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Convergence of the Newt on- Kantorovich Method 

under Vertgeim Conditions: 

a New Improvement 
E. De Pascale and P. P. Zabreiko 

Abstract. Let f: B(xo, R) C X - Y be an operator from a closed ball of a Banach space X to 
a Banach space Y. We give new conditions to ensure the convergence of Newton- Kantorovich 
approximations toward a solution of the equation f(x) = 0, under the hypothesis that 1' be 
Hlder continuous. The case of f' being Holder continuous in a generalized sense is analyzed 
as well. 
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1. Introduction 

Let X and Y be Banach spaces, B(xo, R) the closed ball in X with center x 0 and radius 
R. Assume that I : B(xo, R) - Y is an operator satisfying the following conditions 
(usually called the Vertgeim conditions (12, 131): 

a) f is Frechét differentiable at interior points of B(xo, R). 

b) f' satisfies a HOlder condition with an exponent 9 E (0, 11. 

c) f'(xo) is invertible. 

In the sequel we use the following notations: 

a = IIf'(xo)'f( x o)II,	b = IIf'(xo)'II 

k = su {11f'(x 1) - f'(x2)II x 1 ,x 2 E b(x0 ,R) with x 1	x2}. 
II x i - X211°	I 

Our aim is to study the solvability of the equation 

1(x) =0
	

(1) 

E. De Pascale: Università della Calabria, Dip. di Matematica, 1-87036 Rende (Cs), Italy 
P. P. Zabreiko: Belgosuniversitet, Mekh.- Mat. Fak., BR-220050 Minsk, Belarus 
This work was performed under the auspices of CNR - Italia and MURST - Italia. The second 
author was also supported by the Belorussian Foundation of Fundamental Scientific Research. 

ISSN 0232-2064 / $ 2.50 ® Heldermann Verlag Berlin



272	E. De Pascale and P. P. Zabreiko 

and the convergence of the classical Newton- Kantorovich approximations 

= In - f'(x) 1 f(x)	(n > 0)	 (2)


to a solution x of equation (1). 

In Section 1 we simply collect some results, more or less known in the literature, 
about the unique solvability of equation (1). The parameter = a°bk is fundamental 
to formulate the results. We observe that e is large for a "fiat" function f. The first 
basic results on the convergenge of Newton-Kantorovich approximations were obtained 
by B. A. Vertgeim [12, 131. The Vertgeim results imply that the Newton- Kantorovich 
approximations are defined and converge to the solution of equation (1) for e ever, 

where ever is the unique solution in (0,11 of the scalar equation (i+e) ( i+i ) l+O = 

J. V. Lysenko 1 71 proved that the'result of Vertgeim still holds if	29	
+08) 

Our main theorem in Section 3 improves the result by Lysenko: in fact the conver- 
gence of the Newton- Kantorovich approximations still holds for	(4-)°, where 
ii = v(0) is a suitable function constructed in such a way that v(0) <2'° for 0 E (0, 11 
In our case, the estimates needed in the proof are obtained in a different way than the 
Lysenko one. 

In Section 4 we discuss the rate of convergence of the approximation (2) to a solution 
of equation (1). 

The idea we use in Section 3 to prove the convergence result for the Newton-
Kantorovich approximations is modelled on a general scheme we sketch in Section 5, in 
the case of f satisfying a generalized Holder condition: 

If'(x i) - f'(x2)II	w (II x i - x 211)	(x 1 ,x2 E B(xo,R))	 (3) 

with w : [0, +oo) —* [0, +oo) being some increasing function with lim t ..o w(t) = 0. (The 
classical HOlder condition is of course obtained when w(t) = kt° for some 0 E (0, 1].) 
We want to remark that throughout the paper, one of the main techniques used in the 
proofs is that of the majorizing sequences introduced by Rheinboldt [10]. 

Applications to nonlinear integral equations can be obtained modifying in a suitable 
way the examples given in [1, 2, 61. 

2. Unique solvability 

In this section we deal with (unique) solvability of equation (1). We need a preliminary 
lemma about the solutions r 0 of the scalar equation

(4) 

bk 14-9 where 74' is defined by 74' (r) = j-r	- r + a.
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Lemma 1. Equation (4) has no solution, a unique solution or exactly two solutions 
r < r. if and only if 

a6 bk>	 a9bk=	 a°bk< 

respectively. 

Proof. The solutions of equation (4) coincide with the fixed points of the strictly 
increasing and strictly convex function d(r) = r + O(r). The tangent to the graph of 
d at r is parallel to the bisectrix if and only if d'(r) = 1, i.e. r = ren. t = ( bk)-1. 
The position of the point (rcnj t , d(rcnii)) with respect to the bisectrix gives the precise 
number of fixed points for d. Since d(rcn,g) = a +, the result follows U 1+0

Theorem 1. Suppose that f satisfies the Vertgeim conditions and that 

	

a9
 b/c < (9\9	

and	r	R —i+e) 

where r and r, are the roots of (r) = 0. Then equation (1) has a unique solution 
x in the ball B(xo,r). Moreover, this solution is unique in the bigger ball B(xo,R) if 
r < R < r, or, in other words, if r is the unique root of 7,b(r) on 10, R] and i(R) < 0. 

Proof. Since f'(xo) is invertible, the equation 1(x) = 0 is equivalent to the equation 
x = Tx, where T B(xo,R) -i X, defined by the equality Tx = x - f'(xo)'f(x), is 
usually called the Goursát operator. We have HTxo - xoII = a = d(0) and 

II T ' (x )II	IIf'(xo)' [f'(xo) - f'(x)] 11 < bkr 9 = d'(r) 

for j jx - xoII	r < R. Now it is easy to obtain the result using Theorems 1 and 2 in 
Chapter XVIII of [5] I 

3. Convergence of Newton- Kantorovich approximations 
Let f satisfy the Vertgeim conditions with a fixed 9 E (0, 1). The function v = 
introduced in the following lemma, is crucial to improve the results by Ju. V. Lysenko 
about the convergence of the approximations (2) [7]. 

Lemma 2. Set

v(0) = sup h(t) 
0< i < +00

t 19 4 (1 4. 9t 
(1 + t)	- 1 

where h(t) = 

Then the inequalities 1 < &i(9) <2'° hold for 0 < 9 < 1. 

Proof. First we note that lim t .....o h(t) = limj .... +00 h(t) = 1 and so 1	zi(9). The 
derivative of h has the numerator	 - 

{(i + 9)t° + (1 + 9)] [(1 + t)'° - 1] - [t'° + (1 + 9)t] (1 + 9)(1 + t)°.
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Since lim 1 _0 h'(t) = +, v(9) is strictly bigger than 1. Moreover, if r is a maximum 
point for h, T cannot be 0 and so is a critical point for h. Now h'(r) = 0 if and only if 

h(r) - 
1.1+9 + (1 + O)T	r + 1 

- (1 + T)' +9 - 1 = (1 + r)8 < 
max_ g(t) = g(1) = 2 ° 0<'<+ 

where g(t) Consequently, v(9)	2' 0 . If v(9) = 21-8, we have h(r) = g(1) - (1+1) 
q(r). Since the equality g(r) = 2'° implies T = 1 and consequently h(1) 

= 2'°-i = 
20, i.e. 20 = 2 - 6. The last equality is impossible since 21	is strictly convex in 
9.

The following numerical table compares the magnitude of 1/(9) with that of 2 1 —9: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
v(0) 1.850 1.716 1.596 1.488 1.389 1.297 1.213 1.137 1.065 
2'° 1.865 1 1.740 1.623 1.514 1.413 1.318 1.230 1.148 1.071

Now we consider the function 

	

(r) = a + v(0)bki+o - r	 (5) 1+6 

which is pointwise bigger than 7fi. We observe that the scalar equation (r) = 0 has 
similar properties as those stated in Lemma 1. 

The next theorem is our main result. 
Theorem 2. Suppose that, f satisfies the Verigeim conditions, that 

/ 9 \O 
ii(9)a°bk 

and that r < R, where r is the smallest root of the scalar equation i,b(r) = 0. Then 
the Newton-Kantorovich approximations are defined for all n, belong to B(xo,r*) and 
converge to the unique solution x of equation (1). 

Proof . From the equality 

= [I + f ' (xo) ' (f'(x) - f'(xo))] ' f'(xo)' 

it follows that

Ilf'(xY'II <
b 

- 1—bkllx—xoII0 
The sequence of scalars defined by the recurrence formula 

r0 = 0

} = Tn -	( fl?0) ______ 
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is increasing and converges to r. Suppose that for k n the xk are well defined and 
11 r k —rk_Ill r k —rk_I . Then wehave 

ll X n+i - X nhl	 - 

llf'(xn) — ' II llf(xn)ll 

= llf'(xn) — 'll If(x) - f(x—) - f'(x_ i )(x - 

b 
- 1 - bk Il x - xoIl° I li' ((1 - i)x_ 1 + ix) - f'(X n_i)ll urn - Xn_ 1 di 

0 

< 
- 1— bk ljx - r0110 

bk(r. - r_1)'° 
- (1 + 9)(1 - bkr)

k
ll x - Xn_l 111+8 

bkr°1 I_i	 in_ - i+0 (' - 1)1 - bkr_ 1 (r - rn_i) +o	i)	+ 

1 - bkr° 
By Lemma 2 applied for t = —s— - 1, we have r,,-1

] v(0)bkr	1(!_) 1+0 - 
1] - bkr_(r, - rn_i) i+0	r,,_1 

ll xn+i -	 1 - bkr° 
-	 - bkr_ i (rn - rn_i) - i+0 n	1+0 n—i 

-	 1—bkr 

- (r) - (r1) - _b'(ri)(r - ri) 
-	 —'(r) 

- t'(rn) 

= r+i - rn. 
Consequently, {x} is a Cauchy sequence converging to a solution r of equation (1). 
Moreover, x E B(ro,r) and the estimate 11X, - Xnll r' - r, holds U 

A final remark is needed to conclude the section. It was proved in [3], implementing 
the iteration procedure on a computer, that there is a "critical point" e = Cn.m in the 
interval [0, (j-)°J (the existence interval for equation (1)): More exactly, for 
"numerical convergence" of iteration (2) holds (which, of course, does not mean that 
iterations (2) actually converge in some Banach space). Likewise, one can show that, 
for > Gu,, iterations (2) diverge "numerically". 

We can summarize our results in the following inequalities: 

20_li 8 
\0	1 ( 0 \0	 ( 9 \0 

0 < 'ever <	pj <	jTi) enurn <
	

<1.
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4. The rate of convergence 

Under the condition of Theorem 2, the Newton- Kantorovich approximations satisfy the 
estimates li x . - < r. - r. This gives a bound for the rate of convergence of the 
sequence {x} to x. The above error estimates demand the computation of r, which 
in some cases may not be convenient. Below we present another estimate that requires 
the computation of r only. 

Theorem 3. Under the hypotheses of Theorem 2, if r < rcrjt, then 

	

li x. - X,,+1	 bk 
lim sup  

n —. 11-T.  - x ll' +° - (1 +O)(i - bkr°) 

Proof. The following inequalities hold: 

li x . — xn+iil = li x . —x n _fI(Xn)_lf(Xn)lI 

= iif'(z )' (f(x,) - f(x) - f'(z)(x. - x)] II 

Iif'(xn) -1 11 . 	- t)x + ix,) - f'(x)] (x. - x) di 

1 -bkr J kt°x, - xii°dt 
0 

bkiix, - 
(1+8)(1-bkr) 

From these inequalities it follows (if r, < rcr,j) that 

lim sup li x . - x +1ll	
bk 

li x . - x,,fl'+° - (1 + 9)(1 - bkr) 

and the statement is proved I 

From the inequalities in the proof of Theorem 3 we have, for n E N, 

1 
(I+e"—1 

Ii'. - xnil

	

	
bk	

I 

[(1 +8)(1 - bkr')°j 

We do not study in this paper the "limit" case r, = rcruj = (bk) 

We conclude remarking that the Kantorovich case (8 = 1) is completely studied in 
[14] (see also [8, 9]). Similar error estimates in the case 0 < 8 < 1, to our knowledge, 
are not known.
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5. The generalized Holder case 

The idea we use in Section 3 to prove the convergence result for the Newton- Kantorovich 
approximations is modelled on a general scheme we sketch in the case of f satisfying 
the generalized Holder condition (3). We proceed quite heuristically. 

For the problem of existence we refer to the paper [1]. We only recall that the unique 
solvability for equation (1) is controlled, in this case, by the scalar equation t(r) = 0, 
with 0 given by

ON = a + bj w(i)di - r. (6) 

(Of course, in the case w(t) = kt° the function (6) reduces to (4)). As we have seen in 
the foregoing sections, the convergence of the iterative process (2) cannot be controlled, 
in general, by the same equation. 

We begin introducing the scalar equation (r) = 0 to control the convergence 
process. Afterwards we look for a function t4' in such a way that the sequence of scalars 
defined by

= 0

(n>0) 

is a majorizing sequence for the Newton-Kantorovich approximations: 

- < r,,. 1 - r, (n > 0). (7) 

Usually, (7) is achieved by induction. If we suppose that (7) is verified for k n and 
that the function satisfies the inequality 

b I w(t) di <(v) - (u) - '(u)(v - u)	(0< u <v < R)	(8) 

we have 

II x +i -	Ilf'(xn)-'II IIf(x ) - f(x,... i ) - f'(x_)(x - 

b 
- 1 - bw(r) J 11f , ( ( 1 - t)x_ + ix) - f(x_1 )I	- x_ 1 11 di 

0 

1 
< 
- 1— (r) I W (tllXn - x iII)II x -	di 

0
"rn-zn-I" 

1 
- 1—bw(r)	f w(i)d( 

0
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bfw(t)di 

- 1—bw(r) 

<	- (r_ i )	(r_i)(r - 
—	 1—bw(r) 

- 

=r +i — rn. 

Inequality (8) is crucial in the inductive step. If we look for 0 of the type 

(r) = a + 
b 
	(t)dt - 

we have for the unknown function cD the inequality 

V—U	

+(u)(v - u) < Jt)dt	(0< u <v <R)	 (9) f w(t) dt 

which does not depend on a and b. 

The problem of determining Ce in inequality (9) is not easy in general. In Section 3 
we have used a function Co of the type (r) = u(r) with ii constant. In this case, (9) 
is satisfied if and only if

fV_U w(t) dt + w(u)(v - u) 
11= 5U 

O<u<v<R	 ItL 
 w(t)tdt .' 

In [4 1 the authors considered a function cD defined by means of the inf-convolution 

= sup (w(t) + LJ(r - t)). 
O<i<r 

An attempt to construct Co in general can be made using the following indications 

The existence of solutions for equation (1) is controlled by the scalar equation (6); 
in general, there is a gap between existence conditions and convergence conditions for 
Newton- Kantorovich approximations. This gap can be partially filled if we choose, 
among all possible functions Co, one which is closer to w. An optimality condition, for 
example, can be written in the following way: 

I

rj

(t)dt = sup	(I' wtt +w(r_ i )(r - ri_i))	(10)
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where the supremum is computed over all finite subdivisions r = (ro,r i , ...,r3 ) of the 
interval (0,r). 

The second member in (10) is the variation on [0, r] of the non-negative' interval 
function defined by

	

x([v,uj)	w(t) 	v). 

To make the construction of CD more explicit is not an easy task. We refer to the 
enormous literature on interval functions. Such literature (see, for example, [111) is not 
easily applicable to x, since x is not subadditive. 

We conclude this section remarking that error estimates, analogous to that obtained 
in Section 4, hold also in the generalized Holder case. In fact, from llf'( x ) - ' ii 
for li x - roll < r it follows that

b 

	

li x , - xn+i II - 1—	(r) J (iIlx. - x ll)ll x . - x dt 
0 

liz. —Zn Ii 
b 

1— bw(r,)	I	(t)dt. 
0 

If we introduce the function
r 

b 
11 (r )

 = 1 - lw(r,) I w(t) dt, 
0 

we obtain in a standard way, for n E N, 

Ix. - 

where cl ( ' is the n-th iterate of Q. 
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