On the Kernel of the Klein-Gordon Operator

V. V. Kravchenko and R. Castillo P.

Abstract. In this work with the aid of technics of quaternionic analysis we show that any solution of the Klein-Gordon equation can be represented via two solutions of the Dirac equation with the same mass. Moreover, the two functions corresponding to each solution of the Klein-Gordon equation are unique.

Keywords: Klein-Gordon operator, Dirac operator, quaternions

AMS subject classification: 81Q05

1. Introduction

In this work we study the relationship between two most important operators of particle physics, namely the Klein-Gordon operator and the Dirac operator. Of course, some relations between them were established in the moment when Dirac discovered his operator as a square root of the Klein-Gordon operator. Thus, it is clear that any solution of the Dirac equation solves also the Klein-Gordon equation. Here using the formalism and methods of quaternionic analysis we prove a more intimate connection between the solutions of both equations. Namely, we show that any solution of the Klein-Gordon equation can be represented via two solutions of the Dirac equation with the same mass that seems to be a natural extension of Dirac's theory. In other words, any function describing the behaviour of a free particle with integer spin can be completely determined by two functions describing free particles with spin $\frac{1}{2}$. Moreover, the two functions corresponding to each solution of the Klein-Gordon equation are unique.

The methods of quaternionic analysis used in this article were developed recently in [1, 4, 8]. Here in Section 2 we present only some necessary definitions and results referring the reader to corresponding works. Section 3 contains the main results of the article resumed in Proposition 3.

V. V. Kravchenko: Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Unidad-Zacatenco, C.P. 07738 Mexico-City, México

R. Castillo P.: Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Unidad-Zacatenco, C.P. 07738 Mexico-City, México

2. Preliminaries

We denote by $\mathbb{H}(\mathbb{C})$ the algebra of complex quaternions (i.e. biquaternions). Each element $\alpha \in \mathbb{H}(\mathbb{C})$ is represented in the form $\alpha = \sum_{k=0}^{3} \alpha_k i_k$, where $\alpha_k \in \mathbb{C}$, i_0 is the unit and i_k are standard basic quaternions. We denote the imaginary unit in \mathbb{C} by i as usual. By definition i commutes with all i_k . The quaternion $\overline{\alpha} = \alpha_0 - \sum_{k=1}^{3} \alpha_k i_k$ is called *conjugated* to α . For multiplication from the right-hand side by a quaternion α we use the notation M^{α} , i.e. by definition $M^{\alpha}f = f\alpha$.

Let us denote by \mathfrak{S} the set of zero divisors from $\mathbb{H}(\mathbb{C})$. This is the set of all complex quaternions α satisfying the condition $\alpha \overline{\alpha} = 0$. As usual zero is not included into \mathfrak{S} . We will use the following idempotents generated by zero divisors:

$$P_k^{\pm} = \frac{1}{2} M^{(1 \pm i i_k)} \qquad (1 \le k \le 3).$$

Let us consider the Helmholtz operator with quaternionic wave number $\Delta + M^{\alpha^2}$ studied in [7] (see also [8]). Here Δ is the 3-dimensional Laplace operator. With the aid of quaternions it is possible (see [3]) to factorize the Helmholtz operator:

$$\Delta + M^{\alpha^2} = -(D + M^{\alpha})(D - M^{\alpha}),$$

where $D = \sum_{k=1}^{3} i_k \frac{\partial}{\partial x_k}$ is the well-known Moisil-Theodoresco operator, which was studied for the first time in [9, 10]. Moreover, for $\alpha \notin \mathfrak{S} \cup \{0\}$,

$$\ker\left(\Delta + M^{\alpha^*}\right) = \ker\left(D + M^{\alpha}\right) \oplus \ker\left(D - M^{\alpha}\right). \tag{1}$$

For $\alpha \in \mathfrak{S}$ we have

$$\ker (\Delta + M^{\alpha^2}) = M^{\alpha} (\ker D_{2\alpha_0} \oplus \ker D_{-2\alpha_0}) \oplus M^{\overline{\alpha}} (\ker \Delta).$$
(2)

Here and in what follows we use the notation $D_{\alpha} = D + M^{\alpha}$. In its turn for the kernel of the Laplace operator we have

$$\ker \Delta = \ker D_{-\alpha} \oplus M^{i_1}(\ker D_{\alpha}),$$

where α is an arbitrary zero divisor, $\alpha_0 = 0$, and $\alpha_1 \neq 0$. These results were obtained in [6, 7] (see also [8: Section 2]) with the help of the operators

$$\Pi_{\alpha} = \begin{cases} -\frac{1}{2\alpha\overline{\alpha}}M^{\overline{\alpha}}D_{-\alpha} & \text{if } \alpha \notin \mathfrak{S} \\ -\frac{1}{8\alpha_0^2}M^{\alpha}D_{-\alpha} & \text{if } \alpha \in \mathfrak{S} \end{cases}$$

which are defined on ker $(\Delta + M^{\alpha^2})$ and possess the following properties:

$$\Pi_{\alpha}^{2} = \Pi_{\alpha} \quad \text{for all } \alpha \in \mathbb{H}(\mathbb{C}) \tag{3}$$

$$\Pi_{\alpha}\Pi_{-\alpha} = \Pi_{-\alpha}\Pi_{\alpha} = 0 \qquad \text{for all } \alpha \in \mathbb{H}(\mathbb{C}) \qquad \dots \qquad (4)$$

$$\Pi_{\alpha} + \Pi_{-\alpha} = I \qquad \text{for all } \alpha \notin \mathfrak{S} \tag{5}$$

$$\Pi_{\alpha} + \Pi_{-\alpha} + \frac{1}{2\alpha_0} M^{\overline{\alpha}} = I \qquad \text{for all } \alpha \in \mathfrak{S}.$$
 (6)

For any $\alpha \in \mathbb{H}(\mathbb{C})$ we have $\Pi_{\alpha} : \ker (\Delta + M^{\alpha^2}) \longrightarrow \ker D_{\alpha}$.

We will consider $\mathbb{H}(\mathbb{C})$ -valued functions given in a domain $\Omega \subset \mathbb{R}^4$. On the set $C^1(\Omega; \mathbb{H}(\mathbb{C}))$ the following operator is defined [5]:

$$\mathbb{D} = P_1^+(i\partial_t + D) + P_1^-(-i\partial_t + D) - mM^{i_2},$$

where $\partial_t = \frac{\partial}{\partial t}$. The operator \mathbb{D} is equivalent to the classic Dirac operator

$$\mathfrak{D} = \gamma_0 \partial_t - \sum_{k=1}^3 \gamma_k \frac{\partial}{\partial x_k} + imI$$

in the sense that \mathbb{D} may be obtained from \mathfrak{D} by a simple invertible matrix transformation (see [5] and [8: Section 12]). We denote by F the Fourier transform with respect to the variable t:

$$F[f(t)] = \int_{-\infty}^{\infty} f(t)e^{-i\beta t}dt.$$

3. Decomposition of the kernel of the Klein-Gordon operator

Let us denote by A the Klein-Gordon operator which describes free particles with integer spin:

$$A = \partial_t^2 - \Delta + m^2.$$

We will consider the operator A on the set $C^2(\Omega)$, where $\Omega = (-\infty, \infty) \times G$, $(-\infty, \infty)$ is the axis corresponding to the time variable t and G is a domain in \mathbb{R}^3 . Let us introduce the operator

$$\overline{\mathbb{D}} = P_1^+(-i\partial_t + D) + P_1^-(i\partial_t + D) + mM^{i_2}$$

and consider the product

$$\mathbb{D}\overline{\mathbb{D}} = P_1^+(\partial_t^2 - \Delta) + P_1^-(\partial_t^2 - \Delta) + m^2 = \partial_t^2 - \Delta + m^2 = A.$$

Thus, $A = \mathbb{D}\overline{\mathbb{D}}$. We will use this fact for analysis of ker A.

Let us rewrite the operators A, \mathbb{D} and $\overline{\mathbb{D}}$ in the form

$$A = F^{-1}(-\Delta + m^2 - \beta^2)F$$

$$D = F^{-1}(D + M^{(i\beta i_1 - m i_2)})F$$

$$\overline{D} = F^{-1}(D - M^{(i\beta i_1 - m i_2)})F.$$
(7)

Let us denote $\alpha = -(i\beta i_1 - mi_2)$. Then for the Helmholtz operator from the brackets in (7) we have

$$-\Delta + m^2 - \beta^2 = D_\alpha D_{-\alpha}.$$

Using the corresponding projection operators Π_{α} and $\Pi_{-\alpha}$ we introduce the operators

$$Q_{\pm\alpha} = F^{-1} \Pi_{\pm\alpha} F.$$

The following proposition is a simple corrollary of (3) - (6).

Proposition 1. On the set ker A the following equalities are true:

- 1. $Q^2_{\alpha} = Q_{\alpha}$.
- 2. $Q_{\alpha}Q_{-\alpha} = Q_{-\alpha}Q_{\alpha} = 0.$
- 3. $Q_{\alpha} + Q_{-\alpha} = I$.

Note that ker $Q_{\alpha} = \ker \mathbb{D}$ and ker $Q_{-\alpha} = \ker \mathbb{D}$. The prove, for example, of the first equality is a corrollary of the fact that both inclusions $f \in \ker Q_{\alpha}$ and $f \in \ker \mathbb{D}$ are equivalent to the equality $D_{-\alpha}Ff = 0$. Then we obtain the following

Proposition 2. The kernel of the Klein-Gordon operator A can be represented as direct sum of the kernels of Dirac's operators \mathbb{D} and $\overline{\mathbb{D}}$, i.e. ker $A = \ker \mathbb{D} \oplus \ker \overline{\mathbb{D}}$.

This proposition is a generalization of the following result obtained in [2]: $\mathcal{M} = \ker(-i\partial_t + D) \oplus \ker(i\partial_t + D)$, where \mathcal{M} denotes all null-solutions of the wave operator $\Delta - \partial_t^2$ which depend on time.

Note that if $f \in \ker \mathbb{D}$, then $fi_3 \in \ker \overline{\mathbb{D}}$. In other words: $\ker \overline{\mathbb{D}} = M^{i_3}(\ker \mathbb{D})$ and we obtain the following principal result of this article:

Proposition 3. The relation ker $A = \ker \mathbb{D} \oplus M^{i_3}(\ker \mathbb{D})$ is true.

A curious point in this result is the fact that due to the anticommutativity of the imaginary quaternionic units the kernel of the operator of second order A is represented via the kernel of the operator of first order \mathbb{D} . Consequently, any solution of the Klein-Gordon equation may be represented as a sum of two solutions of the Dirac equation one of which is multiplied by i_3 . This result conforms, e.g., with the quark model of mesons. Each meson is constituted by one quark and one anti-quark. The multiplication by i_3 in Proposition 3 represents the transformation of a particle into an anti-particle.

Note that decomposition (1) of the kernel of Helmholtz's operator is not unique and can be rewritten in a form similar to Proposition 3. Let us consider the following Helmholtz operator $\Delta + \alpha^2 I$, where $\alpha \in \mathbb{C}$. Then we have

$$\Delta + \alpha^2 I = -(D + M^{\alpha i_1})(D - M^{\alpha i_1})$$

and with the aid of the projection operators Π_{α} and $\Pi_{-\alpha}$ we obtain

$$\ker (\Delta + \alpha^2 I) = \ker (D + M^{\alpha i_1}) \oplus \ker (D - M^{\alpha i_1}).$$

But ker $(D - M^{\alpha i_1}) = M^{i_2}(\ker (D + M^{\alpha i_1}))$, consequently

$$\ker\left(\Delta + \alpha^2 I\right) = \ker\left(D + M^{\alpha i_1}\right) \oplus M^{i_2}(\ker\left(D + M^{\alpha i_1}\right)).$$

References

- Berezin, A. V., Kurochkin, Yu. A. and E. A. Tolkachev: Quaternions in Relativistic Physics (in Russian). Minsk: Nauka y Tekhnika 1989.
- [2] Castillo, R. and V. V. Kravchenko: Sobre una descomposición del kernel del operador de onda. In: Memorias del 3er Congreso de Proyectos de Investigación, México D.F. 1997 (ed.: A. Vázquez M.). Mexico City: Nat. Politechn. Inst. 1997, pp. 1 - 5.
- [3] Gürlebeck, K.: Hypercomplex factorization of the Helmholtz equation. Z. Anal. Anw. 5 (1986), 125 131.
- [4] Gürlebeck, K. and W. Sprößig: Quaternionic Analysis and Elliptic Boundary Value Problems. Berlin: Akademie-Verlag 1989.
- [5] Kravchenko, V. V.: On a biguaternionic bag model. Z. Anal. Anw. 14 (1995), 3 14.
- [6] Kravchenko, V. V.:- Direct sum expansion of the kernel of the Laplace operator with the aid of biguaternion zero divisors. Diff. Equ. 31 (1995), 462 465.
- [7] Kravchenko, V. V. and M. V. Shapiro: Helmholtz operator with a quaternionic wave number and associated function theory. In: Deformations of Mathematical Structures, Vol. II (ed.: J. Lawrynovicz). Dordrecht: Kluwer Acad. Publ. 1994, pp. 101 - 128.
- [8] Kravchenko, V. V. and M. V. Shapiro: Integral Representations for Spatial Models of Mathematical Physics (Pitman Res. Notes Math. Ser.: Vol. 351). Harlow: Longman 1996.
- [9] Moisil, G.: Sur les quaternions monogenes. Bull. Sci. Math. Paris 55 (1931), 169 194.
- [10] Moisil, G. and N. Theodoresco: Functions holomorphes dans l'espace. Mathematica (Cluj) 5 (1931), 142 - 159.

Received 11.08.1997