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1. Introduction 
Let a,b > 0, and let Q denote either [0,t] x [0,$), [0,t] x [0, b] or [0, a] x [0,s]. Given 
measurable functions 

1 = l(t, s, r),	ni = m(t, s, a),	n = n(t, s, i, a) 

consider the linear partial integral operator of Volterra type 

(Kx)(t, s) = / l(t, .s, r)x(r, s) dr 

$ 

	

+ f M(t ' S, a)x(t, a) da	(0 I < a, 0< s <b).	(1) 

0 

+ J n(t,s, r, a)x(r, a) d(r, a) 

In what follows, we denote the operators which are defined by the first, second and third 
integral in (1) by L, M and N, respectively. Further, by PD we denote the multiplication 
operator by the characteristic function XD of some measurable set D, and by S = S(L) 
the space of all (real or complex) functions on a measurable set A which are measurable 
and almost everywhere finite. Recall [7, 111 that a Banach space Z c S is called ideal

	

space if the relations x E S, z E Z and Ix()I	z(w)l a.e. on Li imply that also x E Z 
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and jjxjj	lizil. An ideal space Z is called regular if II Pi z II —* 0 as mesD —* 0 for
each z E Z, and almost perfect if j jzjj :^ .Jii..lknli for each sequence z, in Z which 
converges in measure to z E Z. Examples of almost perfect spaces are the Lebesgue 
space L (1 p oo) and Orlicz spaces; for 1 p < 00 the space LP is regular. 

Suppose that the operator (1) is bounded in some ideal space U of measurable 
functions on [0, a] x [0, b]. Then the operator 

PiC,C] X [d , Kl l C,Clx[d , d]	(0	c	a, 0	d < d	b) 

is also bounded in U. Denote by r(K) the spectral radius of the operator K, and let 

6(K) 1:0	 (2) 

Consider the operator (1) first with Q = [0, t] x [0, s]. The following result may be found 
in [12]. 

Theorem 1. If the operator K is bounded in the space U, then the estimate 

r(K) < 8(K) 

is true. 

The following example shows that one may have strict inequality in (3). 

Example 1. Let a= b= 1, m(t,s,o) =n(t,s,r,a) =0, and 

T) = i(t,r) = J . 2 n if 2	r	t <2' 
1. 0	otherwise. 

The operator

(Lx)(t) = fi(t,T)x(T)dT

(3) 

acts in L°°([0, 1]) with r(L) = 0 [10]. Consequently, the corresponding operator (1) 
acts in L°°([0,1]) with r(K) = 0. On the other hand, choosing x(t,$) 1 we see that 
the function 1C,)Xld,J]KPjC,JX[a,liJx takes the value 1 on a set of positive measure, and 
thus 8(K) = 1. 

Observe that the number (2) satisfies the properties 

6(K) ^! 0,	6(K1 + K2 ) < 8(K 1 ) + cx(K2 ),	6(AK) = ll6(K) 

on the space £w(U, U) of all operators of the form (1). We say that the operator (1) 
has the And6 property if

lim IIPDIXD2KPDIXD2M =0.	 (4) m. 0-0 
02-0
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Of course, the Andô property holds for the operator K above if it holds for the compo-
nents L; M and N, and may be verified by the usual majorant techniques (see, e.g., [5, 
6]). In particular, if the operator IKI defined by 

(IK I x ) ( t , s) = / Il(t, s, r)Ix(r, s) dr 

3 

+ f m(t, s, a)Ix(t, a) do,	(0	t	a, 0	s	b)	(5) 

0 

+ J In(t, s, r, a)x(r, a) d(T, a) 

has the Andô property, then the operator (1) has of course the Andô property as well. 
In [5] it was shown that the operator (5) is bounded in an ideal space U if and only if 
the operators ILI, IMI and INI defined by the first, second and third integral in (5) are 
bounded in U. Consequently, the Andô property holds for the operator IKI if and only 
if it holds for the components ILl, IMI, and INI. We remark that the operator (1) is 
regular in an ideal space U (i.e. may be majorized by a positive operator in U) if and 
only if the operator (5) acts in U [5]. 

We point out that our definition of the Andô property is somewhat different from 
that given in [6, 12], where (4) is replaced by 

lim IIPDAPDII = 0,	 (6) 
mes 

but D is not necessarily a "rectangle" D 1 x D2 with mesD 1 - 0 and mesfl2 - 0; this 
is a stronger condition than ours. For example, the operator K with constant kernels 
has the Andô property in L 00 ([0, a] x [0,b]) in our sense, but not in the sense of [12]. 

The following is a straightforward consequence of Theorem 1. 

Theorem 2. If the operator K is bounded in the space U and has the Andô property, 
then 8(K) = r(K) = 0. 

The example of the partial integral operator of Hardy-Littlewood type 

(Kx)(t, s) =	x(r, s)dr + / x(t, a) da 

in U L([0, 11 x [0, 1]) (1 < p < co) shows that the spectral radius of a partial integral 
operator of Volterra type may be strictly positive. Thus, the equality r(K) = 0 is not 
true in general. 

For O<s b and O<i <alet 

L(s)x(t) =
	

1(i, s, r)x(r) dr,	IL(s)Ix(t) = / Il(t, s, T )I X ( T ) d7- (7)
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and

M(i)y(s) 
= 	

m(t, s, a)y(a) da,	IM(t)Iy(s) 
=

/I m(t,s, a)Iy(a) da.	(8) 

If the operators L(s) (0 <s b) and M(t) (0 t a) are regular and compact in two 
ideal spaces X and Y, respectively, then the resolvent kernels (t,s,r) and 0(t,s,a) of 
these operators may be represented as series of iterated kernels 

	

s, r) =	A_kl) (t, s, r)	 (9) 

and

	

0(t, S, a) =	A_km( k)  s, a),	 (10) 

which converge in the so-called Zaanen spaces Z(X, X) and Z(Y, Y), respectively [6, 9]. 
We remark that the spaces Z(X, X) and Z(Y, Y) consist of all kernels which generate 
regular integral operators in X and Y, respectively. 

To state our next theorem, another definition is in order. Let X be an almost perfect 
ideal space over [0, a], and Y an almost perfect ideal space over [0, b]. The space with 
mixed norm Y[X] consists, by definition, of all measurable functions x on [0, a] x [0, b] 
for which the norm

	

IIXIIY[Xl =	IIx(, s )IIx fly 
is finite. Similarly, the space with mixed norm X[Y] is defined by the norm 

IkIIX[Yl = II - IIx(t,)IIy. 

Important results on ideal spaces with mixed norm may be found in [3]. In particular, 
the spaces Y[X] and X[Y] are regular (resp. almost perfect) if the spaces X and Y are. 

2. Results for Volterra operators 

Let U be an ideal space over [0,a] x [0,b]. By 'R.,(U,U) and R.m(U,U) we denote the 
sets of all measurable functions I = l(t, s, r) on [0, a] x [0, b] x [0, a] and m = m(t, s, a) 
on [0, a] x [0, b] x [0, b], respectively, with 

	

1I 1 I1n,(U,U ) = sup J 
I(•, , r)x(T, • )I dr	<00 

ItzIIu^I o	 U 

and

IImII(u,u) = sup fIm ( .a)x( .a )I da	<00. 
IIzIIu^1 o	 U 

These spaces have been studied in [5].



Spectral Properties of Partial Integral Operators	301 

Theorem 3. Let X and Y be almost perfect ideal spaces over [0, a) and [0,6], 
respectively, and U = Y[X] or U = X[Y]. Suppose that the operator (1) is regular in 
U, and the operators IL(s)I (s E [0, b]), M(t)I (t E [0, a]) and N are compact in X, Y 
and U, respectively. Finally, assume that the resolvent kernels ij(t, s, r) and t,b(t, s, a) 
belongs to R., (U, U) and Rm(U, U), respectively, and at least one of the operators LM 
or ML is compact in U. Then the spectral radius of the operator (1) is zero. 

Proof. It suffices to show that, for any f E U and every complex number u = 
the equation x = jKx + f has a unique solution x E U. Since X is an ideal space and 
the operators IL(s)I (s E [0, b]) are compact in X, we have r(I L(s )I) = 0 for all s E [0, b] 
[8]. Analogously, r(I M( t )I) = 0 for all t E [0, a]. This means that q(t, s, r) and T,b(t, s, a) 
are limits of the series (9) and (10) which converge in the Zaanen spaces Z(X,X) and 
Z(Y, Y). From this and the hypotheses 0 E 1Z 1 (U, U) and ,b E R.m(U, U) it follows that 
the operators

x(ts)=x(ts)+J(i,s,r)x(r,$)dr	 (11)

and

'Px(t, s) = x(t, s) +
0

	s, a)x(t, a) da	 (12) 

are inverse, respectively, to the operators I .- uL and I - M in the space U. But 
this shows that the equation x = pKx + f, with f E U, is equivalent to the Volterra 
equations

[I - (I - zM)'(I - pL) jz(N +,aLM)]x g
(13) 

[I— (I - pL)'(I - pM),(N + ,uML)]x = h 
where

g	(I - izM)'(I - pL)'f	and	h	(I - /LL)(I - uM)'f.

At least one of these equations contains a compact operator in an ideal space, and hence 
has a unique solution. This shows that the spectral radius of the operator (1) is zero as 
claimed I 

The hypotheses of Theorem 3 are rather easy to verify in the case X = LP ([0, a]) 
and Y = LP ([0,b]) (1 p co). Here the conditions 0 E 1 1 (U, U) and 0 E Rm(U,U) 
mean that the partial integral operators defined by the kernels (t, s, r) and (t, s, a) 
are regular in U. The following technique for estimating 5(L) and 5(M) is taken from 
[12].

Suppose that the operator L(s) acts, for each .s E [0, b], in an ideal space X over 
[0,a], and the operator M(t) acts, for each t E [0,a], in an ideal space Y over [0,b]. Let 

	

a(s) = II L( s )flx_x	and	NO II M( t )II y_y.	 (14) 
Then the operator L acts in Y[X] if a E L°°, and the operator M acts in X[Y] if 
,3-E L00 , in this case, JIL11 5 II a IIL oo and Il M Il	IIflIIL"° [5]. From (2) and (14) we get
the estimates

5(L)	 Il1[c,L(s)P[c,) IIx-.x IIL°°	 (15)
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and
6(M)	l_d_.Ot	IIP[dj] M(t)P[d,j) II Y_Y I OO .	 ( 16) 

Now, if the operators L(s) and M(t) from (7) and (8) have the Andô property, i.e. 

urn sup PD L(s )PDlIx	= 0	 (17) 
mes D—O O<3<b 

and

	

urn sup IPDM(t)PDly_y = 0,	 (18) 
mes D-0 0<t<a 

then 6(L) = r(L) = 8(M) = r(M) = 0, where L is considered as an operator in Y[X]1 
and M as an operator in X[Y). The relations (17) and (18) are usually proved by means 
of majorant techniques. 

Our discussion implies the following result [12). 

Theorem 4. Let X = LP ([0, al) and Y = LP ([0, b]) (1 <p < oo). Suppose that the 
linear integral operators L(s) (0 < s b) and M(t) (0 t a) act in the spaces X and 
Y, respectively, and have the Andó property. Moreover, assume that the linear integral 
operator N acts in the space U = L"((O,a] x [0,b]) and has also the Andô property. 
Then the operator K satisfies 8(K) = r(K) = 0 in U. 

Let us give still another method for estimating the numbers 6(L) and 8(M). Define 
operators .L and M by 

	

Lx(t) = Ji(t,r)x(T)dT	and	ky(s) = Jñl(s,a)y(a)da,	(19) 

where

	

1(t, r) = II l( t , , r) L°°	and	th(s, o) = JIM(', s, a)IILoo. 

If the operator L acts in an ideal space X over [0, a], and the operator M acts in an 
ideal space Y over [0, b], then the operator L acts in X[Y) and the operator M acts in 
Y[X] [5]. In this case

jLIIx(yl.x[y]	II II l ( t , , T )ll £00 Z(X,X) 

and
MIIy[x]_y(xJ	II II m(, s, 7 )IIL OO II Z(Y,Y) 

These estimates imply in turn that 

6(L)	lim_c....olIP[C,)LP(C,lII(XX) = 6(L)	 (20) 

and
6(M)	i_d—OIId,]Md,JJlII,(y,y) = 6(M),	 (21) 

where £(Z, Z) denotes the space of all regular linear operators acting in Z. From the 
Andô property of the operators L and M it follows that 6(L) = 6(L) = 0 in X[Y] and 
6(M) = 6(M) = 0 in Y[X]. In this way, we have proved the following
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Theorem 5. Suppose that the operators L, M and N act in the spaces LP([0,a]), 
LP ([0, b)) and U = LP ([O, a] x [0, b]), respectively, and all have the Andô property. Then 
the operator (1) acts in U and satisfies 5(K) = r(K) = 0. 

Analogous results hold for the spaces Y[X) and X[Y]: 
Theorem 6. Let X and Y be ideal spaces over [0, a) and [0, b], respectively. Suppose 

that the operators 
a) L(s) (0 <s <b), At and N act in X, Y and Y[X], respectively 

or
b) M(t) (0 < t <a), L and N act in Y,X and X[Y], respectively 

and have the Andô property. Moreover, assume that a E L or 0 E L°°, respectively. 
Then the operator (1) act in Y[X] or X[Y], respectively, and satisfies 5(K) = r(K) = 0. 

Proof. The inclusion L(Y[X]) c Y[X) and the equality 5(L) = 0 follow from the 
inclusion a E L°° and the relations (15) and (17). The definition (19) and the estimate 
(21) imply that M : Y[X] '- Y[X) and 5(M) = 0. Consequently, the operator (1) acts 
in Y[X] with 0 < r(K) < 5(K) <.5(L) + 5(M) + 5(N) = 01 

Now we are going to study the case Q = [0, t) x [0, b]. To this end, we associate to 
the operator

(Nx)(t,$) = IIn(t,s,T,a)x(T,)dT	 (22) 

the number
5(N) = liin__.o P[c,] x[o,b]NP(,)X[o,b] II .	 (23) 

This number satisfies the properties 

5(N) ^: 0,	5(N1 + N2 ) 5 5(N1 ) + 5(N2 ),	5(AN) =lAlSi(N)

on the space £N(U, U) of all operators of the form (22). 
Theorem 7. If the operator N is bounded in the space U, the estimate 

r(N) <5(N)	 (24) 

is true. 

Proof. Let J AI > 5(N). We divide the rectangle [0,a] x [0,b] by straight lines t = 
t (i = 1,... , n) into rectangles D1 = [t 2 .. 1 , t] x [0, b) in such a way that II PD NPD. II 
lAlfor i = 1,. ..,n; this is possible by the definition of5t (N). The equation Ax = Nx+f 
is then replaced by a system 

Ax(t, s) = (Nx)(t, s) + f(t, s)	((t, s) E D1 ; i = 1,. . . , n). 

The first equation has a unique solution on D 1 , by the Banach-Caccioppoli contraction 
mapping theorem (observe that 1 A 1 1 II PD, NPDJI < 1). Analogously, we may find a 
unique solution on the other sets D2 ,... , D. Consequently, for JAI > 5g(N) and I E U, 
the equation Ax = Nx + f has a unique solution x € U, and hence (24) holds I
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The following example shows that one may have strict inequality in (24). 

Example 2. Let a = b = 1 and n(t,s,r,a) = 1(t,r), where 1(t, T) is defined as in 
Example 1. Then the operator (22) acts in L°° with r(N) = 0. On the other hand, as 
in Example 1 one may show that 6(N) = 1. 

Let us say that the operator (22) has the Amdô i-property if 

lim	PDx(O6] NPDx(ob]11 = 0.	 (25) 
mes D—.O 

Usually, this property may also be verified by means of majorant techniques. In the 
space L (1 <p < oo) the Andô t-property is satisfied for N, for example, if the kernel 
n is bounded. The Andô property of N implies the Andô i-property. In particular, a 
compact regular operator N in a regular ideal space has the Andô t-property. From 
(23), (25) and Theorem 7 we get the following 

Theorem 8. If the operator (22) has the Andô i-property, them ö(N) = r(N) = 0. 

Consider now the operator (1) with Q = [0,1] x [0, b]. It turns out that, under some 
natural assumptions, the spectral radius of the operator (1) is zero also in this case. We 
suppose throughout that the operator (1) is regular in some ideal space U. Sufficient 
conditions for the equality r(L) = r(M) = 0 may be obtained from the above theorems. 

The equation x - 1zKx = f with K given by (1) is in U equivalent to each of the 
equations (13). The first of these equations admits a representation 

x(t, s) = /L(Rx)(t, s) + g(t, s),	 (26) 

where

(Rx)(t, s) 
= II r(t, s, r, a)x(r, a) drda	 (27) 

with

r(t,sIT, a)  = ! (i, s,ri)ni(ri,s,r,a)dri 

+ J (t, s, a 1 )n i (t,ai, T, a) da1 

+ ] I n2 (t, s, r1 , a 1 )n 1 (r 1 , a 1 , r, a) dr1 da1 

+ n j (t, S ) T, a),
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g(t,$) = f(t,$) 

+ 

+ I 0(t, s, cr)f (t, a) do, 

+]Jn2(t,s,r,af(r,a)drda 

n1 (t, s, r, a)= rz(t, s, T, a) + p 1(t, s, i) rn(r, s, a)1031(a') 

n2 (t, s, r, a) = '(i, s, a')(t, a, r). 
Now, if the operator (27) has the Andô t-property, equation (26), and hence also the 
equation x - pKx = f, has a unique solution in U. Consequently, p a(K), and 
hence r(K) = 0. 

In this way, Theorem 3 remains valid for the operator K with Q = 10, t] x [0, b] 
without any change. For the sake of completeness, we also formulate analogues to 
Theorems 4 - 6 in this case. 

Theorem 9. Let X = LP ([0 , a]) and Y = LP ([0,b]) (1 < p < co). Suppose that 
the regular integral operators L(s) (0 s b) and M(t) (0 t a) act in the spaces 
X and Y, respectively, and have the Andô property. Moreover, assume that the linear 
integral operator (22) is regular in the space U = L P ([0,a] x [0, b]), and that the operator 
(27) has the Andô t-property in U. Then the operator (1) satisfies r(K) = 0. 

Theorem 10. Suppose that the operators (19) act in L"([O,a)) and LP ([0,b]), re-
spectively, and have the Andô property. Assume that the operator (22) is regular in 
U = LP ([0, a] x [0, b]) and the operator (27) has the Andô t-property in U. Then the 
operator (1) acts in U and satisfies r(K) = 0. 

Theorem 11. Let X and Y be ideal spaces over [0, a) and [0, b], respectively, and 
a,/9 E L°° with a and 3 given by (14). Suppose that the operators L(s) (0 < s < b) 
and M(t) (0 t a) have the Andô property (17)/(18), and that the operators 

a) M and N act in Y and Y[X], respectively 
or

b) L and N act in X and X[Y], respectively 
and have the Andô property. Then the operator (1) acts in Y[X] or X[Yj, respectively, 
and satisfies r(K) = 0. 

Of course, analogous results hold in the case Q= [0,a] x [0,s]. 

Let us indicate yet another effective way of verifying the relation r(K)	0 in the
case Q = [0,tj x [0,s]. Suppose that the estimates 

Il(t, s, r)1 5 a(t, r),	m(t, s, a')I < b(s, a'),	In(t, S, T, o')15 c a(t, r)b(s, a) 

and 

with
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hold. If the operators 

(Az)(t) )a(t,T)x(T)dT	and	(Bx)(s) = I b(s, a)x(a) dor 

act in two ideal spaces X and Y, respectively, then the operator (1) is regular in U = 
Y[X] and U X[Y], and

r(K) <r(A) + r(B) + cr(A)r(B). 

In particular, r(K) 0 if r(A) = r(B) = 0. 

3. Operators of Volterra-Fredhoim type 

We turn now to another , class of operators. For p, q > 0 let 

(Lx)(t, s) 
= I 

l(t, s, r)x(r, s) dT 

(Mq x)(t, s) = f m(t, s, a)x(t, a) do, 

(Npq x)(t, s) 
= ff n(t, s, ra)x(r, a) drda. 

For p E {t, a) and q E {s, b} we call then the operators 

K1 =L+M3 +Na b	 (28) 
K2 =Lt +Mb+Npq	 (29) 
K3 La+Ms+Npq	 (30) 

partial integral operators of Volterra-Fredhoim type. Many problems arising in contin-
uum mechanics [1], in contact problems [2], and in other fields [ 4] lead to such equa-
tions. The properties of the operator (28) are essentially different from those of the 
operators (29) and (30). For instance, the Fredhoim alternative applies to the equation 
x - Kj x = f for many kernels, while it does not apply to the equations x - K2 x = f 
and x - K3 x = f even for bounded kernels. 

Consider first the operator (28). Using conditions for the equalities r(L) r(M) = 0 
and the relations (11) and (12), the equation x - uK1 x = I involving a regular operator 
K1 reduces to the equivalent Fredholm integral equation 

x(t, s) = i(Ri x)(t, s) + g(t, s),	 (31)
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where

(RI x)(t,$) = J]ri(t,s,r,a)x(T i a)drda	 (32) 

with

S) r, o) = / 0(t, S, r1 )ni(T1 , S, T, a) dr1 

+
0

	s, a )n i (t, a 1 , r, a) daj 

+]Jn2(t,s,TI,al)nI ( TI ,al, r,a)dTIdai 

+ n i (t, s ) r, a) 
and

g(t, s) = f(t, s) 

+ I 0( t , s , )f (T, s) dr 

+ I 0(t, s, or)f (t, a) da 

+ ff 12 (t, s, T, a)f(T, a)dTda, 

with
n1 (t, s, T, a) = n(t, s, r, a) + z 1(1, s, T)rn(T, s, a )X[Ot] (T)X(0,3](a) 

n2 (t, s, T, a) = ( t, s, a)q(t, a, i). 

If, in addition, the operator (32) is compact, then the operator I - zR is Fredholm of 
index zero. Consequently, A = does not belong to the Fredhoim spectrum of K1, 
and hence a(Ki ) = { O}, where 

ae,(Ki ) = { A E a(Ki ): Al - K1 is not Fredholm operator of index zero}. 

We thus arrive at the following results. 
Theorem 12. Let X and Y be almost perfect ideal spaces over [0, a] and [0, b), 

respectively, and U = Y[X] or U = X[Y]. Suppose that the operator (28) is regular in 
U, and the operators IL(s)I (0 s b) and IM(t)I (0 < t < a) defined by (7) and 
(8), respectively, are compact in X and Y. Finally, suppose that the resolvent kernels 

s, T) and 0(t, s, a) belong to R,(U, U) and R.m(U, U), respectively, and the operators 
Nab and LM3 are compact in U. Then a,(K1) = {0}.
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Theorem 13. Let X = LP ([0,a]) and Y = LP ([0,b]) (1 <p < cc). Suppose that 
the integral operators L(s) (0 s b) and M(t) (0 < t < a) are regular in the spaces 
X and Y, respectively, and have the Andô property (17)1(18). Assume, moreover, that 
the operator (28) is regular in U = LP ([0, a] x [0, b]), and the operators Nab and LM3 
are compact in U. Then cT 3 (Ki) = {0}. 

Theorem 14. Suppose that the operators L and M defined by (19) act in L P ([0, a]) 
and LP ([O, b]), respectively, and have the Andä property. Assume that the operator Nat, 
is regular in U = LP([0,a] x [0,b]), and the operators Nob and LM., are compact in U. 
Then the operator (28) acts in U and satisfies cres(Ki ) = {0}. 

Theorem 15. Let X and Y be almost perfect ideal spaces over [0, a] and [0,b], 
respectively. Suppose that a E L°° or 9 E L, respectively, with a and fi given by (14). 
Moreover, assume that the operators 

a) L(s) (0	s	b) have the Andô property (17) and M acts in Y and has the 
Andô property, 

or

b) M(t) (0	t	a) have the Andô property (18) and L acts in X and has the 
Andô property, 

Nat, is regular in Y[X] or X[Y] and Nat, and LM3 are compact in Y[X] or X[Y], 
respectively. Then the operator (28) acts in Y[X] or X[Y], respectively, and satisfies 
o,(K1 ) = {0}. 

Theorem 14 implies, in particular, that the operator (28) acts in L°°([0, a] x [0, b]) 
with oe,(Kj) = {0} if the kernels l and m in (28) are bounded and n 1 is continuous. 

The operator (29) can be analyzed similarly. Using conditions for the equality 
r(L) = 0 and relation (11) with A = 1, the equation x - K2 x = f involving the regular 
operator K2 = L + Mt, + Ne,, (p E {t, a}, q e {s, b}) reduces to the equivalent equation 

x(t, s) = (Mt, + TN)x(t, s) + g(t, s),	 (33) 

where

	

(N x)(t, s) =(t, s, ,r, )x(7, a)drda.	 (34) 

Here the kernel Ti has the form 

s, r, a) 

= q(t ) s, r) m(r, s, a)x[o,t)(r) 

	

I [ri(t,s, r, a) + f q(t, s, ) n(, s, r, a) d]X[o ,ql(a)	for p = a 
+

	[n(t,s,r,a) + f (t,s,e)n(,s,r,a)de] X[o,t](r)X[o,q)(a) for p	t
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and the function g in (33) is defined by 

g(t,$) = f(ts)+Jcb(tsr)f(rs)dr. 

If the operator (34) is compact, then the operator I - K2 is Fredhoim of index zero if 
and only if the operator I - Mb is so: In particular, in the case m(t, .s, a) m(s, a) the 
operator I - K2 is Fredhoim of index zero if and only if the operator I - M6 is invertible. 

The same approach works for the operator (30). We do not formulate the corre-
sponding results which are similar to Theorems 12 - 15. 
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