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On a Theorem of Hernandez and Nashed 
M. Dörfner 

Abstract. We prove a theorem on the global invertibility of nonlinear maps in metric vector 
spaces. As corollaries our result yields a theorem of Hernández and Nashed, as well as the 
classical Banach-Mazur lemma and an invertibility criterion by Browder. 
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Throughout this note, X and Y are real metric vector spaces, and <1' : X - Y is a 
continuous (in general, nonlinear) operator satisfying (without loss of generality) IP M = 
0. Recall that such an operator is called proper if the pre-image I(C) of any compact 
set C C Y is compact. Our starting point is the classical Banach-Mazur lemma which 
may be stated as follows: 

Theorem 1 (see [21). A continuous operator is a global homeomorphism if and 
only if 'I is a local homeomorphism and proper. 

Loosely speaking, this theorem shows that properness is the "missing" property if 
an operator is only locally invertible, but not globally invertible. Results of this type 
are not only of theoretical interest, but also important in view of many applications. 
Thus, to prove the global invertibility of a proper map simply reduces to proving its 
local invertibility which may often be achieved by quite elementary means (e.g., by the 
inverse function theorem and its various generalizations, see [5] for example). 

The standard first-year calculus example of a local homeomorphism which is not 
globally invertible is 

(x 1 , x2 ) = (ez COS X2 - 1,e" sin X2)	((x1,x2) E JR2 )	 ( 1) 

Of course, the map (1) is not proper since ([-2,0j x [-1,1]) D {0} x R. Moreover, 
this map is not closed either since 4(R2 ) = R  \ {(-1,0)}. This is not accidental, by 
the following 

Theorem 2 (see [41). A continuous operator 4) is a global homeomorphism if and 
only if 4' is a local homeomorphism and closed. 

A further result in this spirit was recently given by J. E. Hernández and M. Z. 
Nashed [7]. A continuous operator 4' : X - Y is called ray-proper if the pre-image 
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4)([0 , y]) of the "ray" [O,y] = {ty : 0 t 11 is compact for any y E Y. Obviously, 
every proper map is ray-proper but not vice versa. Moreover, one can show that an 
operator 4) is proper if and only if 4) is ray-proper and closed. Indeed, this easily follows 
from the well known fact that an operator 4) is proper if and only 4) is closed and 
4)({y}) is compact for every y E Y (see [3] for example). 

Theorem 3 (see [71). A continuous operator 4) is a global homeoinorphism if and 
only if 4) is a local homeomorphism and ray-proper. 

The trivial example X = R and 4)(x) = arctanx shows that the requirement of 
ray-properness of 4) cannot be weakened to "point-properness" (i.e. the requirement 
that 4)({y}) be compact for all y e Y). 

We illustrate Theorem 3 by a simple but typical example. Let X = Y = C([0, 1]), 
equipped with the usual max-norm, and let 4) be the linear operator defined by 

4)(x)(t) j x(s)ds.	 (2) 

The range of 4) is the subspace Cd([O, 1]) = {y E C'([O, 1]) : y(0) = 01, and 4) is 
invertible on this subspace with inverse 4)1 ( y) = y'. However, 4) is not bounded, 
since we have equipped C([0, 1]) with the C-norm. It is easy to check that 

= 41 [O,y'] if yE C([0,1]) 

1{°}	ifyC([0,1]) 
and hence 4) is ray-proper. On the other hand, 4) is neither proper (since 4) is a 
compact operator) nor closed (since C([0, 1]) is not closed in C([0, 1])). Thus, in this 
case Theorems 1 and 2 do not apply, but Theorem 3 does. In fact, 4) cannot be a local 
homeomorphism, by Theorem 3. 

Now we are going to prove another Banach-Mazur type result which yields all the 
preceding theorems as corollaries. 

Theorem 4. A continuous operator 4) : X -* Y is a global homeornorphism if and 
only if 4) satisfies the following two conditions: 

(a) 4) is a local homeomorphism. 
(b) For each y E Y there is a continuous map x [0, 11 -' X such that x(0) = 9 

and 4)(x(t)) = ty for 0 t 1. 
Proof. The necessity of conditions (a) and (b) is clear. To prove the sufficiency, 

suppose that 4) satisfies conditions (a) and (b); we have to show that 4) is onto and 
one-to-one. Given y E Y, choose x : [0, 1] -4 Y according to condition (b). Since 
y = 4)(x(1)) we see that 4) is onto. Moreover, since 4) is locally homeomorphic the map 
i is also uniquely determined. Now put x 1 := x(1) and let x 2 be another point in X 
with 4)(x 2 ) = Y. Putting z(i) := t(x2 - x 1 ) +x and y(t) 4)(z(t)) (0 < 1) by 
condition (a) we conclude that y(t) (0 < t < 1) is a non-degenerate closed curve in 
Y satisfying y(0) = y(l) = y. By conditions (a) and (b), for each I E [0,1] we find 
a unique continuous map Xt : [0,1] - Y satisfying xt(0) = 9 and 4)(xg(s)) = sy for 
0	s	1. For I sufficiently close to 1 we get xg(1) = z(t), by condition (a), hence 
X 1 ( 1 ) = z(1) = x2 . But 4)(x i (s)) = sy for all .s E (0, 11, and therefore x1(s) 
by the uniqueness of x. In particular, we conclude that x 2 = x i (l) x(1) = x 1 which 
shows that 4) is injectivel
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To illustrate Theorem 4 we give two examples. Consider again the operator (1). As 
we already remarked, (-1,0) is not in the range of and thus condition (b) of Theorem 
4 fails. 

Now let the operator	R2 — R be defined by 

(x 1 ,x2 ) = x 1 COS X 2	((x1,x2) E R2) 

Since 4({0}) is unbounded (1 is not proper and thus not ray-proper, too. Let A := 
{1) x {27rn + I I n	N}. Since 4(A) is not closed 4 cannot be a closed operator. 
However, satisfies condition (b) of Theorem 4. Indeed, for y E R choose x(t) = 
(ty,0) (0 t < 1). One easily checks that '1 is not a local homeomorphism and thus 
condition (a) of Theorem 4 is not fulfilled. 

Now we show that both Theorem 2 and Theorem 3 (and hence Theorem 1, too) 
follow from our Theorem 4. 

Theorem 5. Theorem 4 implies Theorem 2. 
Proof. We have to show that every closed local homeomorphism satisfies condition 

(b). If y = 9, we simply choose x(i) 0. Let y 54 9. Since is a local homeomorphism 
with 4(9) = 9, for some e > 0 we can find a unique continuous map x [0, e) —* X 
satisfying x(0) = 9 and (x(t)) = ty. Let r E (0, 1] be the supremum of all possible e 
with this property, and let (t) be any sequence in [0, r) converging to T. We claim 
that (x(t)) contains a convergent subsequence. 

In fact, if this is false, then the set A = {x(t) : n E N} is trivially closed and hence 
also the set cD(A), by assumption. Therefore we have ry E 4)(A) and 4)(x(i)) = t,,y = 
ry for some n E N. But t,2 <r for all n, hence y = 9 contradicting our assumption on 
Y.

Let (t,, )j be a subsequence of (tn)n such that x(t,) — x for some x • E X. Since 
4) is continuous, we have 4)(x.) = Ty. But the local invertibility of 4) implies then that 
x may be defined for some t >r if r< 1. This shows that r = 1, and we are done I 

Theorem 6. Theorem 4 implies Theorem 3. 

Proof. We have to show that every ray-proper locally homeomorphic operator 4) 
satisfies condition (b). Given y E Y, we define x: [0, r) —* X and (t) as in the proof 
of Theorem 5. Since 4) is ray-proper, the set 4)([O,y]) is compact, and hence (x(i)) 
contains a convergent subsequence. The remaining part of the proof is precisely as 
before I 

Let us remark that Theorem 4 - in contrast to the theorems of Banach-Mazur, 
Browder and Hernández and Nashed - is rather an injectivity result than an injectivity 
and surjectivity result since surjectivity is trivial by condition (b). That means that in 
order to apply Theorem 4 we need to know the surjectivity of the operator a priori. 

We point out that other results in the spirit of Theorem 4 may be proved by means 
of compactness arguments. If X and Y are finite-dimensional, the properness of a 
continuous operator 4) : X —* Y simply means that 11 4) (x )11 —, oo as 11x11 —' oo; such 
operators are usually called coercive. In this case it is a useful device to apply just the 
classical Banach-Mazur lemma. On the other hand, if X and Y are infinite-dimensional,



270	M. Dörfner 

coercivity does not imply properness, and one has to impose additional conditions on 
. We give a sample result in this direction. Following [1], we denote by 11flI x the lower 

x-norm of the operator 4, i.e. 

IIlk = inf{ X( 41M) : M C X bounded, with x(M) > 

where
(M) = inf {e > 0: M admits a finite e-net} 

denotes the (Hausdorff) measure of non-compactness of M. Then we have the following 

Theorem 7 (see [6: p. 25]) , Suppose that X and Y are infinite-dimensional 
Banach spaces, and 1D : X —' Y is a local homeomorphism with 1 I fl > 0. Then 4 is a 
global homeomorphism. 

In [7: Corollaries 3.5 and 3.71 the authors give two results on the global invertibility 
of operators of the form c1 = I - K with K being compact. Theorem 7 shows that any 
such operator in an infinite-dimensional Banach space is always globally invertible if it 
is locally invertible. In particular, the hypothesis of [7: Corollaries 3.5 and 3.7] that 

([0, y]) be bounded for all y E Y may be dropped. 
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