
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 17 (1998), No. 2, 281-296 

Fixed Point Theory for Weakly Contractive Maps 
with Applications to 

Operator Inclusions in Banach Spaces
Relative to the Weak Topology 

D. O'Regan 
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1. Introduction 

This paper presents a new fixed point theory for weakly contractive multi-valued maps 
between Banach spaces. This theory is then used to establish new results for differential 
and integral inclusions in a Banach space relative to the weak topology. 

In 1971, Szep [24) discussed the abstract Cauchy problem 

1/' = f(i,y) on [0,T] }

	
(1.1) 

Y(0) = Yo 

where f: [0, T] x E - E is a weakly-weakly continuous function and E is a reflexive 
Banach space. More recently [3, 4, 17, 18, 20, 211 the non-reflexive case was examined, 
the weakly-weakly continuity of f was relaxed and also the more general integral equa- 
tion case was discussed. However, the inclusion analogue of (1.1) has received very little 
attention; we refer the reader to [3, 51. In this paper we will discuss in detail operator 
inclusions in a Banach space relative to the weak topology. Our general theory will 
include as particular cases differential and integral inclusions. 

For the remainder of this section we gather together some notation and preliminary 
facts. Let Q E be the bounded subsets of a Banach space E and let KL be the family of 
all weakly compact subsets of E. Also, let B be the closed unit ball of E. The DeBlasi 

D. O'Regan: National University of Ireland, Department of Mathematics, Galway, Ireland 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



282	D. O'Regan 

measure of weak non-compactness ([71; see also [11]) is the map w : Q E -' [O,00) 
defined by 

	

w(X) = inf t> O: There exists Y E KW with X ç Y + tB}	(X e RE). 

For convenience we recall some properties of w. For this let X1 , X2 e 1 E . Then: 
(i) X, C X2 implies W(Xi) 5 w(X2). 

(ii) w(Xi ) = 0 if and only if )Fw E K''; here X' is the weak closure of X 1 in E. 
(iii) w()	w(Xi). 
(iv) w(Xi U X2 ) max{w(Xi ), w(X2)1. 
(v) w(rXi )=rw(Xi ) for all r>0. 

(vi) w(co(Xi )) = w(X,). 
(vii) w(Xi + X2):5 W (XI) + w(X2). 

(viii) If 0 0 X C E (n E N), X, bounded, are weakly subsets with Xn I and

	

w(X) = 0, then fl 1 X	0 and weakly compact. 

Suppose F: Z C E - 2E (here 2E denotes the family of non-empty subsets of E) 
maps bounded sets into bounded sets. We call F an o w- contractive map if 0 a < 1 
and w(F(X)) aw(X) for all bounded sets X c Z. We say F: E1 -* 2E2 (here E1 
and E2 are Banach spaces) is weakly upper semicontinuous if the set F' (A) is weakly 
closed in E1 for any weakly closed set A in E2. 

We now state a theorem of Ambrosetti type (see [17, 21] and [22: pp. 86 - 88]). 

Theorem 1.1. 

(a) Let H be a bounded subset of C([0,T],E) (here E is a Banach space). Then 

sup w(H(i)) <w(H) 
iEIO,T] 

where H(t) = {(t) : 0 E H). 

(b) Let H C C([0, T), E) be bounded and equicontinuous. Then 

w(H) = sup w(H(t)) = W(H[0,T]) 
tEto,T] 

where H[0,T] =	10(t) 0 EH}. 

Next we state two results (the second one follows immediately from the first) which 
will be used frequently in Section 2 (see [23] for definitions and proofs). 

Theorem 1.2. Let X and . Y be topological spaces and F: X - 2's' be an upper 
semiconiznuous, point-compact multifunction. Suppose {z} is a net in X such that 
x. - xo. If y E F(xa) for each a, then there is a I/o E F(xo) and a subnet Jyfl  of 
the net {y} such that y - I/o.
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Theorem 1.3. Let X and Y be topological spaces and F : X -* 2" be a upper 
semicontinuous, point-compact multifunction. Suppose {xa} is a net in X and Yo E 
F(xQ ) for each ce. If x, -* x 0 and Ya - yo, then yo E F(xo). 

Throughout Section 2, E will be a Banach space with norm E will denote 
the dual of E. We will let E denote the space E when endowed with the weak 
topology generated by the continuous linear functionals on E (the family of seminorms 
{ph : h E E*} is defined by ph(x ) = Ih(x)I for all x E E). A function g from a measure 
space (cl, M) to E is said to be scalarly measurable if for any 0 E E* the function (g) 
is measurable on (Q, M). Two scalarly measurable functions g,h : Q -* E are said to 
be weakly equivalent if for all 0 E E we have q(g) = (h) a.e. Let y be a function 
from [a, b] into E. Then y is said to be weakly continuous at to E [a, b] if for every 
4 E E* we have q(y( . )) continuous at to. Denote by C([a, b], E) (or C([a, b], E)) 
the space of weakly continuous functions on [a, b] with the topology of weak uniform 
convergence (the family of seminorms {j} is defined by 77h( g ) = suPz E labI ph(g(x)) 
for all g E C([a, b], Em)). This topology is of course determined by the basis 

• . , m; e) = ñ { g E C([a, b), Eu): sup k(g(t)) - u(t)I 
k=1	 (a,b) 

where u E C([a,b],E), &,...,l'm E E* , e >0 and mEN. 

2. Theory and applications 

We begin by establishing some new fixed point results which will be useful when we 
are discussing abstract operator inclusions. We first state a fixed point result due to 
Arino, Gautier and Penot [3]; the proof follows easily from Himmelberg's fixed point 
result [13]. 

Theorem 2.1. Let E be a metrizable locally convex linear topological space and 
let C be a weakly compact, convex subset of E. Then any weakly sequentially upper 
semicontinuous map F : C -* C(C) has a fixed point; here C(C) denotes the family 
of non-empty, closed, convex subsets of C. 

Remark 2.1. F: C -+ C(C) is weakly sequentially upper semicontinuous if for 
any weakly closed set A of C, F (A) is sequentially closed for the weak topology on 
C.

Remark 2.2. The proof of Theorem 2.1 follows immediately from [13] once we note 
F: C -' C(C) is weakly upper semicontinuous (see the argument in Theorem 2.3) and 
that a convex subset of a locally convex space is closed if and only if it is weakly closed. 

Our next result replaces the weak compactness of the space C with a weak com-
pactness type assumption on the operator F. 

Theorem 2.2. Let Q be a non-empty, bounded, convex,, closed set in a Bonach 
space E. Assume F : Q - C(Q) is weakly sequentially upper semicontinuous and a 
w-contractive (as defined in Section 1; here 0 a < 1). Then F has a fixed point.



284	D. O'Regan 

Proof. Let
Si =Q. 

S,, 1 =	(F(S)) (n > 1). 

It is easy to see that 

	

S. 1 c Sn and w(S+ i ) <ci"w(Si )	for n> 1. 

Since w(S) - 0 as n —* oo we have that fl 1 S = Soo is non-empty. In addition, 
S. is weakly closed and convex since each 5n is; in fact S is weakly compact since 

= 0. Also, since 

	

F(S) c F(S- 1 ) c To(F(S_ i )) = 5,,	for all n 

we have F: S - C(S,,,). Theorem 2.1 implies that F has a fixed point in S c Q  

We now use Theorem 2.2 to obtain a nonlinear alternative of Leray-Schauder type. 

Theorem 2.3. Let Q and C be closed, bounded, convex subsets of a Banach space 
E with Q g C. In addition, let U be a weakly open subset of Q with 0 E U, UL 
a weakly compact subset of Q and F : UiD - CK(C) a weakly sequentially upper 
semicontinuous, a w-contractive (here 0 a < 1) map; here CK(C) denotes the 
family of non-empty, convex , weakly compact subsets of C. Then either 

(Al) F has a fixed point 
or

(A2) there is a point u E ÔQ U (the weak boundary of U in Q) and ..\ E (0, 1) with 
u  .XFu. 

Proof. Suppose (A2) does not hold and F does not have a fixed point on OQU 
(otherwise we are finished, i.e. (Al) occurs). Let us look at E = (E, w) (the space E 
endowed with the weak topology); note E is a locally convex Hausdorff linear topolog-
ical space. Let

H={xEU: x  AF(x) for some AE[0,1]}. 

Now 0 E H. Also, H is closed in (E, w). To see this we claim F : - CK(C) is 
weakly upper semicontinuous (i.e. upper semicontinuous in (E, w)). Suppose the claim 
is true for the moment. To see that H is closed in (E, w) let (x,,) be a net in H 
(i.e. x,, E .X,,.F(x,,) for some A,, E [0,1]) with x,, - xo E JT in (E, w) (i.e. x,, 
converges weakly to xo). We must show x 0 E H. Without loss of generality assume 
A,, - Ao e [0, 1]. Let 

N(x, A) A F(x) and note N :	x [0,1] - CK(C). 

We first show N is weakly upper semicontinuous. Let Q be a weakly closed subset 
of C (i.e. Q is a closed set in (E, w)), (y,,, t,,) is a net in x [0, 1], y,, - yo in 
(E, w), t,, - to and t,,F(y,,) fl l 54 0. Suppose w,, E F(y,,) with t,,w,, E ft Now
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since F is weakly upper semicontinuous (i.e. upper semicontinuous in (E, w)), then 
there exist (Theorem 1.2) wO E F(yo) and a subnet (wp) of (w0 ) with w -* wo in 
(E, w). Since Q is weakly closed we have to wo e ft Consequently, to F(yo) fl Q 54 0, 
so N : U''x [0, 1) -+ CK(C) is weakly upper semicontinuous. Then since	) is 
a net in Uw x [0,1] with x - xo in (E, w), A - and x E N(x 0 , .\) we have 
(from Theorem 1.3) that x 0 E N(xo,Ao), so x 0 E H. Thus H is closed in (E, w) if 
our claim is true. 

To show F: U" -+ CK(C) is upper semicontinuous in (E, w) let A be a weakly 
closed subset of C. 

Remark 2.3. F -1 (A) is sequentially closed in E (with respect to the strong topology); 
recall a subset M is sequentially closed in E (with respect to the strong topology) if whenever 
x, E M for all n E N and x,, -.- x (with respect to the strong topology), then x E M. Let 
y € F(A) and y,. - y (with respect to the strong topology). Then y, converges to y 
in (E,w). Now since F : - CK(C) is sequentially upper semicontinuous in (E,w) (i.e. 
F'(A) is sequentially closed in (E, w)) we have y € F(A). Consequently, if A is a weakly 
closed subset of C, we have F(A) sequentially closed in E (of course, by definition also 
weakly sequentially closed). 

Now since U" is weakly compact we have F(A)L' weakly compact. Let x € 
Fl(A)L . The Eberlein-mulian theorem [10: p. 549] implies there exists a sequence 
x, E F- '(A) with x, -* x in_(E,w). Since F'(A) is weakly sequentially closed, we 
have x € F(A). Thus F(A)" = F'(A), so F'(A) is weakly closed. Conse-
quently, F: U -i CK(C) is upper semicontinuous in (E, w). 

Next we show H is compact in (E, w). To see this notice H c co(F(H) U 10}) 
and so

w(H) <w(F(H)) <aw(H). 

Consequently, w(H) = 0, so H is weakly compact. Now (A2) does not hold and F 
does not have a fixed point on aQ U, so H fl aQ U = 0. Also, (E, w) is Tychonoff, so 
there exists a continuous (continuous in (E, w)) it: -* [0, 1] with 4H) = 1 and 
p(O U) = 0. Let

N(x)  f(x)F(x) for x E U"' 
' /	1{0}	for x€C\U''. 

Consider E with the norm topology. It is easy to see since F : -i CK(C) is weakly 
upper semicontinuous that N : C -+ CK(C) is weakly upper semicontinuous. Also, 
N: C -p CK(C) is a w-contractive. To see this let X c C and notice 

N(X) c co(F(X fl U) U {0}). 

Thus
w(N(X)) < w(F(X fl U)) <w(F(X)) <aw(X). 

Now Theorem 2.2 implies that there exists x € C with x € N(x). Now x E U since 
0 E U. Consequently, x € A F(x) with 0 A = ,z(x) 1. Consequently, x € .11, 
which implies (x) = 1 and so x € F(x)I
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Remark 2.4. The condition that U" is weakly compact can be removed in The-
orem 2.3 if we assume F: U"' —* CK(C) is weakly upper semicontinuous. 

Theorem 2.3 can now be used to establish a new fixed point result for weakly 
sequentially upper semicontinuous maps in separable, reflexive Banach spaces. 

Theorem 2.4. Let E = (E, ) be a separable and reflexive Banach space, C 
and Q are closed, bounded, convex subsets of E with Q ç C and 0 E Q. Also, assume 
F : . Q — CK(C) is a weakly sequentially upper semicontinuous (and weakly compact) 
map. In addition suppose the following: 

For any Q, = {x E E: d(x, Q) 5 e) (e > 0), if {(x 3 ,	is a sequence 
in Q x [0,1] with x3 — x  Oa,Q and A, - A and if  E AF(x), 0 A <1,	

21)
then {A, F(z,)} c Q for j sufficiently large (Ori Q is the weak boundary 
of Q relative to 1, d(x,y) = lx — y l and	denotes weak convergence). 

Then F has a fixed point in Q. 

Remark 2.5. A special case of (2.1) (this is all we need for applications) is the 
following condition: 

If {(x,A1 )} 1 is a sequence in Q x [0,1] with x - x and A, — A and 1 (2.2) if x E A F(x) with 0 A < 1, then {A, F(x,)} ç Q for j sufficiently large. J 
Proof of Theorem 2.4. Let r : E — Q be a weakly continuous retraction guar-

anteed from [4] (see also [19, 20]) and consider 

B={xEE: x  Fr(x)}. 

We first show B 54 0. Notice the argument in Theorem 2.3 (note Q is weakly compact 
since a subset of a reflexive Banach space is weakly compact if and only if it is closed in 
the weak topology and bounded in the norm topology) implies that F: Q — CK(C) is 
weakly upper semicontinuous and so Fr : E .— CK(C) is weakly upper semicontinuous. 

Remark 2.6. Notice F : Q - CK(C) is a weakly compact map is redundant in the 
statement of Theorem 2.4 (this is why we use brackets) since F : Q —+ CK(C) is weakly upper 
semicontinuous and Q is weakly compact (see [1: p. 464]). 

Now since F is a weakly compact map, we have Fr(E) weakly compact. Theorem 
2.2 implies that B 0 0. Also, B is weakly closed (see the argument in Theorem 2.3); 
in fact B is weakly compact since B ç F(Q). 

We now show B fl Q 0. Suppose B fl Q = 0. Then since Q is weakly compact 
and B is weakly closed we have from [12: p. 65] that d(B, Q) = inf( li z — y : x € 
B, y € Q) > 0. Thus there exists e > 0 with i, fl B = 0; here Q, is as described 
in (2.1). Note Q. is weakly compact (since Q, is closed and convex (so weakly closed) 
and bounded). Also, since E is separable, we know from [8] that weak topology on 
is metrizable; let d* denote the metric. For i € N let 

U = jX E Q, : d*(x,Q) <
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Fix i E N. Now ui is d* -open in f2,, so Uj is weakly open in ci. Also, 

d*(x, Q)< E71 and on.U1={xEcl: d*(x,Q)= 

Now Theorem 2.3 implies (since cle flB = 0) that there exists y, E an, Uj and .X 1 E (0, 1) 
with yE .\ 1 Fr(y1 ).	 - 

Remark 2.7. Note: (i) L7 is weakly compact since U1 c ci and (ii) Fr: U - CK(C) 
is a weakly upper semicontinuous map. 

Consequently, for each j E N there exists (y,, ),) E on. U3 x (0,1) with y, E 
Aj Fr(y,). Notice in particular since y, E 5çU, that 

{.\, Fr(y,)} q Q	for j E N.	 (2.3)

We now look at

D={xEE: xEFr(x) for some A E[0,1]}. 

Clearly, D is weakly closed since Fr : E -* CK(C) is weakly upper semicontin-
uous. Also, since D C co(F(Q) U {0}) we have that D is weakly compact (so 
weakly sequentially compact by the Eberlein-mulian theorem). This together with 
d*(yj, Q) = , A, < 1 (j E N) implies that we may assume without loss of gen-
erality that A, - )¼* and y,	y E 8n. Q. Also, since y, E A,Fr(y3 ), we have 
* E A F r(y*) (note H :	x 10, 1] -* CK(C) given by H(u, A) = A F r(u) is weakly 

upper semicontinuous (see the argument in Theorem 2.3)). Thus y	)1* F(y*) . Now 
1 since BflQ = 0 and so we may assume 0 A <1. But in this case, (2.1) 

with x3 = r(y3 ), x = y = r(y*) implies {A3 Fr(y,)} c Q for j sufficiently large. 
This contradicts (2.3). Thus B fl Q 54 0, so there exists x E Q with x E Fr(x), i.e. 
xEF(x)I 

We now use Theorems 2.2 and 2.4 to establish some general existence principles for 
the nonlinear abstract operator inclusion 

Y(t) E Fy(t)	on [0,T).	 (2.4) 
Remark 2.8. Notice (2.4) is understood for a.e. t E [0, T] if we are looking for 

solutions in LP([0, T], E). 

Theorem 2.5. Let E1 be a Banach space and let E be either C([0, TI, E i ) or 
L([0,T],E1), 1 < p < 00. Let Q be a non-empty, bounded, convex, closed subset of 
E and assume F : Q -, C(Q) is a weakly sequentially upper semicontinuous and 
w-contractive (0 < a < 1) map. Then (2.4) has a solution in Q. 

Proof. The result follows immediately from Theorem 2.21 
Theorem 2.6. Let E1 be a separable and reflexive Banach space and let Q and 

C be closed, bounded, convex subsets of LP ([0, TI, Ei ), 1 S p < 00, with Q C C and 
0 E Q . Assume F : Q -' CK(C) is a weakly sequentially upper sernicontinuous map 
such that (2.1) (or (2.2)) holds. Then (2.4) has a solution in Q. 

Remark 2.9. Note 18: Chapters III and IV) implies LP ([0 , T1, E1 ) is reflexive and 
separable. 

Proof of Theorem 2.6. The result follows immediately from Theorem 2.4 1
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It is also of interest (see [3, 4 - 6, 16 - 18, 20 - 22, 24]) to find solutions to (2.4) 
in C([0,TI,Ew); here E is a Banach space. To establish existence in this case we use 
Himmelberg's fixed point theorem [13]. For convenience we state it here. 

Theorem 2.7. Let Q be a non-empty, convex, closed subset of a locally convex 
Hausdorff linear topological space B. Assume that F : Q -* C(Q) is upper semicon-
tinuous and F(Q) is relatively compact in B. Then F has a fixed point. 

Theorem 2.7 immediately yields the following existence principle for (2.4). 

Theorem 2.8. Let E be a Banach space with Q a non-empty, closed, convex subset 
of C([0,T],E). Also, assume Q is a subset of C([0, TI, E) and F : Q - Cc(Q) is 
w-upper semicontinuous (i.e. for any closed set B of C([0,T),E), F(B) is closed 
in C([0, TI, E)). In addition suppose the family F(Q) is weakly equicontinuous and 
F(Q(t)) is weakly relatively compact in E, for each t E [0, T]. Then (2.4) has a solution 
in Q. 

Remark 2.10. Cc(Q). denotes the family of non-empty, convex (subset of C([0, T], 
E)), closed (in C([0, T], E)) subsets of Q. 

Proof of Theorem 2.8. The result follows from Theorem 2.7 (there the locally 
convex Hausdot-if space B is C([0, TI, Em)) if we show F(Q) is relatively compact in 
C([0 , T], E ) and if F: Q - Cw(Q) (here Cw(Q) denotes the family of non-empty, 
convex, closed (in C([0,T],E)) subsets of Q). 

To see that F(Q) is relatively compact in C([0, T], E) we apply the Arzela-Ascoli 
theorem [15: Theorem 7.17/p. 233]. We must show (which were assumed) 

(i) for each t E [0,T], FQ(t)= {Fy(t) : y E Q} is weakly relatively compact in E 
(ii)F(Q) is weakly equicontinuous 

To show F: Q - Cw(Q) we need to check that F  is closed in C([0,T],E) for each 
Y e Q . Fix y E Q and look at Fy. Now F  has closed, convex values in C([0, T], E). 
Also note, if 0 E E* and if we define the point functional 0 by b(u) = 0(u(0)) 
(here u e C([0,T],E)), then	E (C([0,T],E))*. Suppose (x fl ) is a net in F  with 

-* xo in C([0, T], E). Take 0 E E* and define the point functional 0 as above. 
Now b(x) -* 4'(xo) together with the fact that Fy is weakly closed (since Fy is 
a closed, convex subset of C([0,T],E)) implies x 0 E F(y). Thus F  is closed in 
C ([0 , T1, E ) for each y EQU 

Remark 2.11. Notice F : Q -+ Cc(Q) could be replaced by F : Q -* Cw(Q) 
in the statement of Theorem 2.8. Also, the condition Q is a subset of C([0,T],E) is 
not needed in the proof if we wish to guarantee a solution in C([0, T], E) (but not 
necessarily in C([0,TI,E)). 

A more general version of Theorem 2.8 is the following result. 

Theorem 2.9. Let E be a Banach space with Q a non-empty, closed, convex subset 
of C([0,T1,E). Also, assume Q is a closed, bounded subset of C([0,T],E), F: Q -* 
Cc(Q) is w-upper semicontinuous, and there exists a, 0 < a < 1, with w(F(X)) < 
a w(X) for all bounded subsets X C Q . In addition suppose the family F(Q) is weakly 
equicontinuous. Then (2.4) has a solution in Q.



Fixed Point Theory for Weakly Contractive Maps	289 

Proof. Let
Si = Q 

Sn+ i = (F(S)) (n >_ 1). 
It is easy to see that 

	

S 1 ç 5,, and w(S,,+ i ) < a"w(Si )	for n> 1. 
Since 0 < a < 1 we have w(S,,) - 0 as n —* oo. Also, since 5,, is a weakly 
closed subset of C([0, T], E) for each n we have that S = fl 1 S, is non-empty. 
In addition, S is weakly.closed and convex. Also, an easy argument (see the ideas 
in Theorem 2.8 using point functionals) implies that S is closed in C([0,T],'E). In 
addition, since

	

F(S,,) C F(S,,_ 1 ) C (F(S,,_ 1 )) = 5,,	for all n
we have F : S — Cc(S); in fact F : S —* Cw(S,) as in Theorem 2.8. The
result follows immediately from Theorem 2.7 if we show F(S) is relatively compact 
in C([0, T], Em). Apply the Arzela-Ascoli theorem [15: p. 233]. We have immediately, 
by assumption, that F(S) is weakly equicontinuous so it remains for us to show for 
each t E [0, T) that the set FS(t) ={Fy(i) : y e S } is weakly relatively compact 
in E. To see this notice since w(S) = 0 and F(S) c so we have w(F(S,,,,)) = 0. 
This together with Theorem 1.1/(a) implies w(FS(i)) = 0 for each t E [0,T]. Thus 
for each t E [0, T) we have that F S (t) is weakly relatively compact in E  

To illustrate the theory derived we now consider the Volterra integral inclusion 

Y(t) E h(t) + / k(t, s) F(s, y(s)) ds	on [0,T].	 (2.5) 

When we are discussing (2.5) we will assume the following conditions hold: 
F: [0, T) x E — E has non-empty, compact, convex values.	(2.6) 

For each continuous y : [0, T] — E there exists a scalarly	)
(2.7) 

measurable z : [0,T] —* E with z(t) e F(t,y(t)) a.e. on [0,T]. J 

For any r > 0 there exists a constant Mr > 0 with	) 
I F(t , y ) I :5 Mr for all i E [0,T] and y E E with hil	

(2.8) 
r. J

For each continuous y: [0, T] - E there exists a z (as in (2.7)) 

with either z [0, T] relatively weakly compact or z is Pettis	(2.9)
integrable and (z [0, T]) has the Radon-Nikodym property. 

h: [0, T] — E is a continuous single-valued function.	 (2.10)

k, (s) E L'([O,i],R) for each t E [0,T] (here ks(s) = k(t,$)) 

and there exists v E L 1 [0,T] and constants a ,fi > 0 such that	(2.11)

for x, t E [0,T], x < i we have fI k ( t , $ ) I ds <13(ftv(s)ds)°.
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Jk(s) - kj'( s ) I ds - 0 as t - t 1 , where t = min{t,i'}.	(2.12) 

Assign a multi-valued operator 

	

N : C([0, T], E) fl C([O, T], E) (= C([0, T], E)) -* Cc(C([0, T], E))	(2.13)

by letting

Iv: [0,T] -4 E is scalarly measurable)
N y(t) = < h(t) + I k(t, s) v(s) ds	 > . (2.14) 

I	with v(t) E F(t, y(t)) a.e. i E [0, T] J 
We first show (2.13) makes sense. Suppose y : [0,T] - E is continuous. Then there 
exists a scalarly measurable z : [0,T] - E with z(t) € F(t,y(t)) a.e. t E [0,T]. 
From (2.9) and [9: p. 671] we have that z is weakly equivalent to a strongly Bochner-
measurable mapping g. Also, II is bounded since I(z)I is bounded (see (2.8)) for all 

€ E with 10 1 = 1. Let r(i) = h(t) + f k(t, s) g(s) ds. Then for each 0 E E* we 
have

(/ k(t, s) g(s) ds) 
= I 

k(t, s) (g(s))ds = I k(i, s) z(s) ds 

and so (r) = (h(t) + f0 k(t, s) z(s) ds). 
Next we show 

u(t) = h(t) + I k(t, s) z(s) ds € C([0, TI, E) fl C([0, T], E). 

Now u € C([0, T], E) immediately since 

O(u(t)) = 0(h(t) + / k(t, s) z(s) ds) = 

To see that u is continuous first notice that there exists r > 0 with lylo = sup10, Iy(t)I 
and so (2.8) implies that there exists a constant M,. with 

I F(t, y(t)) 15 Mr	for all t € [0,T]. 

Let i, x € [0, T] with t > x. Without loss of generality assume u(t) - u(x) 0. Then 
there exists (consequence of the Hahn Banach theorem) 0 € E* with 101 = 1 and 
Iu(t) - u(x)b = qf(u(t) - u(x)). Thus. 

	

bu(i) - u(x)b =	- h(x) + J[k(t, s) - k(x, s)] z(s) ds + I k(t, s) z(s) ds) 

h(t) - h(x)I + Mr 
/ 

bk(i, s) - k(x, s)I ds + Mr I bk(t, s)I ds,
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so u E C([O,T],E). Consequently, 

N : C([O, T], E) fl C([O, T], E) ( C([O, T], E)) 

To show (2.13) it just remains for us to show that N has closed (in C([O, T], E)) values 
(note N has automatically convex values since (2.6) is true). Let y : [0, T] - E be 
continuous and look at the set N y. Suppose w, E N y (n > 1). Then there exists 

[0, T] — E (n >. 1), scalarly measurable with zn (s) E F(s, y(s)) for a.e. s E [0, T]. 
Suppose

w(t) -4 h(t) + / k(t,$)z(s)ds = w(t)	in C([0,T),E). 

Fix t E (0, T] and 0 E E* . Then cb(k(t, •)zn) - (k(t, .)z) in V[O,t),so c(k(t, .)z) 
- çb(k(t, . ) z) in measure. Thus there exists a subsequence S of integers with 

cb(k(t,$)zn(s)) - çb(k(t,$)z(s))	for a.e. s E [0,t] (as n — no in 5). 

Now since k(t, s) Zn(s) E k(t, .$) F(s, y(.$)) for a.e. S E [0, tl and since the values of F 
are closed and convex (so weakly closed), we have k(t,$)z(s) E k(t, s) F(s, y(s)) for 
a.e. s E [0,t]. Thus wE N  and so N has closed (in C([0,T],E)) values U 

Theorem 2.10. Let E be a Banach space and Q a non-empty, closed, convex subset 
of C([0 , T], E ) with Q a bounded subset of C([0,T],E). Also, assume (2.6) —(2.12) 
are satisfied. In addition, suppose the following conditions hold: 

N : C([O, Tj, E) fl C([0, TJ, E) (= C([0, T], E)) —+ Cc(C([0, T], E))	
(2.15)

is w — upper semicontinuous (here N is as defined in (2.14)). 

K({t} x [0, t] x Q [0, t]) is weakly relatively compact	
(2 16)

in E for each t e [0, T]; here K(t, s, u) = k(t, s) F(s, u). 

N:Q—*Cc(Q).	 (2.17)
Then (2.5) has a solution in Q. 

Remark 2.12. Condition (2.15) is our replacement for conditions of Type A in [4, 
51. Certainly, if F(p) is point-valued for every p E [0, TJ x E and F: [0, T] x E —i E 
is weakly-weakly continuous, then (2.15) is satisfied; in fact, F is a w-continuous [211 
single-valued map. 

Proof of Theorem 2.10. The result follows from Theorem 2.8 once we show: 
(i) N Q(t) = IN y(t) : y E Q} is weakly relatively compact in E for each t E [0, T]. 

(ii) N(Q) is weakly equicontinuous. 
To see (i) fix t E [0,T] and take y E Q . Let u E Ny. Then there exists a scalarly 
measurable z : [0,T] — E with z(t) E F(t,y(t)) a.e. and 

u(t) = h(t) + / k(t, s) z(s) ds.
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By [16] we have

J k(ts)z(s)ds E t{k(i,$)z(s), s 	[0,t]}, 

so

	

w(N Q (t)) < w(t	{ K(t, s, y(s)) : y E Q, S E [0, t] })
= T w(K({t} x [0,t] x Q[0,t])) 

=0. 

This implies N Q (t) is weakly relatively compact in E for each t E [0, T]. 

To see (ii) notice since Q is bounded that there exists r > 0 with Juj o < r for all 
u E Q and so from (2.8) there exists M > 0 with 

	

I F(t , y( t ))i <M	for all t E [0, T] and all y E Q. 

Let u E N Q and t, x E [0, T] with t > x. Without loss of generality assume u(t) - 
u(x) 54 0. Then there exists 0 E E* with 101 = 1 and Iu(t) - u(x)I = (u(t) - u(x)). 
Thus

Iu(t) - u (x )1 = cb(u(t) - u(x)) 

Ih(t) - h(x)I + MI Ik(t, s) - k(x, s)I ds + M I k(t, s)[ ds. 

Thus N Q is weakly equicontinuous (of course, N Q is also strongly equicontinuous) U 

Remark 2.13. Since NQ is relatively compact in C([0,T],E), then to check 
(2.15) we need to show [1: p. 4651 the following property holds: if (y,,) (here (ye) is 
a net in C([0, TI, E)) converges to y in C([0, TI, E) and v, E N(y0,) is such that 
(va) converges to v in C([0, T], Em), then v E N  (i.e. the graph of N is a closed 
subset of C([0,TI,E) x C([0, TI, E)). 

A more general version of Theorem 2.10 is the following result. 

Theorem 2.11. Let E be a Banach space and Q a non-empty, closed, convex 
subset of C([0,T],EW) with Q a bounded subset of C([0,T],E). Also, assume (2.6) - 
(2.12), (2.15) and (2.17) hold. In addition, suppose 

N Q (t) is weakly relatively compact in E for each t E [0,	T].	(2.18) 

Then (2.5) has a solution in Q. 

Remark 2.14. If E is reflexive, then (2.18) holds since a subset of a reflexive 
Banach space is weakly compact if and only if it is closed in the weak topology and 
bounded in the norm topology (now use (2.8) and the fact that Q is a bounded subset 
of C([0,TJ,E)).
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Remark 2.15. We could also use Theorem 2.9 to obtain another existence result 
for (2.5). We could replace (2.16) in Theorem 2.10 by 

there exists y > 0 with 7T < 1 and w(K({t} x [0,t] x S)) 7w() 
for t E [0, Tj and for any bounded subset Q of Q 

provided Q is a equicontinuous subset of C([0, TI, E) (the idea is to use Theorem 
1.1(b)). 

Remark 2.16. It is also possible to discuss the Hammerstein inclusion 

Y(t) e h(t) + f k(t, s) F(s, y(s)) ds	for t E [0, T]. 

Here (2.11) and (2.12) are replaced by 

k, (s) E L'([0,T],R) for each t E [0,T] and the map 
i.-* ks(s) is continuous from [0,T] to L'([0,T],IR). 

To conclude this section we discuss "approximation type methods" for (2.4). A set 

P.0 = {Tcx : a E J (some index set)), 

where

Ta : C([0, T], E) fl C([0, T], E) (= C([0, Tj, E)) -' Cc(C([0, T], E)) 

for each a E J, is collectively compact in C([0,T],E) if for each bounded set 0 c 
C([0 , TI, E) the set K Q is relatively compact in C([0,T],E). To discuss (2.4) we 
consider for each n E N the equations (think of these as corresponding numerical 
approximations)

x(t) e F,, x(t)	on [0,T].	 (2.19)" 

Theorem 2.12. Let E be a Banach space and Q a non-empty, closed, convex 
subset of C([0,T],E) with Q a bounded subset of C([0,Tj,E). Suppose the following 
conditions are satisfied: 

For each ri E N, F,, : Q - Cc(Q) is w - upper semi continuous	(2.20) 

IC = {F,, : n E N} is collectively compact in C([0,T],E).	 (2.21)

The sequence {F,,} 1 has the following closure property: 

For any compact subset (in C([0,T),E)) l of Q,
(2.22) 

if z,, in ci with z, EFz,, (ri >1) and there exists 

z0 E C([0 , T], E ) with z,, - z0 in C([0, TI, E), then z 0 E Fz0.
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Then there exists a subsequence S of N and a sequence {x} of solutions of (2.19)' 
(ii E S) with x, — zo (as n	in S) in C([O,T],E) and x 0 is a solution of 
(2.4). 

Proof. For each n E N, Fn has a fixed point by Theorem 2.8 since F,, Q is rela-
tively compact in C([O,T],E). Thus there exists x,, E 	with Z,, E FnZn. Let 

= {Fny: y  Q, n>1}	(closure in C([0,T],E)). 

Now Q is a compact subset of C([0 , T1, Em). Also, x,, E Q for each n E N. Thus (x) 
has a subsequence which converges weakly uniformly on [0, T] to a weakly continuous 
function xo E ft Now (2.22) implies xo E Fx0 I 

Aset
AC = {Ta : a E J (some index set)), 

where T0 : Z — C(Z) (here Z C([0,T],E) or Z = L P ([0, TI, E) (1 < p < oo), or 
Z are subsets of such spaces) for each a E J is weakly collectively compact with respect 
to Z if for each bounded set Q of Z, the set 1CQ is weakly relatively compact in Z. 

Theorem 2.13. Let E be a Banach space and let Z be either C([0,T],E) or 
L"([O, T], E) (1 p < oo). Also, assume Q is a non-empty, bounded, convex, closed 
subset of Z. Suppose the following conditions are satisfied: 

V n E N, F,, : Q —* C(Q) is weakly sequentially upper semi continuous. (2.23) 

AC = {F,, n E N} is weakly collectively compact with respect to Z. (2.24) 

For any weakly compact subset Q of Z, if Zn E Si with Zn E F,, Zn )
> (2.25) 

(ri > 1) and there exists z0 E Z with Z,, — zo in Z, then zo E FZ0. J 

Then there exists a subsequence S of N and a sequence {x,,} of solutions of (2.19) 
(n E S) with Zn — x 0 (as n — oo in S) in Z and Xo is a solution of (2.4). 

.Proof. Let Si={F,,y: yE Q, n> 11" (weak closure in Z)I 

A collection
AC = {T0 : a E J (some index set)}, 

where T,, LP([0,T],E) -. CK(L([0,T],E)) for each a E J, is collectively bounded in 
X (X c LP ([0, T], E)) if for each bounded set Si of X, the set AC Si is bounded in 
L"([O,T],E) (1 <p< oo). 

Theorem 2.14. Let E be a separable and reflexive Banach space and let Q and 
C be closed, bounded, convex subsets of V'([O,T],E) (1 < p < ), with Q c C and 
0 E Q. Suppose the following conditions are satisfied: 

V Ti E N, F,, : Q —* CK(C) is weakly sequentially upper semicontinuous. (2.26) 

For each Ti E N, if {(x3 , A)} 1 is a sequence in Q x [0,1] 

with x3 — x and A — A, and if  E AF,,(x) with 0< A <1,	 (2.27)

then {A3 F,,(x)} 9 Q for j sufficiently large.
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For any weakly compact subset ci of LP([0,T],E), 

if z, E ci with z, E Fn z, (n 2 1) and there exists	 (2.28)

zo E L"([O,T],E) with Zn - zo in V'([O,T],E), then z0 E Fz0. 

Then there exists a subsequence S of N and a sequence {x} of solutions of (2.19)" 
(n E S) with Zn - x0 (as n -+ :- in S) in LP([O,T],E) and x 0 is a solution of 
(2.4). 

Proof. For each n E N, Fn has a fixed point by Theorem 2.6. 
Remark 2.17. Note X = {F : n E N}, where F,, : Q - CK(C), is collectively bounded 

in Q since C is a bounded subset of L"([O,T], E). 
Let ci {Fny: Y  Q, n 
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