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M

Strong Duality
for Transportation Flow Problems

R. Klbtzler

Abstract. This paper is a supplement and correction to the author’s article Optimal trans-
portation flows” {2]. By new methods the existence of optimal transportation flows and the
strong duality to deposit problems is proved.
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1. Introduction

In conformity with [2] we consider the following transportation flow problem:

K(u) :=/r(z,du(1:)) — min onY (1)
Q
where
v = {ue LZNQ)" | (Vo,u) = Kplo) Vo e WLHQ) (2)
and
Kp(o) := / o(z)Tda(z)  on WE™(Q). (3)
Q
We assume, §2 is a bounded strongly Lipschitz domain of E™, a = (ay,...,an) is a

given vector of finite Borel measures ax on the g-algebra B of all Lebesgue-measurable
subsets of B which satisfy the assumption

/dak=0 (k=1,...,n); (4)
Q
r is a given local cost rate on  x E™" with the following basic properties:

r(-,v) is summable on
r(z,-) is positive homogeneous of degree one and convex on E™" V z € () (5)

1lv| < r(z,v) < 72lv| (v € E™", z € Q) for some constants 71,72 > 0.
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The objective functional of (1) is defined by

(e dute) = sup {(u, )| w € L), w7 < vz 0) Vo e EmY.(e)
Q . u

Every element p = (u1,...,p0) € Y is said to be a feasible flow and pj the flow of the
k-th tranportation good.

Referring to (2], between the transportation flow problem (1) and the deposit problem
Kp(S) = /9 S(z)"da(z) — max on &' (7
there exists duality, i.e.
K(u)> Kp(S) VweY, Sed, - (8)
if we define &' by
& = {5 e wir(®) } VS(2) € §(z) for ae. z € 2} ' 9)

with
3(z) = {z € E™"

2 v < r(z,v) Vv € E'""}. (10)

The restrictions of (9) characterize slope restrictions in the sense that VS(z) belongs
to the convex figuratriz set §(z) for a.e. z € Q.

Since (4), the linear functional Kp has the property Kp(S) = Kp(S + C) for any
constant vektor C € E™. Therefore, without loss of generality we can reduce the deposit
problem (7) on the restricted class & := {$ € &'| S(2) = 0} where Z is an arbitrary
fixed point in Q.

We know from [2] the following theorem.

Theorem 1. Thé deposit problem (7) has an optimal solution S,.

2. The existence of optimal flows

In L3 (2)* the standardized norm is defined by
il += sup {(u, ) | w € LZ7(®), u(z)] < 1. on Q). (11)
We in:troduce in this Banach space an equivalent norm by

el = StP {(U», ) | u € Ly"(R), u(x) € §(z) ae. on Q} (12)
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The equivalence of both norms is obvious under consideration of the third property of
assumption (5):

sup {(u,,u) \u € L' (Q), u(z)Tv < m|v| Vv € E™", ae. on Q}
< sup {(u,p) ‘ u e LTMN), u(z) v < r(z,v) Yv € E™, ae on Q}
< sup {(u,;z) ‘ u € L™(Q), uw(z) v < 12lv| Vv € E™, ae. on Q},

and this means 7 [|p|| < [|ufl* < 72llpll thus equivalence of both norms.

Now, let So = {0 € WL™(Q)|o(&) = 0} and U be a subspace of L7*(Q), charac-
terized by

U:= {u eLl'(Q)|u=Vo,0€ Go}. , (13)
In virtue of Sobolev’s embedding theorems [3: p. 60], the mapping f : U — Ris a linear

continuous functional yo on U, if we define f(Vo) := Kp(o) for all ¢ € Go. Namely,
there is a constant M > 0 such that for every o of this type

llolleniy < Messsx;)p |Vo|
holds and therefore
£V = K@) < M [ dalI9ellizear (14)

The linearity of f is obvious. Together with the boundedness (14) of f it follows that f
is a linear continuous functional pg on U. By the Hahn-Banach extension theorem {1
p. 109) we can extend po as a continuous linear functional on the whole space L7"(2)
with the same norm. That means, for each u € U there is uniquely a 0 € &g such that
u= Vo, V

f(u) = Kp(o) = (Vo, po), (1)
and, with (12),

lioll* = sup {(Vo, o) | € 6} = sup K = Kp(S) (16)

hold.

After the extension of yo on the totality of LT"(£), it holds again, according to
(12),
llzoll* = sup {(u,yo) ' u € LT, u(z) € F(z) ae on Q}

and since (6), (10) and (16)
llmoll* = K (o) = Kp(So)- : - (7)

From (15) po € Y follows such that (8) and (17) lead to the optimality of yo with
respect to problem (1). So we can summarize:

Theorem 2. The transportation flow problem (1) has an optimal solution po.
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3. Conclusions and generalizations

The existence of optimal solutions Sy of the deposit problem (7) and g of the trans-
portation flow problem (1) has in connection with (8) and (17) the following conse-
quence.

Theorem 3. Between the dual problems (1) and (7) there ezists strong duality in
the sense that miny K = max Kp.

From this theorem we obtain under consideration of (3), (12), (15) and (17)
Kp(So) = /Q So(z)Tda(z) = K (o) = (VSo, o) > (u, o)

for all u € LZ*(Q), u(z) € §(z) a.c. This leads to the following conclusion.

Theorem 4. An element Sy € & is an optimal solution of the deposit problem (7) if
and only if there is a vectorial set function po € LT (2)* whick satisfies the continuity
equation

(Vo) = [ o()Tda(z) Vo Wir(@) (18)
124
and the mazimum condition

(VSo, po) > (u, po) Vue L7 (), u(z) € §(z) a.e. on Q. (19)

Remark. Theorems 3 and 4 coincide essentially with Theorems 4 and 3 from [2].
However, unfortunately the proof of Theorem 3 in that paper was not correct because
of a mistake in identifying weak*-compactness and sequentially weak*-compactness by
the application of Alaoglu’s theorem. Finally, we mention that all results proved here
hold also for the case in which WX™() in (2) and (9) is replaced by W;‘;"(Q) Then

we can omit even assumption (4).
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