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Abstract. In this work with the aid of technics of quaternionic analysis we show that any 
solution of the Klein-Gordon equation can be represented via two solutions of the Dirac equation 
with the same mass. Moreover, the two functions corresponding to each solution of the Klein-
Gordon equation are unique. 

Keywords: Klein-Gordon operator, Dirac operator, qu'aternions 
AMS subject classification: 81 Q 05 

1. Introduction 

In this work we study the relationship between two most important operators of par-
ticle physics, namely the Klein-Gordon operator and the Dirac operator. Of course, 
some relations between them were established in the moment when Dirac discovered 
his operator as a square root of the Klein-Gordon operator. Thus, it is clear that any 
solution of the Dirac equation solves also the Klein-Gordon equation. Here using the 
formalism and methods of quaternionic analysis we prove a more intimate connection 
between the solutions of both equations. Namely, we show that any solution of the 
Klein-Gordon equation can be represented via two solutions of the Dirac equation with 
the same mass that seems to be a natural extension of Dirac's theory. In other words, 
any function describing the behaviour of a free particle with integer spin can be com-
pletely determined by two functions describing free particles with spin 1 . Moreover, the 
two functions corresponding to each solution of the Klein-Gordon equation are unique. 

The methods of quaternionic analysis used in this article were developed recently 
in [1, 4, 81. Here in Section 2 we present only some necessary definitions and results 
referring the reader to corresponding works. Section 3 contains the main results of the 
article resumed in Proposition 3. 
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2. Preliminaries 
We denote by !HI(C) the algebra of complex quaternions (i.e. biquaternions). Each 
element a e H(C) is represented in the form a = 

E3=0 ak i k, where ak E C, i 0 is the 
unit and i k are standard basic quaternions. We denote the imaginary unit in C by i as 
usual. By definition i commutes with all ik. The quaternion N = a - akik is 
called conjugated to a. For multiplication from the right-hand side by a quaternion a 
we use the notation M°, i.e. by definition Mf = fa. 

Let us denote by 6 the set of zero divisors from H(C). This is the set of all complex 
quaternions a satisfying the condition a = 0. As usual zero is not included into 6. 
We will use the following idempotents generated by zero divisors: 

=	 (1 <k < 3). 

Let us consider the Helmholtz operator with quaternionic wave number z+M 2 studied 
in [7] (see also [8]). Here A is the 3-dimensional Laplace operator. With the aid of 
quaternions it is possible (see [3]) to factorize the Helmholtz operator: 

+ M 2 = —(D + M)(D - Ma), 

where D = i, - is the well-known Moisil-Theodoresco operator, which wasazk
 studied for the first time in [9, 101. Moreover, for a 0 6 U {0}, 

ker( + Ma2 ) = ker(D + M) ker(D - Ma ) .	 (1)

For a E 6 we have 

ker(z + M 2 ) = Ma(kerD2a0 ED kerD_ 2 a 0 ) ED Ma(ker,.X).	 (2) 

Here and in what follows we use the notation D0 = D + Ma . In its turn for the kernel 
of the Laplace operator we have 

ker A = kerD_ 0 ED M"(kerDa), 

where a is an arbitrary zero divisor, a0 = 0, and a 1 54 0. These results were obtained 
in [6, 71 (see also [8: Section 2]) with the help of the operators 

2aa Ha {

	

	MD_a if a 6
= - 1 lva.-sLI _a ifaE6 8a0 

which are defined on ker (i + M c") and possess the following properties: 

11,	Ha for all a E !HI(C) (3) 
HaH_a = H_aHa	0 for all a E H(C)	........ .(4) 

Ha + H—a = I for all a	6 (5) 

II. +H_ a +M0 I for all aE6. .	(6) 2a0
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For any a E 1111(C) we have ll: ker(L + MO2 )	kerD0. 

We will consider H(C)-valued functions given in a domain ci c R. On the set 
C'(ci; H(C)) the following operator is defined [5]: 

D = Pi (0t + D) + P(-a + D) - mM2, 

where ô = . The operator D is equivalent to the classic Dirac operator 

3 

D	- >7k O 
+irnl 

k=I	Xk 

in the sense that ID may be obtained from Z by a simple invertible matrix transformation 
(see [5] and [8: Section 12]). We denote by F the Fourier transform with respect to the 
variable t:

F[f(t)]	f(t)etdt. 

3. Decomposition of the kernel of the Klein-Gordon operator 
Let us denote by A the Klein-Cordon operator which describes free particles with integer 
spin:

A = - L + m2. 

We will consider the operator A on the set C2 (ci), where ci = (-co, co) x G, (-co, oo) is 
the axis corresponding to the time variable t and G is a domain in R3 . Let us introduce 
the operator

FD = P, + (-ia + D) + Pi (ia + D) + mM'2 

and consider the product 

IDID = P1(812 _A)+ pl-(at2  -L)+m2 = ôt2 _ A+ M2 = A. 

Thus, A = DID. We will use this fact for analysis of ker A. 

Let us rewrite the operators A, ID and ID in the form 

A =F '(-+ m2 -fl2 ) F	 (7) 

ID = F'(D + 

FD = F'(D - M(*1_mt2))F. 

Let us denote a = -(ij9i i - mi2). Then for the Helmholtz operator from the brackets 
in (7) we have

- + m2 - 2 = D0D0. 

Using the corresponding projection operators H 0 and fl we introduce the operators

Q±0 =F-1 H0F. 

The following proposition is a simple corrollary of (3) - (6).
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Proposition 1. On the set kerA the following equalities are true: 

1 ç)2 _r - 

2. QcQ_c. = Q—cQc. = 0. 

3. Q0, + Q_	I. 

Note that ker Qc, = kerlI3 and ker Q = kerD. The prove, for example, of the first 
equality is a corrollary of the fact that both inclusions f E ker Q and I E kerllj' are 
equivalent to the equality D_Ff = 0. Then we obtain the following 

Proposition 2. The kernel of the Klein-Gordon operator A can be represented as 
direct sum of the kernels of Dirac 's operators llJ and D, i.e. ker A = kerll3 kerb. 

This proposition is a generalization of the following result obtained in [2]: M = 
ker (—zô + D) ker(ia1 + D), where M denotes all null-solutions of the wave operator 

- 0 which depend on time. 

Note that if f E kerll3, then f7 3 E kerD. In other words: kerD = M'3 (kerD) and 
we obtain the following principal result of this article: 

Proposition 3. The relation kerA = kerIDED M' 3 (kerD) is true. 

A curious point in this result is the fact that due to the anticommutativity of the 
imaginary quaternionic units the kernel of the operator of second order A is represented 
via the kernel of the operator of first order D. Consequently, any solution of the Klein-
Gordon equation may be represented as a sum of two solutions of the Dirac equation one 
of which is multiplied by 6. This result conforms, e.g., with the quark model of mesons. 
Each meson is constituted by one quark and one anti-quark. The multiplication by i3 
in Proposition 3 represents the transformation of a particle into an anti-particle. 

Note that decomposition (1) of the kernel of Helmholtz's operator is not unique 
and can be rewritten in a form similar to Proposition 3. Let us consider the following 
Helmholtz operator A + cx 2 I, where a e C. Then we have 

A + a2 1 = —(D + Matl)(D - Mrn') 

and with the aid of the projection operators Ha and H we obtain 

ker (L + a 2 1) = ker(D + M'') ED ker(D - M°") 

But ker(D - Ma 1) = M2(ker(D + M°")), consequently 

ker (L + a2 1) = ker (D + Me") ED M12 (ker (D + M"")).
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