+0 t E K(t,6) 

for any to E B. 
Summing up, we see that A' must have a subset B of nonzero measure where 1(t) = 

I IB(t) = fIB( t) o (t) holds in contradiction to the definition of A'. Thus A' is a 
,\-null set. Repeating the arguments with qf(t) we see that the set where 1(t) < (t) is 
of zero measure too, and hence the first statement of the theorem is valid. Taking into 
account now Lemma 2.4, we arrive at the second inclusion gj(t,8) .1( t )	G1 (t,5) I 

Lemma 2.8. 

(1) There exist points to E ci with (t 0) esssup iEO 1(t) and s 0 E ci with 0(so) = 
essinf j EO 1(t). Thus, 

max (t) = esssupf(t)	and	mm	(t) = essinff(t). 
tEO	tEll	 tEll	tEll 

(2) In addition, the essential limit functions satisfy 

max 0 (t) = ess sup 0 (t)	and	mm 4(t) = essinf(t). 
tEll	tEll	 tell	tEll 

So the norm of f may be expressed by 

	

= max (I max j(t)	min Of(t)) = max (ii iII ii ). 
tEll	tEll 

Proof. (1) Denote for shortness ess SUP iEll 1(t) = c. The set B = { t E ci : c < 
1(t) } then has measure zero. On the other hand, for arbitrary e > 0 there exists a set 
A'(E) of nonzero measure where c - c < 1(t). Lemma 2.2 guarantees the existence of a 
subset A(E) ç A'(e)\B with equal measure and property (*). For all t E A(e) it follows 
immediately that c - G1(t,t5) c for all tiS > 0, and thus c - e Of (t) c. Given 
any sequence E 1 0 and choosing t, E A(e) arbitrarily, we obtain lim_. O

f(t) = C. 
The compactness of ci allows to find a subsequence { t, } converging to a point to E ci, 
and the upper semicontiiiuity of 0 then yields the relation 

!P(t 0 )	ess sup f(t) = lim (t1) 
LEO 

Therefore we have c(to) = ess SUP t€ft 1(t). Analogous arguments lead to the result on 
0.

(2) Since Theorem 2.7 we have f(t)	(t)	niax E t (t) = ess sup I E ç 1(t)
almost everywhere on ci, SC) it follows that 

esssupf(t)	esssup (t)	esssupf(t). 
'EQ	'EQ	tEll
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Analogously,
essinff(t) = mm q5(t)	O(t)	f(t) 

6EO 

holds on ci a.e., so it follows 

essinf f(t)	essinf(t)	essinff(t). 
term	 tEll	 tEn 

This result together with the inequalities 

essinf(t)	essinf (t)	and	esssup(t) s ess sup (t) 

	

tEll	 tEll
	

tEll	 tEll 

	

and the equation	- 

J 11 = max (i ess inf 1(t) I' 
tEll 

gives our last assertion I

ess sup f(t) 
tEll 

3. The essential limit set 

In the present section we consider a set-valued characteristic for L°°-classes which ge-
neralizes in appropriate manner the usual limit of a function in a point to E Q. 

Definition 3.1. As before, let f: ci - R be a given essentially bounded and 
measurable function. The value v E R is called essential accumulation value of f in 
to E ci if there exists a set M 0 C ci with both the following properties: 

(a) For arbitrary 8 > 0 the set M. fl K(t 0 ,8) is of positive measure. 

(b) For all c > 0 there exists 6 > 0 such that ess SUP E M fl K( tO ,6) I f(t) - v 

(cf. 15: Definition 1]). 

Remark that the set M may be always replaced by a set M differing from M by 
a null set only. The same holds for M 0 fl K(to,6). 

Definition 3.2. The set Ej (to) of all essential accumulation values of f in t0 is 
called the essential limit set of f in t 0 (cf. [5: Definition 2]). 

If two functions fl and 12 are equivalent, then they coincide almost everywhere on 
arbitrary sets of positive measure what is particularly true for the sets M with property 
(a) from Definition 3.1. Hence, Ej,(t) = E12 (t) for all t E ci. 

Lemma 3.3. For all to E ci the values Of (to) and Of (t0 ) are enclosed in Ej(to). 

Proof. The definition G 1 (to,8) = Cs5 SUP 1<( 0 6) f(t) guarantees the existence of 
a subset K 6 c K(to, 6) cci of positive measure such that G j (t, 6) - 6 f(t) Gj (t, 8) 
almost everywhere on K 6 or, equivalently, ess sup I E K I f(t).— G 1 (t, 8) 1	5. Setting 
M = U <, , K 6 , we have I M fl K(t 0 . So) I = I U o <	K6 > 0 for all 8 > 0. Given
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now some e >0, we choose 6 e/2 according to IG1(to,5)-0(to) I	/2 and conclude
that

ess sup	If ( t ) - (to)I 
EM nK(t0,o) 

ess sup	I f(t) - GI (t 0 ,6) I + I Gj (to,8) - (to)	C. 
i EM n K(t0,6) 

Thus we obtain (to) E Ej (to). The relation (to) E E1 (to) follows analogously U 

Lemma 3.4. The inclusion E1 (t 0 ) ç [(t0 ), (t 0 )] c [— f 11	is valid for
all t 0 E ft 

Proof. In view of Lemma 2.4, we have to prove only the first inclusion. Let v be 
an element of E1 (to) satisfying v - ( t 0 ) = e > 0. Then we find a set M such that 
M fl K(to, 6)1 > 0 for all  > 0 and f(t) (t0) + e/2 for almost all t E M,,. But this 

last relation leads to a contradiction: we get 

= lim G j(to,8) = lirn	esssup f(t) >, !P(to)+E/2. 
5-0+0	 O—O+O t  K(to,6) 

It is checked similiarly that E1 (to) cannot contain any element v with (to) - v > 0 
what completes the proof U 

Lemma 3.5. Given to E Q and a set K c Q with property (a), i.e. 1K fl K(to,6)I > 
0 for arbitrary S > 0. Let IlK denote the restriction of f to K. Then EJIK (to) is a 
subset of Ej(to). 

Proof. For any v E E JIK (to) there exists a set M c K c Q with the properties 
(a) I M. fl K(to, 6) I> 0 for all S>0 and 
(b) For all e > 0 there exists S > 0 such that 

ess sup	I fI K ( t ) - v I =	ess sup	I f(t) - v 
tEM.nK(too)	 tE(M,flK)flR(t05) 

Consequently, v e E1 (t 0 ) U 

Theorem 3.6. For almost every t E Q the relation 1(t) E Ej (t) is true. 

Proof. The proof is similiar to that of Theorem 2.7. Assuming that the set A' of all 
points where 1(t) E1 (t) has positive measure, we can construct a subset B C A' with 
property (*) and positive measure such that fI B ( t ) = O fJBW = 1 1 8 (t) = fIB( t ) = 
Wi1(t) hold on B. Consequently, fl B ( t ) = fIB( t ) E E I1B (t). Since B has property 
(*), we may apply Lemma 3.5 and for arbit -rary t E B obtain E 11B (t) c Ej(t). Thus, 
f(t) E E1 (t) on B what stands in direct contradiction to the definition of A' I 

Lemma 3.7. 

(1) Let Ej (to) contain at least two elements v 1 54 v2 with corresponding sets M, 
and M 2 . There exists a 6 > 0 such that I(M, fl M 2 ) fl K(to,6o)I = 0. In particular, 
the sets M may be chosen such that their intersection is empty or equal to { to }. 

(2) If Ej (t 0 ) contazn.s n different values Ui,... , v,,, then the corresponding sets 
M ....... M,, may be c/,.o.en disjunct or having the intersection { to } only.
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Proof. (1) Assume that for arbitrary S > 0 the set (Mr , fl M 2 ) fl K(t 0 , 5) has posi-
tive measure. Choose e < (v i + v 2 )/2. Then we find a S > 0 with ess sup t E M, 
1(t) — v1	e, and also aS2 > O such that ess SUP j EM nK(t0 6)If( t ) —v2	e. Taking 

53 = min (S i ,62 ), we get 

ess sup	If(t)-v1 I 
i E (Me, 0 M 12 ) fl K00,63) 

ess sup	If(t)—v21 
t E (Me, nM,, 2 ) nR(to,63)

ess sup	If( t ) — viIe 
t EM,,, n K(t0,61) 

ess sup	If( t ) —v2I E -
t E M,, 2 n K00,62) 

Since the relations I f(t) - v 1 (vi + v2 )/2 and 11( t ) - v2 (vi + v2 )/2 should be 
true almost everywhere on (Me, fl M,, 2 ) fl K(io, 53 ), we arrived at a contradiction. 
Consequently, there exists a 50 > 0 with I (M,,, fl M112) fl K(to, So) I = 0, and further 
we can replace M,,, by (M,.,, \ (M,fl M 2 )) fl K(to,So) resp. ((Me, \ (M v, fl M 2 )) U 
{ to }) fl K(to, So). Analogous relations hold with M 2 then. Repeating this construction 
n times respectively, we arrive at assertion (2) I 

Theorem 3.8. For all I E Q the essential limit set Ej (t) is compact. 

Proof. Consider a sequence of elements v E E1 (to) converging to v E R. Without 
loss of generality we will assume that { v, } is monotone. Every v,,, corresponds to some 
set M,,,, c Q with properties 

(a) I Me,, fl K(to, )1 > 0 for all S > 0 and 
(b) for all e > 0 there exists S > 0 such that ess sup1 E K(1 0 ,6) I 1(t) - v,	e/2 

from Definition 3.1. Let us fix the values S, related to e = 2 1 Vn - v Since 

I M r ,, fl K(to, S) I 
=

Mv fl (K(to, Sn/2k) \ K(t 0 , S / 2 k+i )) I > 0, 

in relation to each n E N there exists a minimal k n E N for which M = Me,, fl 
(K(to,S/2k) \ K(t 0, 8/2k )) is of positive measure. Now we choose from {S } a 
subsequence b i 1 0 satisfying S+ 5112k1+i and define M = Obviously, this 
set has property (a). Further, for S = b i corresponding to e 2 1 v - v I we have 

ess sup	11( t ) - vi	csssup	11( t ) - v i I +v1 - vi 
iEMflK(to,6)	 IEM0K(10,5.) 

that is, (b) holds too, and v consequently lies in E 1 (to). Hence the essential limit set 
is closed. While Lemma 3.4 yields the boundedness of E 1 (t0 ) c R, it turns out to be 
compact I 

Example 3.9. The function 

f()[sm(1/t) for 0<itIir
10	for t=0 

in to = 0 has the non-denumerable essential limit set E j (0) = [-1, 1]. To see this, for 
given v E [-1, 1] we arrange the (countably many) isolated points I,, with sin (11ta ) =
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v into a sequence t,2 —* to, and then we find for every i, a neighborhood where v — 1/n < 
sin(1/t) < v + 1/n holds. Joining these neighborhoods we obtain a set M satisfying 
conditions (a) and (b) from the definition with respect to the point to = 0. 

Theorem 3.10. Two given measurable, essentially bounded functions Ii and f2 
belong to different equivalence classes in L°°( ci, ¶B , )i) if and only if there exists a 
point t 0 E ci where their essential limit sets do not coincide. 

Proof. If f, 54 J. then one can find a point to with	0f, (to) or O f1 (to) 
Of, (to) according to Theorem 2.3. By Lemma 3.3 together with Lemma 3.4, the essential 
limit sets E1, (to) and E12 (t 0 ) then must differ at least by one of these values. 

On the contrary, let us fix some to E ci and assume that some element v 1 E Ej, ( to) 
does not belong to E12 (1 0 ). Remember that (due to Theorem 3.8) the essential limit 
sets are closed; so this means the existence of a closed interval [vi — e, v 1 + e] c R 
which is disjoint to E 12 (to). Further, a set M 1 with property (a) is related to v 1 . Let 
us consider the restriction f2IM1. By Lemma 3.5, E121 (to) c E12 ( t 0 ) is also disjoint 
to [v i - e, v 1 + e]. Denote by v2 the element in E I2 I MO , ( to) having minimal distance 
to v 1 , and let M 2 c M, be the corresponding set with property (a). There exist a 
Si > 0 then with CSS sup tEM nKt 0 6,) Ifi(t) — v 1 I < e/2 and, respectively, a 62 > 0 
with ess SUP tEM nK(t 0 6 2 ) I 121 M 01( t ) — v2 I < e/2. Setting & =min ( 61, 62)  the values 
of fi and f2I M 1 turn out to be distinct almost everywhere on M 2 fl K(t0 ,63 ), i.e. on a 
set of positive measure. It follows that f and 12 cannot fall into the same equivalence 
class I 

Our next concern is to analyze some properties of the set-valued map E j(i): ci 
(R). We call a set-valued map [': ci — (R) upper semiconiinuous (in the sense 

of Bouligand, Kuratowski, Wilson) at a point to E ci if for every open set S with 
r(t o ) c S c ci a neighborhood K(t 0 ,6) c ci exists such that ['(I) c S is valid for all 
I E K(to,S). The lower semicontmnumty at to E ci is described then as follows: For any 
vO e 17(t 0 ) and any sequence 1,, —* to there exists a sequence of elements v E r(t) 
converging to v0 [2: p. 38 f/Definitions 1.4.1 and 1.4.2]. 

Theorem 3.11. For any measurable, essentially bounded function f the set-valued 
map Ej(t) : ci —*q3(R) is upper semzconimnuous at every I E Q. 

Proof. Let the upper semicontinuity of the map I	Ef(t) fail at some point to E Q.
As defined above, we find then some open set S C R with E j (to) g S and a sequence 
tn —* to such that every set E j (t) contains at least one point v, S. Due to Lemma 3.4 
the sequence { v,, } is hounded by II f 1 1, consequently, it has a convergent subsequence 
v, — v0 e [-II f 11, f]. While the complement of S is closed we conclude v 0 S. To 
obtain a contradiction, we show that v0 E Ej(to). 

First extract a subsequence of { ti } for which the distances I i — to I are monoto-
nically decreasing. Find further a monotone sequence 8, 1 0 such that 1j is an inner 
point of K(t 0 ,6) \ K(to,8+ 1 ) for the respective index j. The choice of vj and of 
t, then guarantees the existence of sets M 1 (having nonzero measure) and of balls 
K(t,,S(t)) C K(to, 8,) \ K(to, 6j+1) for which ess SUP 1 C M nK(t, 6(t,)) 11(t)— v3 I	1/3. 
Now define M 0 = U 3 (M, flK(t3,S(t))). By construction, the set M 0 has properties 
(a) and (h) with respect to to and v0 what implies v0 E Ej (to) I
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According to Theorem 3.6, the set-valued map t .-* Ej(t) has the bounded, measu- 
rable selectoi' function h(t) defined by h(t) = f(t) in all points t where f(t) E Ej (t) and 
h(i) = 45f(t) elsewhere. 

Lemma 3.12. Suppose there exists a set of positive measure where the essential 
limit sets Ej(t) contain at least two elements. Then the set-valued map E1 (t): ci -* 

(R) has at least two bounded, measurable selector functions which belong to different 
equivalence classes in L( Q,	, A ). 

Proof. Froiii E1 (t) we can always choose the measurable selections gf(t) and (t) 
(Lemma 3.3). If the essential limit sets have more than one element on a set K c ci of 
positive measure, then (t) < (t) on K, and thus	I 

Example 3.13. The construction of the classical ternary Cantor's set on ci = 
[0, 1] allows the following modification: In the first step, delete from ci the centered 
open interval of length 1/4, then in the second step an open interval of length 1/42 
from the entrc of every remaining subinterval and so on, i.e. step k consists in the 
deleting of 2k-1 subintervals of length 1/4c every. In the limit for k - oo we get a 
set A with analogous topological properties as Cantor's discontinuum, i.e. a perfect, 
totally disconnected and thus nowhere dense subset of ci (see [3: p. 291 / No. 2801). 
The measure of A may be expressed by

cc 
IA I = 1— 	2k-114k = 1/2. 

If to E A, then any neighborhood K(to, 6) (6> 0) contains infinitely many open intervals 
not belonging to A. On the other hand, for symmetry reasons in the interval between 
the centres of arbitrary two "gaps" of A we find a subset of A with positive measure. 
This leads to the conclusion that for any to E A and 6>0 both sets K(to,ö)flA as well 
as K(to, 6) fl (Il \ A) have positive measure. 

To illustrate the statement of Lemma 3.12, let us consider the characteristic func-
tion 1(t) = XA( t ) of the set A. This is a bounded, measurable function fulfilling the 
assumptions of this lemma. Indeed, E j (t 0 ) is equal to { 0, 11 in every point t0 E A with 
M0 = ci \ A and M 1 = A, whereas Ej (to) = { 0 } holds for all to e ci \ A. Choosing an 
arbitrary subset B of A with positive measure the functions h 1 (t) = XB(t) and h2	0 
represent two measurable selections from t Ej(t) which are in different L°° equiva-
lence classes. Let us mention that the map E 1 (t): ci -* (R) in no point t 0 E A will 
be lower seiiiicontiriuoiis in the above defined sense. Since any neighborhood of to E A 
does contain some point t E ci \ A, we find a sequence of points t,, ci \ A converging 
to to but there is no sequence of elements of E j (t) = 10 1  converging to 1 € Ej(to). 
Therefore, we can find a set of positive measure where lower semicontinuity does not 
hold.
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4. Essentially continuous functions 

The concluding section is directed to the discussion of continuity and integrability cri-
teria in terms of essential limit sets. 

Definition 4.1. A measurable, essentially bounded function f: ci - R is called 
essentially continuous at a point to C ci if (t 0 ) = ( to), and essentially discontinuous 
else. The value Sj(to) = cP(to) - (t 0 ) denotes the essential oscillation off at t0. 

In [4] the 'essential oscillation of f over a set K c ci" of nonzero measure was 
defined by 0(f, K) = ess sup € K f(t) - ess inf K f(t). For null sets N, 0(1, N) was set 
to zero. 

At a given point t C ci, two functions belonging to the same class f E L°°( Si, B, A) 
are either both essentially continuous, or essentially discontinuous both. Moreover, for 
every point t C Si the essential oscillations of these functions coincide. 

Lemma 4.2. A measurable, essentially bounded function f is essentially continuous 
at a point t 0 C Si if and only if the set E1 (to) is a singleton. 

Proof. In view of Lemma 3.4, it is sufficient to remark that E j (to) contains one 
and only one element if the relation (to) = (to) holds I 

Lemma 4.3. Let v be a given element of Ej(to) and M a set with properties (a) 
and (b) with respect to t 0 and v. Then the restriction fI M is essentially continuous in 
to.

Proof. Obviously. E f1M ,(to) = { v } is a singleton so that the result follows from 
the previous lemma I 

Theorem 4.4. A measurable, essentially bounded function f is essentially conti-
nuous in a point t 0 C Si if and only if the class f contains a representative h which is 
continuous in t0. 

Proof. Let the function f be essentially continuous in to. Given a sequence e,, 10 
we choose S, with the property 

-	gjto,S,,)	(to) = (t 0 )	G1 (to,5)	(to) +E. 

The subset K,, of points of K(to, 5,,) where the function values lie outside of the interval 
[(to) - , 0(to) + e,,] has zero measure then. To obtain the required function hej 
we set h(t) = (t) on the set K = U,, K,, U Ito } and h(t) = f(t) for the remaining 
points of Si. Then the function h is continuous at to. But the set K by construction is 
a countable union of null sets, so that the equivalence of It and f is evident. 

Assume next that a representative h E f exists which is continuous at to E ci. This 
implies ' ,, ( to) = !l h (to) so that also h(tO) = h(to). The last relation is independent 
of the particular representative choice, i.e. it holds for I as well I 

Theorem 4.5. If a measurable, essentially bounded function f is essentially conti-
nuous in all points t E Si. then f contains an element which is continuous everywhere on 
ci, namely h(i) = (t). On the contrary, every function equivalent to some continuous 
function is essentially continuous on Q.
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Proof. Let 0(t) = P(t) be valid everywhere on Q. Then it follows from Theorem 
2.5 that the essential limit function 0 is continuous on Q. Further, Theorem 2.7 yields 
(t) = (t) 1(t) (t) for almost all t e ci, i.e. the functions f and 0 are equivalent. 

If we assume on the other hand that a function h is continuous on ci, then in analogy 
to the preceding proof we have 4'h(t) = !P h( t ) and h(t) = h(t) for arbitrary t E Q. 
Therefore, any representative of h must be essentially continuous on ci I 

The last result allows to conclude that any function which is essentially continuous 
on the whole set ci can be at most discontinuous of first kind in the sense of [3:p. 4121. 

Theorem 4.6. Suppose the set ci to be outer squarable in the sense that I ci (ci) \ 
ci I = 0. If the measurable, essentially bounded function f is essentially continuous 
almost everywhere on ci, then f contains at least one Riernann integrable on ci represen-
tative, e.g. h(t) 1(t). Reversely, any function equivalent to some Riemann integrable 
on ci function must be essentially continuous almost everywhere on Q. 

Proof. A function I is Riemann integrable on ci C lR tm if and only if f is bounded 
and almost everywhere continuous on ci while ci itself has to be bounded and outer 
squarable iii the above described sense [3: p. 460 / No. 415, Theorem 11. Suppose that 
f is essentially continuous outside of some null set N. Then (t) = (t) holds for every 

ci \ N and, due to Theorem 2.7, (t) = f(t) = (t) holds for almost every t E ci \ N 
what proves 0 E f . Given a sequence t, —* to E ci \ N, we have 

= (to)	liminf (t)	liminf (t) t lim sup (t) 

according to Theorem 2.5. Thus is continuous on ci \ N so that 0 as representative 
of f is Rieniann integrable over Q. Let now f be a Riemann integrable function and h 

an arbitrary representative of f . Then for almost all t E ci the identity Of(t) = Of (t) = 
= P1(t) holds. But then for the same points also h(t) = h(t) so that h is 

essentially continuous almost everywhere on ci I 
It follows from this theorem that a function which is essentially continuous almost 

everywhere on ci is at, most discontinuous of the second kind in the sense of [3: p. 412 1. 

Theorem 4.7. There exists an upper semicontinuous representative h_in the class 
f if and only if f(t) = tP(t) holds almost everywhere on Q. Analogously, f contains a 
lower semicontinuous representative whenever f(t) = (t) for almost all t e Q. 

Proof. If f(t) = c 1 (t) is true almost everywhere on ci, then we deduce from 
Theorem 2.5 that the upper semicontinuous function Of belongs to f . On the other 
hand, if a function 11 E f is upper semicontinuous, then h(t) = h(t) for all t E ci so 
that almost everywhere on ci we get from Theorem 2.7 the relation '5(t) = h(t) 

W,,(t). So the equality f(t) = h(t) = h(t) = Of (t) holds for almost all t in Q. 
The proof of the second statement is simihiar U 

Theorem 4.8. Suppose r: ci x R — R to be continuous with respect to all argu-
ments. Let z(t, f(t)) 0 hold for almost all t E ci using a given measurable, essentially 
bounded function f: ci —* R. If h is an arbitrary selector function of the set-valued 
map t '—* E j (t), i.e. a function satisfying h(t) E E 1 (t) for all t E ci, then the inequality 
r(t, h(t))	0 is fulfilled even everywhere on Q.
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Proof. Forgivent 0 E Q and vo = h(to) E E 1 (t 0 ), first find a set M 0 c Q with the 
properties (a) and (b.) from Definition 3.1. Since r is continuous, for arbitrary e > 0 a 
positive S exists such. that I  - to I + I V - vo I	S guarantees that I r(t, v) - r(to, vo) 
Using (b), for e i = 8/2 > 0 we determine 6 1 with 0 < S	such that 

ess sup	I A t ) —vol 
tE M0nI<(t,61) 

Further, we denote by K(s) the set of all points of M 0 fl K(t0 ,51 ) reduced by the null 
set of points where I 1(t) - vo I > Ei or r(t, 1(t)) < 0. Then for arbitrary t E K(c) 
the estimate It - to I + I f(t) - vo I	S i + ci	S is valid leading finally to r(to,vo) 
r(t, 1(t)) - 1 7 , (t, f(t)) - i(t0, vo) I	—e using arbitrary t e K(e). This construction may 
be performed for arbitrary positive e so that r(to,vo) 0 immediately follows I 

Under the assumptions of Theorem 4.8 in particular the bounded, measurable func-
tions r(t, Of(t)) and r(t, Pj(t)) are nonnegative everywhere on ft 
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