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Abstract. Working out degree theory for the investigation of finite-dimensional variational 
inequalities with continuous mappings in the usual way. All properties typical for a topologiocal 
degree are proved. Then the K-degree is generalized by the Galerkin procedure for some class 
SA(X) of monotone-like operators in complementary systems. On the basis of our theory 
some new results concerning solvability of variational inequalities in complementary systems 
are proved. These results make it possible to obtain new facts on solvability of variational 
inequalities as well as operator equations with stongly nonlinear differential operators. 
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0. Introduction 

Degree theory is one of the most useful tools of modern nonlinear analysis applicable to 
the investigation of operator equations

Ty=h.	 (0.1) 

The theory was created for continuous mappings on finite-dimensional spaces in [2]. 
Then, because of the objective impossibility to develop a unique degree theory for all 
kinds of operators on infinite-dimensional spaces, there appeared a lot of variants of 
degree theory for various classes of operators on various types of infinite-dimensional 
spaces, such as [11, 13] for compact perturbations of the identity map on arbitrary 
Banach spaces, [3, 17] for operators of the class (S)+ on reflexive spaces, [9, 191 for 
some classes of operators of pseudomonotone type on complementary systems. It should 
be noted that another topological characteristic has been used in most Russian works. 
This characteristic is called rotation and is equivalent to degree. 

The main purpose of the present paper is to develop a new topological characteristic 
of the degree type, that will be applicable to the investigation of variational inequalities 

Yu. E. Khidirov: Dept. Math. Yaroslavl State Univ., 150000 Yaroslavl (Russia) and The 
University of British Columbia, Vancouver, B.C. Canada V6T 1Z2 

ISSN 0232-2064 / $ 2.50 © Heldermann Verlag Berlin



312	Yu. E. Khidirov 

in the usual way. Such an idea, in terms of rotation, was partly described in [8] for a 
class of operators similar to (S)+ on reflexive spaces and in [10] for a class of operators 
similar to pseudomonotone quasibounded operators on complementary systems. Section 
1 is concerned with continuous operators on finite-dimensional spaces and Section 2 with 
operators of the class SA(X) on complementary systems. 

Let Y and Z be Banach spaces in duality with respect to the pairing (,), K C Y 
be a convex closed set, h E Z be some fixed element and T: Y -. Z be some operator. 
Then

(v — y, Ty) > (v — y, h)	VvEK	 (0.2) 

is called a variational inequality [141, and y E K which satisfies (0.2) is called a solution 
of this variational inequality, or a (K, h)-critical point of T. If some set contains none of 
the (K, h)-critical points of T, we will say that the operator T is (K, h)-non-degenerate 
on this set. 

It is known that in the case of K = Y the variational inequality (0.2) is equivalent 
to equation (0.1). We will refer to a solution of this equation as to a (Y, h)-critical point 
of T. 

1. Finite-dimensional K-degree 
Let V be a real Euclidean space equipped with a scalar product (.,.) and a norm 

We shall remind of some definitions and main properties of the well-known finite-
dimensional degree theory. The details can be found, for example, in (12, 15, 16, 18) or 
some other works. 

Let us consider a bounded domain Q C V with boundary ôci and closure ft Let 
h E V and a continuous mapping T : ci -, V be (V, h)-non-degenerate on c911. An 
integer-valued function is called a degree of T at h relative to ci and denoted as 

deg(T,1l,h) 
if it satisfies the following statements: 

(1) Additivity: If cij (1 = 1,... ,m) are open mutually disjont subsets of ci and a 
mapping T is (V, h)-non-degenerate on n \ UTn 	then 

deg(T,ci,h) =	deg(T,cl,,h). 

(2) Homotopy invariance: If T : ci - V is a family of continuous mappings, 
continuously dependent on t E [0, 1] and (V, h)-non-degenerate on 9ci, then 

deg(To,1l,h) = deg(Tj,ci,h). 
(3) Normalization: If ly y and h E ci, then 

deg(I,ci,h) = 1. 
A one-parameter family of continuous mappings from statement (2) is called a ho-

rnotopy at h relative to ci, connecting T0 with T1 , and such mappings are said to be 
homotope at h relative to Q. A simple sufficient condition of homotopy, usually referred 
to the Poincaré-Bohl theorem, is stated below.
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Proposition 1. Continuous mappings T0 and T1 are hoinotope at 0 relative to ci 
if there is no such y E Oci that the vectors Toy and T1 y are directed in opposite ways. 

Indeed, in this case 

Tgy(1—t)Toy+tT1y0	VyEôci,tE[0,1J. 

Statements (1) - (3) completely define the degree, and can be treated as its axioms. 

The following statements are directly derived from these statements: 

(4) If (T - h)y Ty - h, then deg(T - h,ci 3 O) = deg(T,ci,h). 

(5) If Q. C ci and T is (V, h)-non-degenerate on ?, then deg(T, ci, h) = deg(T, ci 
Q., h).

(6) If Toy = Ti y for ally E 311, then deg(To,ci,h) = deg(Ti,1l,h). 

(7) If T is (V, h)-non-degenerate on , then deg(T, ci, h) = 0. 

(8) If deg(T, ci, h) 76 0, then there exists a yo E ci such that Tyo = h. 

(9) If deg(To, fl, h)	deg(T1 ,ci,h), then there exist yo E ôci and Ao E (0,1) such 
that (1 - .\o)Toyo + AoTi yo = h. 

A (V, h)-critical point Yo E ci of T is called isolated if there exists an r0 > 0 such 
that the ball

B0(yo) = {y E V : Jy - yol <ro} C  

includes no other (V, h)-critical point. It follows from statement (5) that 

deg(T,Br (yo),h) = const	(0< r <ro). 

This integer independent of r is called an index of an isolated (V1 h)-critical point yo of 
T and denoted as

ind(T,yo, h). 

We can formulate the next statement on the basis of this notation 

(10) If ci includes only isolated (V1 h)-critical points yj of T, then the number of 
such points is finite and deg(T, ci, h) =	ind(T, y,, h). 

Keeping in mind the investigation of operator equations (0.1), we can say that (8) 
and (10) are the key statements of the degree. 

Finally, we will formulate the last statement, which is well-known as Leray-Schauder 
lemma. This proposition allows, on one hand, to reduce the dimension for evaluation of 
the degree, and, on the other hand, to construct finite-dimensional approximations for 
the generalization of degree theory on some classes of operators on infinite-dimensional 
spaces.
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Proposition 2. Let V° C V be a proper subspace, let 1r0 : V - V° be an orthogonal 
projector, let Q c V be a bounded domain such that Q0 = Q fl V° is non-empty, let 
F: ci —* V° be a continuous mapping, let a mapping 

	

= y — F(y)
	

(1.1) 
be (V,O)-non-degerate on ac and c1°(y) = 7r0 y — F(y). Then 

deg(4),l,0) = deg(4°j°,0). 

Let K C V be a convex closed set with non-empty interior K. Let PK : V - K be 
the projector, which transforms any y e V into PK(Y) = z E K with 

ly — zi = ijlY — vi. 
vE 

Because K is closed and convex, the projector PK is well-defined on V, single-valued and 
continuous. Furthermore, it acts as identity on K. It is known [14] that a (K, h)-critical 
point of the mapping T is the same as a fixed point of the mapping 

F(y) = PK(Y + h - Ty).	 (1.2) 
So, if the mapping f' is defined by formula (1.1), then the variational inequality 

	

(v—y, Ty) ^!(v—y,h)	VvEK	 (1.3) 
is equivalent to the operator equation

	

0.	 (1.4) 
For a bounded domain Q, let us consider a relatively open set w = Q fl K with a 

relative boundary ÔK = Oh fl K, a whole boundary Ow, a closure 0 and an interior Co. 
Let h E V and a continuous mapping T: 0 —+ V be (K, h)-non-degenerate on OKw. In 
this case the mapping F, defined by formula (1.2), has no fixed point on OKW. If the 
set of (K, h)-critical points of T or, which is the same, the set of fixed points of F from 
Ow \ OK w is non-empty, we can shift it into . Such an approach was suggested in [1]. 
So, we put

=- vi	 (1.5) 

for some sufficiently small neighborhood N of this set and for any y E 0, and define the 
mapping

F(y) = F(y) + 5(y)(9 - F(y))	 (1.6) 
for some fixed 9 E K. This mapping is obviously continuous on 0, coincides with the 
mapping F on 0 \ N, has no fixed point on Ow, and F(y) E K for all y E Ow fl N. 
Hence, the mapping

	

'(y)=y—P(y)
	

(1.7) 
is continuous on 0 and (V, 0)-non-degenerate on Ow. It is clear that the mappings F and 
1 depend on 9. But the corresponding mapping F has the same properties for another 

E K, and F(y) E K for all y E Own N. Since K is convex, the vectors 'I(y) and (y) 
are directed in opposite ways for none of y E OwflN, and (y) c1(y) for ally E Ow\N. 
Then, according to Proposition 1, the mappings and are homotope at 0 relative 
to , and by statement (2) of the degree deg(,,0) = deg('I,,0). So, this integer is 
independent from 9 E K. Its independence from a sufficiently small neighbourhood N 
is obvious. This shows that the following definition is legitimate.
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Definition 1. Let h E V and a continuous mapping T : U - V be (K, h)-non-
degenerate on OKW. Then we can set 

deg(T,.i,h) = deg(,,0) 

and name this integer the K- degree of T at h relative to w. 

It will be shown in the next part of this section that the K-degree has typical degree 
properties and may be used for the investigation of the finite-dimensional variational 
inequalities (1.3). 

Definition 2. Continuous mappings T0 , T1 : 0 -* V are said to be K-homotope at 
h relative to w if there exists a family of continuous mappings T : Zzi -* V, continuously 
dependent on t E (0, 1) and (K, h)-non-degenerate on 19KW, which connects T0 with T1. 

Definition 3. A (K, h)-critical point yo E w of T is said to be isolated if there 
exists an r0 > 0 such that the set Br0 (y0 ) fl K C w includes no other (K, h)-critical 
points of T. 

Definition 4. We set 

indK (T, I/o, h) = deg(T, Br(y0 ) fl K, h)	(0 < r <ro) 

and name this integer index of an isolated (K, h)-critical point I/o of T. 

Theorem 1. Let K C V be a convex closed set, let w C K be a non-empty bounded 
relatively open set, let h E V, let a continuous mapping T : 0 - V be (K, h)-non-
degenerate on ÔKW. Then the K-degree of T at h relative to w has the following prop-
erties:

(1) If, (1 = 1,... ,m) are relatively open, mutually disjoint subsets of w and a 
continuous mapping T is (K, h)-non-degenerate on 0 \ U 1 wj, then 

deg(T,w,h) =	deg(T,w,,h). 

(2) If continuous mappings T0 and T1 are K-homotope at h relative to w, then 

deg(To,w, h) = deg(TI ,w, h). 

(3) If there exists a I/o E " with 

(y— yo, Ty) ^!(y— yo, h )	VYEOKW,	 (1.8) 

then deg,-(T,w,h) = 1. 

(4) deg(T— h,,0) = deg(T,w,h). 

(5) If w. C w and T is (K, h) -non- degenerate on w, then 

deg(T,, h) = deg(T,w \67.- , h).
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(6) If Toy = Ti y for ally E ÔK J , then deg(To,w,h) = degK(TI,w,h). 
(7) If T is (K,h)- non- degenerate on 0, then deg(T,w,h) = 0. 
(8) If deg(T,w,h) 3A 0, then there exists a yo E w such that 

(v— yo, Tyo)^:(v— yo, h )	VvEK. 

(9) If deg K (To, c, h) 54 deg(Tl , , 11), then there exist Yo E aK) and A0 e (0, 1) 
such that

	

(v— Yo, (1—Ao)Toyo+AoTi yo) >(v— yo, h)	VV  K.	(1.9) 

(10) If w includes only isolated (K, h)-critical points yj of T, then the number of such 
points is finite and

	

deg(T,w,h) = >indK (T,yl ,h).	 (1.10) 

Proof. (1) Since 0 \ U 1 wj contains none of the (K, h)-critical points of T, then 
it contains none of the (V, 0)-critical points of and, moreover, of f'. Therefore it is 
sufficient to use Definition 1 and statement (1) of the degree. 

(2) Since the continuous mappings T0 and T1 are K-homotope at h relative to w, 
there exists a family of continuous mappings T,	- V, continuously dependent on 
t E [0, 1] and (K, h)-non-degenerate On t9K, which connects T0 with T1 . We define a 
family of mappings as

Fj(y) = PK(Y + h - Ty)	 (1.11) 
and denote by N some sufficiently small neighbourhood of the set 

{yEo\OK: Fj(y)=y for some tE [0 , 1 ] } .	 (1.12)

By analogy with (1.6), we set 

	

P(y) = Fi (y) + b(y)( - Ft (y))	 (1.13) 

for 5(y) from (1.5) and some fixed E K. By construction, the family of mappings F 
is continuous on 0, continuously dependent on t e [0, 1] and has no fixed point on ow. 
Then

= y - E(y)	 (1.14) 
is a homotopy at 0 relative to t, and according to Definition 1 and statement (2) of the 
degree

deg(To,w,h) = deg(o,c,0) = deg( 1 ,c,0) = deg(TI,w,h). 
(3) First of all, we shall show that the family of mappings 

Ty = t(y - yo) + (1 - t)(Ty - h) 

is a K-homotopy at 0 relative to w. Indeed, if there exist y E t9KW and t E (0, 1) with 
(v - y,Ty) ^! 0 for all v E K or, which is the same, 

	

t(v - y, y - yo) + (1 - t)(v - y, Ty - h) ^! 0	Vv € K,
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then for v = yo we obtain I y - yoI 2 +(1 - i)(y - y, Ty - h) < 0, which contradicts (1.8). 
It is obvious that the family of mappings T is continuous and continuously dependent 
on t E [0, 1]. Thus, according to property (4), proved below, and (2) of the K-degree 
we have

h) = deg(T - h,c.i 3 O) = deg(I - yo,w,O) = deg(I,w,yo). 

To evaluate this integer, we construct the following mappings, according to (1.2) and 
(1.1) for TEland hEyo (because ofyo EwcK): 

F(y) = PK (y + yo — y) = PK (yo) = yo	and	cI(y)=y_yo . 

If in addition yo E , then is (V, 0)-non-degenerate on & and we can set 4(y) = cI(y). 
Otherwise Yo E ôw \ ÔKW and we must construct 1 according to the scheme (1.5) - (1.7). 
It is obvious that for any fixed 0 < e < 1 we have Yo + e( - yo) = y. E , and vectors 

(y) and ,(y) = y - y, are directed in the opposite ways for none of y E ow. Thus, 
according to Proposition 1, ii and . are homotope at 0 relative to , and according 
to Definition 1 and statements (2) - (4) of the degree 

deg(I,w,yo) = deg(4,,0) = deg(,, 0) = deg(I,,y.) = 1. 

(4) It is evident that one and the same mapping F, described by formula (1.2), 
corresponds to both variational inequalities (1.3) and (v - y, Ty - h) -:1- 0 (v E K). So, 
this property follows from Definition 1. 

(5) (K, h)-non-degeneracy of T on	implies (V, 0)-non-degeneracy of on this set. 
So, this property follows from Definition 1 and statement (5) of the degree. 

(6) Since Toy = T1 y = ( 1 - t)Toy + tT1 y for all y E Ow, then the continuous 
(K, h)-non-degenerate On OKW mappings T0 and T1 are K-homotope at h relative to W. 
So, this property follows from property (2) of the K-degree. 

(7) (K, h)-non-degeneracy of T on 0 implies (V, 0)-non-degeneracy of 4 on this set. 
So, by putting 4 , we have, according to Definition 1 and statement (7) of the 
degree deg (T,w,h) = deg(Z,0) = 0. 

(8) Suppose that T is (K, h)-non-degenerate on w. By property (7) of the K-degree 
we get deg (T,w,h) = 0, which is a contradiction. 

(9) Assuming K-homotopy of T0 and T1 at h relative to w implies a contradiction 
with property (2) of the K-degree. So, there exist yo E '9Kw and A0 E (0,1) satisfying 
(1.9).

(10) Property (5) of the K-degree legitimate Definition 4. Boundedness of w implies 
finitness of the set of isolated (K, h)-critical points of  in w - otherwise this set contains 
a limit point, which is non-isolated. So, this set consists of y i (1 = 1,. . . , m), and there 
exists an r > 0 such that the balls B(y,) (1 = 1,... , m) are mutually disjoint. It is 
evident that T is (K, h)-non-degenerate on w \ U 1 Br(yj). Then, according to property 
(1) of the K-degree and Definition 4, equality (1.10) holds U 

The next theorem is a K-degree variant of the Leray-Schauder lemma.
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Theorem 2. Let V° C V be a proper subspace, let 7r0 V -+ V° be an orthogonal 
projector, let K C V be a closed convex set with K° = K n V0 and K° = K fl V° 54 0, 
let w C K be a relatively open bounded set with w = c ' fl V° and = n V0 0, let 
T: 0 -i V be a continuous mapping and for some h E V 

{YEÔKW: (v—y, Ty) ^!(v---y,h) Vv  K0} = 0.	(1.15) 
Then

deg(T,w,h) = deg Ko(lroT,w°,lr0 h).	 (1.16) 
Remark. Formula (1.15) implies (K, h)-non-degeneracy of T on ÔKW as well as 

(K°,7roh)-non7degeneracy of 7r0 T on 9Kow°. Thus, both sides of equality (1.16) are 
well-defined. 

Proof of Theorem 2. We introduce a one-parameter family of closed convex 
subsets of K

K'={yEK:infvoIy—vI<s}	(0<s<00) 
and a corresponding family of projectors P,: V -i K'. It is obvious that 

Po(y) = PKO(noy)	Vy E V,	 (1.17) 
where PKO V° - K° is a projector. Because the set w is bounded and the mapping 
T is continuous on 0, the set U = U Y E(Y + h - Ty) is bounded too; its projection on 
K is bounded all the more. Thus, there exists an r > 0 such that PK(U) C K . Hence 

	

Pr(y + h - Ty) = PK(y + h - Ty)	Vy E W.	 (1.18) 
For t E [0, 1] we set

	

F(y) = Pt,-(y + h - Ty)	 (1.19) 
and

i(y) = y - F(y).	 (1.20) 
Then the equation 4I(y) = 0 is equivalent to the variational inequality (v - y, Ty) ^: 
(v - y, h) for all v E K' (compare with (1.1) - (1.4)). Because of (1.15) and K° C Kt 
the family of continuous mappings , continuously dependent on t E [0, 11, is (K, h)-
non-degenerate on i9Kw. By analogy with (1.11) - (1.14), we can construct a homotopy 

at 0 relative to . By Definition 1 and formulas (1.18) - (1.20) 
deg(T,w,h) = deg( i ,,0).	 (1.21)

According to statement (2) of the degree, 
deg(1,,0)=deg(o,,0).	 (1.22) 

But the set LL and the mapping c1 0 satisfy the conditions of Proposition 2. So, for the 
mapping 4 0(y) lroy - Po(y) we obtain 

deg('o,, 0) = deg(°, °, 0).	 (1.23)
It follows from (1.17) and the linearity of the projector 7r 0 that 

Po(y + h - Ty) = PK0(y + 7roh - iroTy)	Vy E w°. 

Specifying Definition 1 for the space V°, we have 
deg(c1°,c,°,0) = deg1(7roT,w°, iroh).	 (1.24)

Finally, equalities (1.21) - (1.24) imply (1.16)1
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It should be noted that in terms of rotation an analogous proposition is contained 
in [8] and [10]. 

2. K-degree in complementary systems 

Let Y and Z be Banach spaces in duality with respect to the pairing (.,.), Y0 and Z0 
be closed subspaces of Y and Z, respectively, such that the dual of Yo can be identified 
with Z and the dual of Z0 can be identified with Y by means of the pairing (.,.). Then 
the quadruple (Y, Yo; Z, Zo) is called complementary system [4]. In particular, it is a 
natural generalization of a dual pair (X, X), which is useful for a reflexive space X, 
to (X, X; X', X*). Principal examples are complementary systems formed of Orlicz-
Sobolev spaces [4].	 - 

For further considerations, we assume that the subspaces Y0 and Zo are separable, 
and that K c Y is a c-set (see the next definition). 

Definition 5. A set K C Y with K0 = K fl Yo so that 

	

a(Y,Zo)clK=K	 (2.1) 

	

a(Y,Z)clKo = K	 (2.2) 

will be called c-set. 

Clearly, a or-set is convex and closed. It is known [4] that a space Y itself and a 
closed ball

Br(yo) = hi E Y : IIY - you	r} 

with yo E Yo are c-sets. Provided that the support of an Orlicz-Sobolev space has 
some natural properties (for example, its boundary has the segment property), not only 
the space itself and corresponding balls [4], but also the cone of functions that are 
non-negative together with their lower derivatives, is a c-set [10]. 

Let X be a convex set with Y0 C X C Y. Let us equip X with a metric p such that 
a norm convergent sequence from Y0 is p-convergent, and a p-bounded set from 1'0 is 
norm bounded. The p-closure of Y0 will be denoted by X0 . Obviously, Yo C Xo C X. 

Such set X and metric p were defined, studied and used for construction of a rota-
tion theory and a K-rotation theory in complementary systems formed of Orlicz-Sobolev 
spaces in [9] and [10], respectively. It was shown that the set of functions, belonging 
to the Orlicz class together with their derivatives, may be taken as X, and the cor-
responding integral metric may be taken as p. In this case p-convergence is situated 
between strong convergence and modular convergence, which was applied later in [19] 
for the construction of a degree theory in Orlicz-Sobolev spaces. Note that for reflexive 
Orlicz-Sobolev spaces modular convergence is equivalent to norm convergence, hence, 
to p-convergence.	-	 -	- 

Definition 6. We will say that an operator T: X - Z belongs to the class SA(X) 
if it satisfies the following conditions:
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(T1 ) For any finite-dimensional subspace V C Y0 , the function f(u, v) = (v, Tu) is 
continuous on V x V. 

(7'2) For any sequence Y,, € Y0 such that y,, - y E Y for o(Y, Zo), Ty - z E Z for 
a(Z,Yo) and limsup0 ,0 (y,T,) 5 (y, z) there follows that 

urn p(y,,,y) = 0,	Ty = z,	urn (y,Ty) = (y,z). 
n-00	 fl-•00 

(T3 ) For any vo E Y0 and constants c1 > 0, c2 > 0 there exists such constant 
k(c i ,c2 ,vo) >0 with

IIyII:5cil 
) <c2f	=	IITyII <k(ci,c2,vo). 

(y — vo,Ty  

It is clear that an operator T belongs to the class SA(X) simultaneously with the 
operator T - h, where (T - h)y = Ty - h with some fixed h E Zo. 

The conditions (T1 ) - (7'3 ) are similar to analogous conditions from [4] and subse-
quent works about complementary systems. In fact, the only difference is the additional 
claim of p-convergence of the sequence y,, in (7'2). 

The class of operators SA(X) was defined, studied and used for a complementary 
system formed of Orlicz-Sobolev spaces in [9, 10]. It was shown that elliptic differential 
operators with natural conditions on their coefficients such as those stated in [4, 5] belong 
to this class. Note that a similar class of operators was used in (191 for constructing a 
degree theory in Orlicz-Sobolev' spaces. 

Let us consider a sequence of finite-dimensional subspaces V, C Yo satisfying 

CO 

	

V,,cV,, 1 Vn	and	Uv'o,	 (2.3) 
n=1 

which exists because of the separability of Y0 . For a closed convex set K0 , the sets 
K,, = K. fl V,, are obviously closed, convex and 

	

K,,cK,, 1 Vn	and	UK=Ko.	 (2.4) 

Lemma 1. Let K be a o-set, let M C K fl X be a p-bounded and p-closed set and 
M0 = MflY0 , let h E Z0 and an operator T of the class SA(X) be (K, h)-non-degenerate 
onMflX0 , that is 

{Y e MflXo: (v - y,Ty) (v —y,h) Vv € K} = 0.	 (2.5) 

Then there exists finite-dimensional subspace V° C Yo with K° = K fl V° such that 

{ EM0 : (v - y,Ty) (v - y,h) Vv € K0} =
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Proof. Suppose the contrary. Then for any index 

{YEM0 : (v—y,Ty) ^:(v—y,h) VVEK}@,	(2.6)
that is there exist y € M0 such that 

(v—y,Ty)^!(v—y,h)	VvEK.	 (2.7) 

The p-boundedness of M implies norm boundedness of M0 . So, there exists a c 1 > 0 
such that 11 y.11 <c 1 for all n. Then for some v = v0 E V1 we have 

(yn — vo,Ty,)	(!I - vo, h)	II y - vo 11 lihil	C2	Vn,	(2.8) 

and by condition (T3 ) there exists a k(c i ,c2 ,vo) such that II Ty II < k(c i ,c2 ,vo). With-
out loss of generality, we may assume that y, -, y E Y for a(Y, Z0 ) and Ty - z E Z 
for cr(Z,Yo). Besides, from (2.7) (y, Ty) (v, Ty,,) + (y,, — v, h) for all v E K,,. 
Taking the limit we obtain 

limsup(y,Ty,,)(v,z)+(y—v,h)	Vv  UK,,. 

According to (2.4), that is true for any v E K0 , and according to (2.2) for any V E K. 
Because of (2.1), Y  K. By setting  = y we obtain limsup,,...,,,,(y,,,Ty,,) (y, z), and 
by condition (T2) 

lim p(y,,, y ) = 0,	Ty = z,	lim (y,,, Ty,,) = (y,z). n-.00	 n-.-co 

Taking the limit in inequality (2.7) we obtain 

(v—y,Ty) ^!(v—y,h)	VvE UK,,. 

According to (2.4), that is. true for any v E K0 , and according to (2.2) for any v E K. 
Since the p-convergent sequence y,, belongs to M0 , its limit y belongs to pclMo C 
MflX0 . But this contradicts to (2.5). Hence there exists an index no for which relation 
(2.6) is violated. Finally, we put V° = V,,01 

Corollary 1. If some finite-dimensional subspace V° C Y0 satisfies Lemma 1, then 
any finite-dimensional subspace V' C Yo with V° C V' satisfies it as well. 

Let us consider a finite-dimensional subspace V° C Y0 . Let jo V° —* Yo be the 
identity and j : Z — V°' be the dual projection. We identify the dual space V°' with 
V° and equip it with a scalar product (.,.), coordinated with the pairing (.,) by the 
relation (jov,h) = (v,jh) for all v E V° and h E Z. Then jTj0 : V° V0 is the 
corresponding Galerkin approximation for the operator T. 

Let V' C Yo be another finite-dimensional subspace so that V° C V'. We associate 
the corresponding operators ji V' — Yo, j : Z — V	V' and jTj 1 : V' — V'
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with V, by analogy, with V°. Let 7r0 : V' - V° be an orthogonal projector. It is 
obvious that 7r0j = j. In particular, 

irojh = jh Vh € Zo	and	irojTj1y = .joTjoy Vy € V 0 .	(2.9) 

Definition 7. A set 4.' will be called K-admissible if there exists such a p-open and 
p-bounded set Q C X with w = n n K, wo = w fl Yo and Z'o = ' fl Y. 54 0, where ' is 
the p-interior of w. 

We denote the closure and the relative boundary of the K-admissible set w with 
respect to the p-topology of K fl X as p clw and p 3K W , respectively. 

Lemma 2. Let w be a K-admissible set, h € Z0 and an operator T of the class 
SA(X) be (K, h) -non- degenerate on PÔKW. Then there exists a finite-dimensional sub-
space V° C Yo such that the Galerkin approximation j'Tjo is (K°,jh)- non- degenerate 
on ôKo'4.'° with w 0 =w fl V°, and for any finite-dimensional subspace V' C Y0 with 
V° c V 1 , the K'-degree of jTj 1 at jh relative to w l = w fl V' is well-defined and 

deg KI(jTj j ,w',jh) = dego(jTjo,w°,j'h).	 (2.10) 

Proof. It is obvious that the set K° is closed and convex for any finite-dimensional 
subspace V° C Yo, while the Galerkin approximation jTjo, according to condition 
(T1 ), is continuous. The existence of a finite-dimensional subspace V0 C Yo such that 
the Galerkin approximation jTjo is (K°,jh)-non-degenerate on OK O W ° follows from 
Lemma 1 with M = paKw. The (K',jjh)-non-degeneracy of the Galerkin approxi-
mation jTj j on OKIW ' follows from Corollary 1. Without loss of generality, we may 
assume that cZ o 0. Thus both sides of equality (2.10) are well-defined and the equality 
itself is valid, that follows from Theorem 2, according to (2.9)1 

Corollary 2. If Vol C Y0 and V°2 C Yo are two different finite-dimensional sub-
spaces such as V 0 in Lemma 2, then 

dego1(j 1 Tjo I ,w°',j 1 h) = dego2(j 2 Tj02 ,w02 ,j 2 h).	(2.11) 

To prove this formula we consider a finite-dimensional subspace V' C Yo with 
V01 U V02 c v According to (2.10), the corresponding K'-degree equals to each side 
of the equality (2.11). Hence it is valid I 

This shows that the following definition is legitimate. 

Definition 8. Let (Y, Y0 ; Z, Z0 ) be a complementary system, K be a a-set, w be a 
K-admissible set, h € Zo, an operator T of the class SA(X) be (K, h)-non-degenerate 
on p aKL) fl Xo and a finite-dimensional subspace V0 C }'o corresponding to Lemma 2. 
Then we set

deg(T,, h) = dego(jTjo,°,jh) 

and name this integer the K- degree of T at h relative to w. 

We will show that the K-degree of operators of the class SA(X) in complementary 
systems has the same properties as the finite-dimensional K-degree.
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Definition 9. We will say that a family of operators T : X - Z belongs to the 
class S(X) if it satisfies the following conditions: 

(T1') For any finite-dimensional subspace V C }'o, the function f(u,v,t) = (v,Tu) is 
continuous on V x V x [0, 1]. 

(T21 ) For any sequences Yn E Yo, t,, e [0, 11 such that y,, - y E Y for o(Y, Zo), 
—4 t E [0, 1],	- z E Z for a(Z,Yo) and	 < (y, z) 

there follows that 

limp(y,y) = 0,	Tjy = z,	lim(y,Tj,,y) = ( Y ' Z). 

(Ti) For any v0 E Yo, c 1 > 0, c2 > 0 there exists a k(c i ,c2 ,vo) > 0 such that 

IIyIIcil 

y) ^ C2 J	
IITtyIl :5 k(ci,c2,vo). 

(y - vo,Tj  

It is obvious that the class S(X) is a one-parameter analogue of the class SA(X). 
Moreover, for any operators T0 and T1 of the class SA(X), a family of operators T = 
(1 - t)To + iT1 belongs to the class S(X) [6, 10]. 

Definition 10. Operators TO , T, of the class SA(X) are said to be K-homoiope 
at h E Z0 relative to a K-admissible set w if there exists a (K, h)-non-degenerate on 
P c3Kw fl Xo family of operators Tj of the class SA (X), which connects T0 with T1. 

Definition 11. A (K, h)-critical point 110 E K fl X0 of an operator T of the class 
SA(X) is said to be isolated if there exists an r0 > 0 such that the set 

13r0(yo){yEKflX0 : p(y, yo) <ro} 

includes no other (K, h)-critical points of T. 

Note that this set is obviously K-admissible. 

Definition 12. We set 

indK (T, yo, h) = deg(T,13r(yo),h)	(0 <r <ro) 

and name this integer the index of an isolated (K, h)-critical point Yo of an operator T 
of the class SA(X). 

Theorem 3. Let (Y, Yo; Z, Zo) be a complementary system, K be a a-set, w be a K-
admissible set, h E Z0 and an operator T of the class SA(X) be (K, h)-non-degenerate 
on p5KwflXo. Then the K-degree of T at h relative tow has the following properties: 

(1) If wg (1 = 1, - . . , m) are mutually disjoint K-admissible subsets of w and an 
operator T is (K, h)-non-degenerate on pcl(w \ U. 1 w,) fl Xo, then 

deg(T, Lo, h) =	deg1ç(T,w,,h).
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(2) If operators T0 and T1 are K-hornotope at h relative tow, then deg(To,w,h) 
= deg,-(Ti,w,h). 

(3) If there exists a yo E wo with (y — yo,Ty) 2 (y — yo,h) for ally e p3KwflXo, 
then deg(T,w,h) = 1. 

(4) deg(T— h,w,O) = deg(T,w,h). 

(5) If w,, C w is such that the set w \ pclw. is K-admissible and an operator T is 
(K, h)- non- degenerate on pc1w fl Xo, then 

deg(T,w,h) = deg(T,w \pclw.,h). 

(6) If Toy = Ti y for ally E pOKw fl X0 , then deg(To,w,h) = degK(TI,w,h). 

(7) If T is (K, h)-non-degenerate on p clw fl Xo, then deg(T, w, h) = 0. 

(8) If deg(T,w,h) 0, then there exists a Yo E w fl Xo such.that (y - yo,Tyo) 2 
(v— yo, h) for all y E K. 

(9) If deg(To,w,h) 54 deg(TI ,w,h), then there exist Yo E pôKwflXo and Ao E 
(0,1) such that (v - Yo, (1 - o)Toyo + A0 T1 y0 ) 2 (v - yo, h) for all v E K. 

(10) If w fl X0 includes only isolated (K, h)-critical points y, of T, then the number 
of such points is finite and

deg K (T,w,h) = >indK(T,yj,h) 

Proof. (1) Applying Lemma 1 to the set M = pcl(w \ U. 1 wj ), we obtain the 
existence of a finite-dimensional subspace V° C Yo such that °	0, 4)	0 (1 
1.... IM), and the Galerkin approximation jTjo is (K°,jh)-non-degenerate on 

(Pd (w\Uw:)) =pcl (w\Uwi) flV° 

So, it is sufficient to use Definition 8 and property (1) of the finite-dimensional K-degree. 
(2) According to Definition 10, there exists a (K, h)-non-degenerate (on paKw fl 

Xo) family of operators T of the class SA (X), which connects T0 with Ti . Applying 
parameter-variants of Lemma 1 (which are not stated because of the total analogy) to the 
set M = p i3,<w, we obtain the existence of a finite-dimensional subspace V° C Y0 such 
that tV 0 and the Galerkin approximation jTj0 is a family of continuous mappings, 
continuously dependent on t E [0,11 and (K°,jh)-non-degenerate on OKow°. So, it is 
sufficient to use Definition 8 and property (2) of the finite-dimensional K-degree. 

(3) Applying Lemma 1 to the set M = paw, we obtain the existence of a finite-
dimensional subspace V° C Y0 such that Y 0 and yo E w 0 , and the Galerkin 
approximation jTj0 is (K°,jh)-non-degenerate on p5Kow°. But then 

° (y - yo, jTjoy) 2 (y - yo, jh)	Vy E aR-ow,
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and it is sufficient to use Definition 8 and property (3) of the finite-dimensional K-
degree.

(4) Because the variational inequality (v - y, Ty - h) ^! 0 (v e K) is equivalent to 
(0.2), this property follows from Lemma 1, applied to the set M = PÔKW, Definition 8 
and property (4) of the finite-dimensional K-degree. 

(5) Applying Lemma 1 to the set M = p aK J U p CIW., we obtain the existence of a 
finite-dimensional subspace V° C Yo such that Y 54 0 and the Galerkin approximation 
jT.jo is (K°,jh)-non-degenerate on 

(p5KwUpcic.)° = (PÔKWU pclw.)fl V° = OK O W Uw. 

So, it is sufficient to use Definition 8 and property (5) of the finite-dimensional K-degree. 
(6) As in the finite-dimensional case, this follows immediately from property (2). 
(7) Applying Lemma 1 to the set M = pck, we obtain the existence of a finite-

dimensional subspace V° C Yo such that 0 and the Galerkin approximation jTjo 
is (K°,jh)-non-degenerate on w°. So, it is sufficient to use Definition 8 and property 
(7) of the finite-dimensional K-degree. 

(8) As in the finite-dimensional case, this follows immediately from the previous 
property. 

(9) As in the finite-dimensional case, this follows immediately from property (2). 
(10) As in the finite-dimensional case, the legitimacy of Definition 12 follows from 

property (5) above. To verify finitness of the set of isolated (K, h)-critical points of 
T from w fl X0 , suppose the contrary. K-admissibility of w implies its p-boundedness. 
Therefore w fl Xo is strongly bounded and contains a sequence y,, of isolated (K, h) 
critical points of T, satisfying (2.7) and (2.8). By condition (T3 ), the sequence Ty is 
strongly bounded as well. Without loss of generality, we may assume that 

- Y  Y for cr(Y,Zo)	and	Ty - z E Z for a(Z,Yo). 

Repeating the arguments from the proof of Lemma 1, we obtain that y is a non-isolated 
(K, h)-critical point of T from w fl X0 , which contradicts our assumption. Thus, the set 
of (K, h)-critical points of T from w fl X0 consists of y, (1 = 1,. .. ,m), and there exists 
an r > 0 such that the sets I3 r( :) (1 = 1,. . . ,m) are mutually disjoint. To complete 
the proof, we use property (1) above and Definition 121 

To illustrate the possibilities of the K-degree theory for operators of the class SA(X), 
we will formulate several theorems concerning solvability of variational inequalities (0.2) 
in complementary systems. 

Theorem 4. Let (Y, Y0 ; Z, Z0 ) be a complementary system, let K be a cr-set, let 
T X - Z be a family of operators of the class S A (X), let h E Zo and an estimate 
p(O, y) < R0 being valid for all solutions y E K fl X0 of the variational inequality 
(v - y, Try) ^! (v - y , h) (v E K) uniformly for t E [0, 11. Finally, let 

deg(TI ,l3R(0),h) 54 0	 (2.12)
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for some R > Ro. Then the operator T0 has at least one (K, h)-critical point belonging 
to KflX0. 

The proof of this theorem follows easily from properties (2) and (8) of the K-degree. 
Thus, to prove solvability of the variational inequality (0.2) with an operator T0 of the 
class SA(X), we may construct a homotopy of the class S(X) with T1 satisfying (2.12). 
Note that this theorem is a variant of the Leray-Schauder theorem [13) for variational 
inequalities in complementary systems. 

Theorem 5. The previous theorem is still valid if (2.12) is substituted by the next 
condition: there exists a yo E K0 such that 

	

(y— yo, Ti y)^:(y— yo, h)	VyEPaK BR (0).	 (2.13) 
The proof of this theorem is obvious, because inequality (2.13) implies inequality 

(2.12), according to property (3) of the K-degree. Note that this theorem is a special, 
but more convenient variant of the previous. 

Theorem 6. Let (Y, Yo; Z, Zo) be a complementary system, let K be a a-set, let W 
be a K-admissible set, let h E Zo, let operators T0 and T1 belong to the class SA(X), 
T0 be (K,h)- non- degenerate on pclwflXo, T1 be (K,h)-non-degenerate on POKWflX0 
and for some Yo E w0 

	

(y - yo, Ti y) ^: (y - yo, h) Vy E PôK'J fl Xo. 

Then for some A > 0 the set p ÔK W fl Xo contains at least one (K, h)-critical point of the 
operator T0 + .\T1 , or a solution of the eigenvalue problem for the variational inequality 

(v - y,Toy) + A(v - y,Ti y) ^: (v - y, h)	Vv E K. 

The proof of this theorem follows immediately from properties (7), (3) and (9) of 
the K-degree. 

Theorem 7. Let (Y, Yo; Z, Z 0 ) be a complementary system, let K be a a-set, let w 
be a K-admissible set, let h E Z0 , let an operator T of the class SA(X) be (K, h)-non-
degenerate on pôKw fl X0 and let yj e w fl Xo (1 = 1,... ,m) be isolated (K, h)-critical 
points of T, but

deg(T,w, h)	indK(T, y,, h). 

Then the set w fl Xo contains at least (m + 1) (K, h)-critical points of the operator T. 

The proof of this theorem follows immediately from property (10) of the K-degree. 

In the case of a variational inequality without right side 

	

(v—y, Ty) >0	VvEK	 (2.14) 

the existence of the trivial solution is often obvious. If 0 is an isolated (K, h)-critical 
point of T with a computable index, then the next specialization of Theorem 7 is very 
useful.
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Theorem 8. Let (Y, Yo; Z, Z0 ) be a complementary system, let K be a a-set, let w 
be a K-admissible set, let an operator T of the class SA(X) be (K,0)-non-degenerate 
Ofl p t3K'.J fl Xo and let 0 E w be an isolated (K, 0)-critical point of T, but 

deg(T,i 3 O) 54 indj-(T,O,O). 
Then the set wnXo contains at least one non-trivial solution of the variational inequality 
(2.14). 

The next theorem allows to find approximate solutions of a variational inequality. 
Theorem 9. Let (Y, Y0 ; Z, Z0 ) be a complementary system, let K be a a-set, let 

w be a K-admissible set, let h E Z0 , let an operator T of the class SA(X) be (K, h)-
non-degenerate on PÔKW fl Xo, let Yo E w fl X0 be a unique (K, h)-critical point of T 
with

	

ifldK(T, yo, h) 54 0	 (2.15) 
and let a sequence of finite-dimensional subspaces V. C Yo satisfies (2.3). Then there 
exists an index no such that for all n > no the corresponding approximation of the 
variational inequality (0.2) 

	

(v - y,jTjy) ^! (v - y,jh)	Vy E K	 (2.16)

has a solution y, E w, = w fl V, and 

	

Iimp(y,YO) = 0.	 (2.17) 

Proof. Applying Lemma 1 to the set M = PÔKW, we find an index no such that 
for the finite-dimensional subspace V, 0 = V° C l'o, there follows 0 and that the 
Galerkin approximation jTjo is (K° , jh)-non-degenerate on p ôKow°. Then according 
to Lemma 2, Definition 8, property (10) of the K-degree and (2.15) for any n > no we 
have

deg(jTjfl,wfl,jh) = deg(T,,h) = ifldK(T,yO ,h) 0. 
Thus, by property (8) of the finite-dimensional K-degree there exists a y, E wi,, which 
satisfies (2.16). 

To prove (2.17), we fix an e > 0 such that B (yo) C w. The operator T is obviously 
(K, h)-non-degenerate on the set M = pcl(w\L3 € (yo)). Applying Lemma 1 and Corollary 
1 to this set, we find an index fl ( such that for any n > n 

deg(jT3 fl ,L3(yo)fl V,jh) = deg(T,L3(yo),h) = indK(T, yo, h) 0. 
Thus, by property (8) of the finite-dimensional K-degree there exists a in e 8 ( yo) fl V, 
which satisfies (2.16). Hence lim_. p(y,2 , yo) <€ with arbitrary e > 0, or p(y,,, 
Yo) = 01 

Note that, in terms of rotation, variants of Theorems 4, 5 and 7 - 9 are contained 
in [10], and a variant of Theorem 6 in [6]. 

Keep in mind that the effectiveness of using the K-degree theory, as well as degree 
theory itself, depends on whether one can calculate the index of an isolated (K, h)-
critical point. The evaluation of the index considered to be a hard problem. The 
majority of works dealing with approximative generalizations of the degree theory com-
pletely avoids considering this problem. As for the K-degree, the techniques to calculate 
the index of isolated (K, h)-critical points have not been worked out even for the finite-
dimensional case (except [71).
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