Strong Duality for Transportation Flow Problems

R. Klötzler

Abstract. This paper is a supplement and correction to the author's article "Optimal transportation flows" [2]. By new methods the existence of optimal transportation flows and the strong duality to deposit problems is proved. *K* is a supplement and correction to the author's article "Optimal transportation flows and the t problems is proved.
 K(n) flow problems, deposit problems, dual optimization problems

cation: 49 N 15, 49 Q 15, 49 Q 20

Keywords: *Transportation flow problems, deposit problems, dual optimization problems* AMS subject classification: 49 N 15, 49 Q 15, 49 Q 20 Keywords: Tra:
AMS subject c
1. Introduc
In conformity w
where y
and
We assume, Ω

1. Introduction

In conformity with [2] we consider the following *transportation flow problem:*

depost problems is proved.
\ninsportation flow problems, deposit problems, dual optimization problems
\nclassification: 49 N 15, 49 Q 15, 49 Q 20
\n
\n
\nwith [2] we consider the following *transportation flow problem*:
\n
$$
K(\mu) := \int_{\Omega} r(x, d\mu(x)) \longrightarrow \min \quad \text{on } Y
$$
\n
$$
Y := \left\{ \mu \in L_{\infty}^{mn}(\Omega)^* \middle| \langle \nabla \sigma, \mu \rangle = K_D(\sigma) \quad \forall \sigma \in W_{\infty}^{1,n}(\Omega) \right\}
$$
\n
$$
K_D(\sigma) := \int_{\Omega} \sigma(x)^T d\alpha(x) \quad \text{on } W_{\infty}^{1,n}(\Omega). \tag{3}
$$
\nis a bounded strongly Lipschitz domain of E^m , $\alpha = (\alpha_1, ..., \alpha_n)$ is a finite Borel measures α_k on the σ -algebra **B** of all Lebesgue-measurable

where

$$
Y := \left\{ \mu \in L_{\infty}^{mn}(\Omega)^* \middle| \langle \nabla \sigma, \mu \rangle = K_D(\sigma) \quad \forall \sigma \in W_{\infty}^{1,n}(\Omega) \right\} \tag{2}
$$

$$
K_D(\sigma) := \int_{\Omega} \sigma(x)^{\top} d\alpha(x) \qquad \text{on } W^{1,n}_{\infty}(\Omega) .
$$
 (3)

We assume, Ω is a bounded strongly Lipschitz domain of E^m , $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a given vector of finite Borel measures α_k on the σ -algebra **B** of all Lebesgue-measurable subsets of $\mathfrak B$ which satisfy the assumption Ω ^{*} $(\nabla \sigma, \mu) = K_D(\sigma) \quad \forall \sigma \in W^{1,n}_{\infty}(\Omega)$ (2)
 $\int_{\Omega} \sigma(x)^{\top} d\alpha(x) \quad \text{on } W^{1,n}_{\infty}(\Omega)$. (3)

rongly Lipschitz domain of E^m , $\alpha = (\alpha_1, ..., \alpha_n)$ is a

sures α_k on the σ -algebra \mathfrak{B} of all Lebesgue-measurabl

$$
\int_{\Omega} d\alpha_k = 0 \qquad (k = 1, \ldots, n) ; \qquad (4)
$$

r is a given local cost rate on $\Omega \times E^{mn}$ with the following basic properties:

- $r(\cdot, v)$ is summable on Ω
- $\int_{\Omega} d\alpha_k = 0$ $(k = 1, ..., n)$; (4)
 r(., v) is summable on $\Omega \times E^{mn}$ with the following basic properties:
 $r(:,v)$ is summable on Ω
 $r(x, \cdot)$ is positive homogeneous of degree one and convex on $E^{mn} \forall x \in \Omega$
 $\gamma_1 |v| \$ $r(\cdot,v)$ is summable on Ω
 $r(x,\cdot)$ is positive homogeneous of degree one and convex on $E^{mn} \forall x \in \gamma_1|v| \le r(x,v) \le \gamma_2|v|$ ($v \in E^{mn}, x \in \Omega$) for some constants $\gamma_1, \gamma_2 > 0$.

ISSN 0232-2064 / S 2.50 © Heldermann Verlag Berlin

R. Klötzler: Tauchacr Str. 202, D - 04349 Leipzig

The objective functional of (1) is defined by

R. Klötzler
\n*ijective* functional of (1) is defined by
\n
$$
\int_{\Omega} r(x, d\mu(x)) := \sup_{u} \left\{ \langle u, \mu \rangle \, \middle| \, u \in L_{\infty}^{mn}(\Omega), \, u^{\top}(x)v \leq r(x, v) \, \forall v \in E^{mn} \right\}. \tag{6}
$$
\nelement $\mu = (\mu_1, \ldots, \mu_n) \in Y$ is said to be a *feasible flow* and μ_k the *flow of the*
\n*anportation good.*
\nferring to [2], between the transportation flow problem (1) and the *deposit problem*
\n
$$
K_D(S) = \int_{\Omega} S(x)^{\top} d\alpha(x) \longrightarrow \max \quad \text{on } \mathfrak{S}' \tag{7}
$$
\nxists *duality*, i.e.

Every element $\mu = (\mu_1, \ldots, \mu_n) \in Y$ is said to be a *feasible flow* and μ_k the *flow of the k-th tranportation good.*

Referring to [2], between the transportation flow problem (1) and the *deposit problem*

$$
f(x,y) := \sup_{u} \left\{ \langle u, \mu \rangle \, \middle| \, u \in L_{\infty}^{min}(\Omega), \, u \mid (x)v \le r(x,v) \, \forall v \in E^{mn} \right\}. \tag{6}
$$
\n
$$
f(x,y) := \int_{\Omega} f(x,y) \, dx \text{ is said to be a feasible flow and } \mu_k \text{ the flow of the}
$$
\n
$$
g(x,y) = \int_{\Omega} f(x,y) \, dx \text{ for all } x \in \Omega.
$$
\n
$$
K_D(S) = \int_{\Omega} S(x) \, dx \text{ for all } x \in \Omega.
$$
\n
$$
K(\mu) \ge K_D(S) \quad \forall \mu \in Y, \, S \in \mathfrak{S}', \tag{8}
$$
\n
$$
f(x,y) := \int_{\Omega} f(x,y) \, dx \text{ for all } x \in \Omega.
$$
\n
$$
F(x) := \int_{\Omega} f(x,y) \, dx \text{ for all } x \in \Omega.
$$
\n
$$
F(x) := \int_{\Omega} f(x,y) \, dx \text{ for all } x \in \Omega.
$$

there exists *duality,* i.e.

¹(8)

if we define G' by

$$
K(\mu) \ge K_D(S) \quad \forall \mu \in Y, \ S \in \mathfrak{S}', \tag{8}
$$

$$
\mathfrak{S}':=\left\{S \in W^{1,n}_{\infty}(\Omega) \middle| \nabla S(x) \in \mathfrak{F}(x) \text{ for a.e. } x \in \Omega\right\} \tag{9}
$$

$$
\mathfrak{F}(x) := \left\{z \in E^{mn} \middle| z^{\top} v \le r(x,v) \,\forall v \in E^{mn}\right\}. \tag{10}
$$

of (9) characterize slope restrictions in the sense that $\nabla S(x)$ belongs

with

$$
\mathfrak{F}(x) := \left\{ z \in E^{mn} \mid z^{\top} v \leq r(x, v) \; \forall v \in E^{mn} \right\}.
$$
 (10)

The restrictions of (9) characterize slope restrictions in the sense that $\nabla S(x)$ belongs to the convex *figuratrix set* $\mathfrak{F}(x)$ for a.e. $x \in \Omega$.

Since (4), the linear functional K_D has the property $K_D(S) = K_D(S + C)$ for any constant vektor $C \in Eⁿ$. Therefore, without loss of generality we can reduce the deposit problem (7) on the restricted class $\mathfrak{S} := \{ S \in \mathfrak{S}' | S(\hat{x}) = 0 \}$ where \hat{x} is an arbitrary fixed point in Ω . 1 a.e. on ci}. (11)

We know from [2] the following theorem.

Theorem 1. The deposit problem (7) has an optimal solution S_0 .

2. The existence of optimal flows

In $L^{mn}_{\infty}(\Omega)^*$ the standardized norm is defined by

stence of optimal flows

\n
$$
\|\mu\| := \sup_{u} \left\{ \langle u, \mu \rangle \mid u \in L_{\infty}^{mn}(\Omega), \ |u(x)| \le 1 \text{ a.e. on } \Omega \right\}.
$$
\n(11)

\nIn this Banach space an equivalent norm by

\n
$$
|\mu\|^{*} := \sup_{u} \left\{ \langle u, \mu \rangle \mid u \in L_{\infty}^{mn}(\Omega), \ u(x) \in \mathfrak{F}(x) \text{ a.e. on } \Omega \right\}.
$$

We introduce in this Banach space an equivalent norm by

$$
\|\mu\|^* := \sup_u \left\{ \langle u, \mu \rangle \, \middle| \, u \in L_{\infty}^{mn}(\Omega), \ u(x) \in \mathfrak{F}(x) \text{ a.e. on } \Omega \right\}. \tag{12}
$$

The equivalence of both norms is obvious under consideration of the third property of assumption (5):

The equivalence of both norms is obvious under consideration of the third propes
assumption (5):
\n
$$
\sup_{u} \left\{ (u, \mu) \middle| u \in L_{\infty}^{mn}(\Omega), u(x)^{\top}v \leq \gamma_{1}|v| \,\forall v \in E^{mn}, \text{ a.e. on } \Omega \right\}
$$
\n
$$
\leq \sup_{u} \left\{ \langle u, \mu \rangle \middle| u \in L_{\infty}^{mn}(\Omega), u(x)^{\top}v \leq \gamma_{1}|v| \,\forall v \in E^{mn}, \text{ a.e. on } \Omega \right\}
$$
\n
$$
\leq \sup_{u} \left\{ \langle u, \mu \rangle \middle| u \in L_{\infty}^{mn}(\Omega), u(x)^{\top}v \leq \gamma_{2}|v| \,\forall v \in E^{mn}, \text{ a.e. on } \Omega \right\},
$$
\nand this means $\gamma_{1} \Vert \mu \Vert \leq \Vert \mu \Vert^{*} \leq \gamma_{2} \Vert \mu \Vert$ thus equivalence of both norms.

\nNow, let $\mathfrak{S}_{0} = \{ \sigma \in W_{\infty}^{1,n}(\Omega) | \sigma(\hat{x}) = 0 \}$ and U be a subspace of $L_{\infty}^{mn}(\Omega)$, defined by

\n
$$
U := \left\{ u \in L_{\infty}^{mn}(\Omega) \middle| u = \nabla \sigma, \sigma \in \mathfrak{S}_{0} \right\}.
$$
\nIn virtue of Sobolev's embedding theorems [3: p. 60], the mapping $f : U \to \mathbb{R}$ is a continuous functional μ_{0} on U , if we define $f(\nabla \sigma) := K_{D}(\sigma)$ for all $\sigma \in \mathfrak{S}_{0}$. N

and this means $\gamma_1 \|\mu\| \le \|\mu\|^* \le \gamma_2 \|\mu\|$ thus equivalence of both norms.

Now, let $\mathfrak{S}_0 = \{ \sigma \in W^{1,n}_{\infty}(\Omega) | \sigma(\hat{x}) = 0 \}$ and *U* be a subspace of $L^{mn}_{\infty}(\Omega)$, characterized by

$$
U := \left\{ u \in L_{\infty}^{mn}(\Omega) \mid u = \nabla \sigma, \ \sigma \in \mathfrak{S}_0 \right\}.
$$
 (13)

In virtue of Sóbolev's embedding theorems [3: p. 60], the mapping $f: U \to \mathbb{R}$ is a linear continuous functional μ_0 on *U*, if we define $f(\nabla \sigma) := K_D(\sigma)$ for all $\sigma \in \mathfrak{S}_0$. Namely, there is a constant $M > 0$ such that for every σ of this type $\leq ||\mu||^* \leq \gamma_2 ||\mu||$ thus equivalence of both norms.
 $\in W^{1,\infty}_{\infty}(\Omega) | \sigma(\hat{x}) = 0$ } and *U* be a subspace of $L^{mn}_{\infty}(\Omega)$
 $U := \left\{ u \in L^{mn}_{\infty}(\Omega) \middle| u = \nabla\sigma, \ \sigma \in \mathfrak{S}_0 \right\}$.

embedding theorems [3: p. 60], the mappi

$$
\|\sigma\|_{C^n(\bar{\Omega})}\leq M\operatorname{ess\,sup}_{\Omega}|\nabla\sigma|
$$

holds and therefore

$$
|f(\nabla \sigma)| = |K_D(\sigma)| \le M \int_{\Omega} d|\alpha| \|\nabla \sigma\|_{L_{\infty}^{\max}(\Omega)}.
$$
 (14)

The linearity of *f* is obvious. Together with the boundedness (14) of *f* it follows that *^f* is a linear continuous functional μ_0 on *U*. By the Hahn-Banach extension theorem [1: p. 109] we can extend μ_0 as a continuous linear functional on the whole space $L_{\infty}^{mn}(\Omega)$ with the same norm. That means, for each $u \in U$ there is uniquely a $\sigma \in \mathfrak{S}_0$ such that $u=\nabla\sigma,$ *f* if we define $f(\nabla \sigma) := K_D(\sigma)$ for all that for every σ of this type
 $|\sigma||_{C^n(\tilde{\Omega})} \leq M$ ess sup $|\nabla \sigma|$
 $\colon |K_D(\sigma)| \leq M \int_{\Omega} d|\alpha| \|\nabla \sigma||_{L_{\infty}^{m_n}(\Omega)}$.
 \log of the boundedness (14) of

al μ_0 on U . By the J_{Ω}

ious. Together with the boundedness (14) of f it follow

inctional μ_0 on U. By the Hahn-Banach extension the

nat means, for each $u \in U$ there is uniquely a $\sigma \in \mathfrak{S}_0$ s
 $f(u) = K_D(\sigma) = \langle \nabla \sigma, \mu_0 \rangle$,
 $= \$ linearity of f is obvious. Together with the boundedness (14) of f it follows that f
linear continuous functional μ_0 on U . By the Hahn-Banach extension theorem [1:
09] we can extend μ_0 as a continuous line

$$
f(u) = K_D(\sigma) = \langle \nabla \sigma, \mu_0 \rangle, \tag{15}
$$

and, with (12),

$$
\|\mu_0\|^* = \sup \left\{ \langle \nabla \sigma, \mu_0 \rangle \, \middle| \, \sigma \in \mathfrak{S} \right\} = \sup_{\mathfrak{S}} K_D = K_D(S_0) \tag{16}
$$

hold.

(12), After the extension of μ_0 on the totality of $L_{\infty}^{mn}(\Omega)$, it holds again, according to $\nabla \sigma, \mu_0 \rangle \mid \sigma \in \mathfrak{S}$ = $\sup_{\mathfrak{S}} K_D = K_D$

n the totality of $L_{\infty}^{mn}(\Omega)$, it hold
 $\vert \mu_0 \rangle \mid u \in L_{\infty}^{mn}(\Omega)$, $u(x) \in \mathfrak{F}(x)$ a.e
 $\vert \mu_0 \vert \vert^* = K(\mu_0) = K_D(S_0)$.

h that (8) and (17) lead to the

$$
\|\mu_0\|^* = \sup_u \left\{ \langle u, \mu_0 \rangle \middle| u \in L_{\infty}^{mn}(\Omega), \ u(x) \in \mathfrak{F}(x) \ \text{a.e. on } \Omega \right\}
$$

and since (6), (10) and (16)

$$
\|\mu_0\|^* = K(\mu_0) = K_D(S_0). \tag{17}
$$

From (15) $\mu_0 \in Y$ follows such that (8) and (17) lead to the optimality of μ_0 with respect to problem (1). So we can summarize:

Theorem 2. The transportation flow problem (1) has an optimal solution μ_0 .

3. Conclusions and generalizations

The existence of optimal solutions S_0 of the deposit problem (7) and μ_0 of the transportation flow problem (1) has in connection with (8) and (17) the following consequence.

Theorem 3. *Between the dual problems* (1) *and (7) there exists strong duality in the sense that* $\min_Y K = \max K_D$.

From this theorem we obtain under consideration of (3) , (12) , (15) and (17)

$$
K_D(S_0) = \int_{\Omega} S_0(x)^{\top} d\alpha(x) = K(\mu_0) = \langle \nabla S_0, \mu_0 \rangle \ge \langle u, \mu_0 \rangle
$$

for all $u \in L_{\infty}^{mn}(\Omega)$, $u(x) \in \mathfrak{F}(x)$ a.e. This leads to the following conclusion.

Theorem 4. An element $S_0 \in \mathfrak{S}$ is an optimal solution of the deposit problem (7) if and only if there is a vectorial set function $\mu_0 \in L_{\infty}^{mn}(\Omega)$ ^{*} which satisfies the continuity *equation E atat problems* (1) and (*i*) there exists strong (K_D) .
 \therefore
 \therefore \sin under consideration of (3), (12), (15) and ($\int_0^{\pi} d\alpha(x) = K(\mu_0) = \langle \nabla S_0, \mu_0 \rangle \ge \langle u, \mu_0 \rangle$
 \therefore x) a.c. This leads to the following ${}_{\infty}^{mn}(\Omega)$, $u(x) \in \mathfrak{F}(x)$ a.e. This leads to the following conclusion.
 m 4. An element $S_0 \in \mathfrak{S}$ is an optimal solution of the deposit problem (7) if

here is a vectorial set function $\mu_0 \in L_{\infty}^{mn}(\Omega)^*$

$$
\langle \nabla \sigma, \mu_0 \rangle = \int_{\Omega} \sigma(x)^{\top} d\alpha(x) \qquad \forall \ \sigma \in W^{1,n}_{\infty}(\Omega)
$$
 (18)

and the maximum condition

$$
\langle \nabla S_0, \mu_0 \rangle \ge \langle u, \mu_0 \rangle \qquad \forall \ u \in L_{\infty}^{mn}(\Omega), \ u(x) \in \mathfrak{F}(x) \ a.e. \ on \ \Omega. \tag{19}
$$

Remark. Theorems 3 and 4 coincide essentially with Theorems 4 and 3 from [2]. However, unfortunately the proof of Theorem 3 in that paper was not correct because of a mistake in identifying weak * -compactness and sequentially weak * -compactness by the application of Alaoglu's theorem. Finally, we mention that all results proved here hold also for the case in which $W^{1,n}_{\infty}(\Omega)$ in (2) and (9) is replaced by $\mathring{W}^{1,n}_{\infty}(\Omega)$. Then we can omit even assumption (4).

References

- [1] Kantorowitsch, L. W. and A. P. Akilow: *Funktionalanaiysis in normierten Rilumen.* Berlin: Akademie-Verlag 1954.
- [2) Klötzler, IL: *Optimal transportation* flows. Z. Anal. Anw. 14 (1995), 391 401.
- *[3] Sobolew, S. L. Einige Anwendungen der Funktionalanatysjs auf Gleichungen der mathe*rnatischen Physik. Berlin: Akademie-Verlag 1964.

Received 19.06.1997