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On Persson's Theorem in Local Dirichiet Spaces 
G. Grub 

Abstract. Given a strongly local, regular and irreducible Dirichlet form 1, we prove a version 
of Persson's theorem concerning the variational characterization of the bottom of the essential 
spectrum of the generator H of E. Such a result is then used to prove L P -exponential decay of 
the "small eigenfunctions" of H. 
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1. Introduction 
Given a positive second-order differential operator of elliptic type in divergence form 

H0 
= - i1 

	
(aij)axi

on an open and connected domain D C R', with Dirichiet boundary conditions and 
suitable assumptions on the matrix ( a t,,), one can consider the bilinear form 

1/2	1/2 a(u,v) = (H0 u,H0 v)L2(D) 

defined for u, v E D(a) = Dom(H 2 ). This bilinear form mirrors many of the features 
of the operator H and enjoices several interesting properties which can be considered 
in a more abstract setting as the defining properties of mathematical objects which are 
known as Dirichlet forms. 

In fact, let us recall from [81 the following basic definitions: 
Let X be a locally compact separable Hausdorif space, m a positive Radon measure 

on X with full support, and define H as the real Hubert space L2 (X, dm), whose scalar 
product is denoted by (.,.). A Dirichlet form 6 defined on D(6) C H is a closed, 
symmetric, non-negative definite, bilinear form on D(6) such that 

uED(E)	v=(OVu)A1ED(E) and E(v,v)E(u,u). 
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Definition. The Dirichiet form C is said to be 

• local if, for all u, v E D(E) with disjoint supports, one has u, v) = 0, where we 
define the support of f to be the support of the measure 1dm; 

• strongly local if, for all u, v E D(E) with compact support such that u is constant 
on a neighbourhood of supp(v), one has E(u, v) = 0; 

• regular if there exists a set C C D(E) fl C(X) which is dense both in C(X) with 
the uniform norm and in D(C) with the norm induced by Ei (u,v) = E(u,v) +(u,v); 

• irreducible if u E D10(E) is constant whenever E(u,u) = 0, where D10(E) is the 
set of the rn-measurable functions u on X such that for all relatively compact open sets 
A C X there exists v E D(E) which coincides with u on A. 

In order that the present definition of D10(C) is well posed, one usually requires that 
C is strongly local; however, it is also possible (and will be done later on) to consider 
D10(C) even when C is the form sum of a strongly local Dirichlet form and of a bilinear 
form of the type fX uv dV for a positive Radon measure V on X. 

If X is a differentiable manifold, any strongly local Dirichlet form is associated, by 
the second Beurling-Deny formula [8J, to a second-order differential elliptic operator 
in divergence form H0 so that C(u,v) = (H"2 u,H 2 v) for all u,v E C(X). A 
local Dirichlet form is also -associated in the above manner to a generalized Schrödinger 
operator H = H0 + V, H0 as above, V being a positive Radon measure on X. 

Typical classes of differential operators which give rise to Dirichlet form include 
uniformly elliptic operators on manifolds, elliptic operators with weights in the Muck-
enhoupt class, subelliptic operators and Hörmander operators (cf. [2, 10] and references 
there). 

In [5] several results are proved concerning the LP exponential decay of solutions to 
equations of the form

C(u,v)	fvdm 

for all v E L°°(X,m)flD(E), where f L2 (dm) is assigned and C is a local, regular and 
irreducible Dirichlet form. Those results, which are motivated by [1] and [4], rely upon 
general topological assumption to be described later on and, mainly, on the validity 
of a coerciveness assumption. Precisely, one must require that there exists a positive 
function A defined on X such that 

fX 

Au 2 drn < E(u, u)	for all uEC.	 (1.1) 

Notice that the classical Hardy inequality on (0,1) is a special case of (1.1), when setting 

E(u,u) = 
10 (u ')'dx, A(x) = const[x A(1 - x)] 2 , C = C(0,1). 

We prove here the analogue of a theorem of Persson [9] to obtain a version in the present 
context of his variational characterization of the bottom of the essential spectrum of
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elliptic differential operators in divergence form. Such a theorem and the results of 151 
can be combined as in [1] to prove a suitable coercivity condition and, then, weighted 
LP-bounds for those eigenfunctions of the self-adjoint operator associated to E whose 
eigenvalue lays below the essential spectrum of H ("small eigenfunctions"). This com-
plements the results of [5], in which results of the same nature are proved for the 
solutions of the equation Hu = f with f given. 

It is a pleasure to thank one of the referees for his (or her) careful reading of the 
manuscript. 

2. Persson's theorem and applications to eigenfurictions 
of generators of strongly local Dirichiet forms 

To state our results, we need some more facts from the theory of Dirichlet form. First 
we recall that the energy measures of a regular, irreducible and strongly local Dirichlet 
form are the Radon measures 4u, u) defined by 

f
0 dp(u,u) := &(u,u)— C(u2) 

for all u E D() fl L°°(X,m) and for all 0 < 0 ED(E) fl C(X). Truncation and 
monotone convergence allow to define p(u, u) for all u E D(E), and by polarization one 
defines the signed Radon measure ii(u,v) for all u,v E D(E). It is known 12, 8, 101 that 
E(u, v) = fX dp(u, v) for all u, v E D(E). Besides, the energy measures (u, v) can be 
defined also for u,v E D10(E) by setting 

1 A/1 ( U , V ) = 1A/2(tL,V) 

for any relatively compact open set A C X, where u' and v' are functions on D(E) 
coinciding with u and v, respectively, on A. The definition is well posed by the strong 
locality of E. 

We shall need four properties of the energy measures [2, 8, 101. In the sequel, ü and 
i5 will denote the quasi-continuous modifications of u and v, respectively, which exist 
for the class of functions used below by the regularity of E (see 17, 8]). First we mention 
the Leibniz rule which states that 

4 1(uv, w) = ii ji(v, w) +,5 14u, w) 

for all u,v E D10(E) fl L (X, dm ) and w E D10 (E). Secondly, the chain rule which 
states that, if u E D10(E)1 v E D10(E) fl Li°'(X,dm) and 0 E C(R), it follows that 

(u) E D10(e) and
p(qS(u),v) = 

The truncation lemma may be stated by saying that, if u E D10( E ) and v E D10(E) fl 
L°°(X,dm) we have, for any c E R,	- 

and



332	G. Grub 

where (•)+ denotes the positive part. Finally, the Schwarz inequality says that 

1/2	 1/2 

Ix IfI d(u, v)I 	(ff2 d(u, u))
	fX (9

2 dp(v, v))  

for all u,v E D(6) fl L°°(X,rn), f e L2(X,i(u,u)) and g € L2(X,z(v,v)). 

Given the strongly local Dirichiet form I and a positive Radon measure V on X 
charging no exceptional sets, we shall consider the local Dirichiet form 

Iv(uu)=I(uv)+Jui3dV	 (2.1) 

for all u, v E D(E) fl L 2 (dV). The first Beurling-Deny formula guarantees that each 
local Dirichlet form admits the decomposition (2.1) at least on a suitable core, so that 
we shall not loose any generality in assuming it. In the sequel, we shall also avoid men-
tioning explicitely that we are choosing, without exceptions, quasi-continuous versions 
of the functions involved when dealing with their pointwise versions, and avoid also for 
notational simplicity to write the superscript '. 

Then we define the intrinsic metric d(x,y) on X. It generalizes several notions 
of distance naturally associated to differential operators. Precisely we define, given a 
strongly local Dirichlet form I with energy measures dp(u,v), 

d(x, y ) = sup { Iv(x) - v ( y ) I : V E C(X) fl D(I), dz(v, v) <dm}	(2.2) 

where d1z(v,v) <din means that dp(v,v) is absolutely continuous with respect to dm, 
and the corresponding Radon-Nikodym derivative is smaller than or equal to one dm-a.e. 
The definition is well posed by the strong locality of I; the corresponding metric may 
be degenerate, but in our main results we shall require suitable assumptions ensuring 
in particular that d is a true metric. 

Let us consider the intrinsic open ball B(x, r) of center x E X and radius r > 0, 
and the cut-off functions introduced in [10] and defined for x E X by 

60r,y = (r - d(x, ))+	(y E X, r > 0).	 (2.3) 

Clearly, the support of êr,y is B(y,r). By a fundamental result of Sturm one has, 
requiring the topology induced by the intrinsic metric to be equivalent to the original 
one, d( . , y) E Di0(E) fl C(X) and 

dz(d(.,y),d(.,y)) 5 dm.	 (2.4) 

This parallels the fact the the gradient of the usual (regularized) distance function in 
an Euclidean domain has length not larger than one. Property (2.4) implies also, by an 
application of the truncation lemma, that dii(ir,y, 'r,y) dm.
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The first result of the present paper is a version of Persson's characterization of the 
infimum of the essential spectrum of a second-order elliptic operator in divergence form, 
in the context of local Dirichiet forms. First we define 

=	sup	inf { e(,)I 
K compact	IIII2	E C,supp C X \ K,	o}.	(2.5) 

We also recall that, given a self-adjoint operator H whose spectrum we denote by C(H), 
the purely discrete spectrum cTd(H) is defined to be the set of isolated eigenvalues with 
finite multiplicity. The essential spectrum cre(H) is then defined to be 

a. (H) = a(H) \ Ud(H). 

Our proof combines some ideas from [1] with the original Persson's arguments 191. 
We need the following preliminary result. 

Lemma. The Leibniz rule for the energy measures 

p(uv, w) = u(v, w) + vu(u, w) 

holds also when v E D10(E) is not necessarily bounded and u e D(e)1 0 flCb(X) has an 
energy measure dp(v,v) admitting an rn-essentially bounded density with respect to dm. 

Proof. First of all we show that uv E D(E)10 . It clearly suffices to show that, 
when u,v E D(E), it follows that uv E D(e). Indeed, in this latter situation, choose 
functions Vn € C such that v, - v in the E 1 -norm. Then uv, € D(E) fl Cb(X). Next 
notice that, for f, g € D(E)10 fl L' (X, rn) quasi-continuous, 

z(fg,fg) = f2 p(g,g)+g2 i4f,f)+ 2fgp(f,g) 

< f2 (g g) + g2z(f, 1) + 2fg ,u (f, g) 
2f2 ,u(g, g) + 2g 2 p(f, 1) 

where we have used (cf. [2]) the fact that 

2 I kh I I /2(f,g)I	k 2p(f,f) + h2z(g,g). 

Hence
- vm),u(vn - vm)) 

1 
= [ d(u(v, - Vm),U(vn - Vm)) 

Jx 

< fu2 d(v - Vrn,vn - Vm) + 
fX

(v - Vm)2d1.L(U,U) 
x  

^ IIu II0 E(v	Vm,Vn vm)+ I  (V"vm)2fdm 
ix 

IIlI e( v - Vm,Vn - tim) + 1111100 II Vn - Vm112
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where by f we denote the essentially bounded, non-negative Radon-Nikodym derivative 
of dp(u,u) with respect to dm. By using the fact that vn is Si -Cauchy, we then have 
that uv, is S-Cauchy, hence S i -Cauchy, hence S i -convergent to a suitable g E D(6). 
By the uniqueness of the L 2 -limit we have g = uv so that uv, -4 uv in the Si -norm; in 
particular, uv E D(S). 

Next the Leibniz rule applied to uv,, implies that 

ji(uv,w) = uji(v,w) + v(u,w). 

It is known that, when a sequence {f} C D(S) S-converges to I E D(S), then the 
corresponding sequence of energy measures converges to the energy measure of f in the 
total variation norm. Therefore 1z(uvn,w) -+ p.(uv,w) in the total variation norm, as 
well as uj (v,w) -+ uj t(v, w) in the same sense, since u is everywhere bounded. Finally, 
we can show that vz(u, w) - v j t(u, w) by noting that, by the Schwarz rule for the 
energy measures,

1/2 

fX iv - vi Id(u, w)I U.
 

ivn - v I 2d (u , u))
	Ux dp(w, w)) 

Ux\112Ux
i/2 

 vn v2f drn
/	

) d(w,w)
\

  

Ux

\1/2 

<const 	v,, -v l 2dm 
—40 asn — +oo 

This completes the proof I 

The proof of the following results is based upon a generalization, due to Biroli and 
Tchou [3], of a well-known result of Rellich concerning the compactness of a certain 
Sobolev embedding (see, e.g., [6]). We stress here that, although Theorem 1 below is 
stated for the sake of notational simplicity for strongly local Dirichlet forms, a similar 
result also holds for local Dirichlet forms of type (2.1) under suitable assumptions on 
the measure dV in (2.1), whose L2 -space has to be locally continuously embedded into 
D(S). 

Theorem 1. Let S be a strongly local, irreducible, regular Dirichiet form with core 
C = C( X) fl D(S). Assume that the topology generated by the intrinsic metric is equiv-
alent to the original topology. Then 

	

infae (H) = E(S).	 (2.6) 

Proof. First we prove that, given /.L < iflf7e(H), one has s(S) ^: ft (see [1: pp. 50 
- 51]). Given the spectral projection E() E(, +) associated with the self-adjoint 
generator of 5, one has the eigenfunction expansion 

I E(j) 
= t=1 

t,h)
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for suitable O i E D(H) c D(H 1/2 ) = D(E). Given e > 0, E C supported in Kc, K 
being a compact set, this implies that 

e([i - E(p)Ja, [I - E(p)J)  
n	

12 

 (L. 1i12dm) E(, 00 1 %01 1 %011

as soon as K is suitably choosen. Indeed, recall that X is locally compact and that the 
intrinsic topology is equivalent to the original one. By a similar calculation one can also 
prove that

IlI—E(i.t)lI	Ikoll• 
Clearly, one also has by the spectral theorem 

E(E(p),E(,)) ^! iIlE(ilI 2.	- 

By using the above three inequalities one can prove that 

e(E(, E()' 12 - E((I - E()), (I - E())"2 

^ iz112 ll E(ii)ll - C lIoll 
^	 (IIWII - 11( 1 - E(z))soII) - e lllI 

(pI/2_C(1/2+1))llII 

for all p as above. By definition this implies that 

(E) 112	- _ [(p' 12 + 1)]2 

for e > 0 sufficiently small. By letting e —+ 0 we obtain E(E) ^! j and hence 

(E) ^: infoe(H). 

To prove the reverse inequality fix A E ae(H) and consider a sequence {ufl}fl EN Of 
approximate eigenfunctions for H relative to A, so that each u,, has unit L2-norm, 
u — 0 weakly, u, E D(H) C D(H' 12 ) = D(E) and 

ll Hu — Au — 0	as n - +00. 

Then for n sufficiently large we have 

1 > ll Hu - Au Il ^! lE(u n ,u n ) - Al, 

which also implies that { U }EN is bounded in the £-norm. 

Given a compact set K C X, consider the open covering UZEKB(X, ) of K, where 
r > 0 (depending on K) is sufficiently small, so that the intrinsic balls B(x, r) have 
compact closure for any x E K. Then there exists a finite subcovering U !' B(xi, ) 
for suitable x i E K (1	i < n). Assume also, in order to use a result of [3], that



336	G. Grub 

B(x,2r) 54 X for all i = 1,.. . ,n and define the compact set K' (containing K) as the 
closure of K' = U 1 B(x,r). Then 

A= {u € Do(E,K')E(u,u) const} 

is precompact in L2 (dm) by a result of [3] where Do(e, K') is the closure in the E-norm 
of D(E) fl Co(K'). 

Consider also a function p E C(X) fl D() whose energy measure has a bounded 
density with respect to dm and such that p = 1 on K and p = 0 on X \ k, where 
K" = U 1 B(x 1 , ). Such a function exists because C(X) fl D(E) is a special standard 
core [8]. Then the Lemma, the L 2 -normalization of each u,, the assumption on p and 
the Schwarz inequality imply that E(pu,2 , pun) is well defined and bounded as a function 
of n. Indeed, the proof of the lemma shows that PUn € D(E). Moreover, 

E(pu, pun) 

fX dp(,ou,OUn) 

fX 
=

p2 d(u,, un) + JX ndp(p, p) + 2J	dI(p, un)I 
16	

1 

c i E(u,u) + C211ufl112 +2 
13  

p2d(u, un)) (J udp(p, )) 

cE(u,,u,)+ C2 + 2(c1c2)2E(Un,un)2 

<C3 

independent of n E N. Hence the sequence v,, = PUn is bounded in the E-norm and 
has support contained in the compact set K". Then there exists an L2(K')-convergent 
subsequence of {vn} and, by the fact that u, - 0 weakly, we can therefore conclude 
that u, —p 0 strongly in L2 (K) for all compact K. 

Now take a function 19 € D10 (E) such that, given a compact set K C X, 

= 1 on X \ K 
0<i9(x)<l for all x€X 
10 has a bounded density. 

By the Lemma we have

 f 92 di,( U n, U .) + 2 f 9u,, dt,(,9, u,,) +f U2 dy(ti, 0). 

Ix dju(73u., t9u.) = fX t9 dy(u, t9u,,) + JX Un dju(t9, t9u.) 

= 

The third term in the right-hand side tends to zero as n —' +oo because dj (t9, i9) = 0 as 
a Radon measure on K', 0 has a bounded density and u, - 0 in L2 (K) as n —i +oo. 
The second term in the right-hand side is shown to converge to zero as well by the same
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argument, after using the Schwarz inequality, because u,, is an E-bounded sequence. 
Then

:5 E(u,,,u,) + o(1) = Ilu Il 2 + 0( 1 ) A I1 19u 11 2 + 0(1) 

where the second equality is a consequence of 

E(u,u) - Al =	- A)u)I 5 IlHu - Au lI - 0

as n -* +00. 

Finally, by the definition of (E) we have that, for some compact set K1 C X, 
all I E C supported in X \ K1 satisfy E(f,f) ^! ((E) - e)lIf II which also holds by 
approximation for all I € D(E) with the same support property. In particular, when t9 
is as above and corresponds to a compact set K' containing K, 

(E() - e )lIi9u nI1 2	E(9u,t9u) < .Xflt9u,, 2 + o(1). 

Therefore (E) < A + e for all positive e, which implies (E) < infa(H), which is the 
desired inequality I 

The next corollary deals with the LP-exponential decay of the "small eigenfunctions" 
of e, that is with those (weak) eigenfunctions of H corresponding to eigenvalues lying 
below the bottom of the essential spectrum of H. 

	

Corollary. In addition to the above assumptions, suppose that (X,	is complete, 
where e =	xo) denotes the intrinsic distance. Let u € D1 0 (6) satisfy 

= a(u,ço)	for all W € C,	 (2.7)

for some positive a < (E). Fix p E [1, +00) and assume that 

ue 2 dm < +00	 (2.8) 

for some positive /3 < [(E) - p] 112 , where o = ê(•,xo) for some fixed point xo € X. 
Then

IX, 
u'e2 dm < +oo	 (2.9) 

for all y < [E(E) - )112. In particular, (2.9) holds whenever u € L"(dm). 

The proof of the above corollary is essentially identical to that of [1: Theorem 4.1, 
Corollary 4.2], given the general result of [5) concerning the L P-exponential decay of 
solutions to functional equations in local Dirichlet spaces. Therefore we do not insist 
on details, but only mention that the compactness of intrinsic balls with small radius 
has to be used as well. 

• We stress again that the above corollary also holds for local Dirichlet forms of type 
(2.1) under mild assumption on dv.
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