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Abstract. This article deals with some solvability results on the Cauchy problem for linear 
differential equations with unbounded operators. The main result consists in the description 
of the set of initial data for which the corresponding solutions are represented by means of 
the classical exponential formula in the stationary case, and by means of the Peano matriciant 
formula in the non-stationary case. In this connection a new generalization of Gelfand's lemma 
about analytic vectors of the generator of a strongly continuous group is proved. 
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1. Introduction 
Linear differential equations of the type

dx 
—=Ax	 (1) dt 

dx
A(t)x	 (2) dt 

have been among the most important mathematical subjects of study for two centuries. 
Contemporary methods of studying their solvability go back to the study of two methods 
suggested for the construction of their solutions by Cauchy: the method of successive 
approximations, and the method of series expansions; essentially different approaches 
based on the use of integral transforms (first of all, Fourier and Laplace transforms), 
were suggested by Heaviside. 
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For the case when equations (1) and (2) are systems of linear equations with constant 
or variable coefficients (in other words, A and A(t) are matrices, respectively, with 
constant elements or elements that are continuous functions), elegant and exhaustive 
results were obtained relatively soon. Here one can mention the classical theorem of 
Picard on the convergence of successive approximations for equations (1) and (2), in 
the form of exponential and matriciant series, and a number of others. Later, in this 
century, an elegant theory of linear differential 'equations (1) for the case of a linear 
continuous operator A in a certain Banach space, and of equations (2) for the case of a 
continuous function A(t) in the space of linear continuous operators that act in a certain 
Banach space was formulated. This theory is a simple and natural generalization of the 
theory of finite linear systems of differential equations, although it also covers various 
important infinite systems of differential equations, integro-differential equations, and 
others. 

The history of the above methods was different for various (first of all, parabolic 
and hyperbolic) types of autonomous and non-autonomous partial differential equa-
tions, which are also written in the form (1) and (2), but contain an operator A that is 
unbounded in a certain Banach space, and a function A(t) that assumes values in the 
set of unbounded linear operators in a certain Banach space. The same equations can 
also be viewed as equations (1) and (2) with a continuous linear operator in some locally 
convex space and a continuous function A(t) with values on the space of continuous lin-
ear operators in a locally convex linear space. Despite the importance of both cases for 
applications, no general results were known for a long time, with the exception of the 
classical theorem of Cauchy-Kovalevskaya on analytic solutions of partial differential 
equations which, however, was not formulated as an abstract theorem. A consider-
able breakthrough in the analysis of differential equations of these types occurred with 
the beginning of development of functional, analysis; the first profound results here 
were obtained using the methods of integral transforms based on the theory of semi-
groups which goes back to W. Feller and E. Hille (theorems of Hille- Phillips- Miyadera, 
Solomiak-Yosida, and others, see, e.g., [13, 16]). Some time later other results were 
obtained using the method of successive approximations; here one should mention, first 
of all, the work of M. Nagumo and L. V. Ovsiannikov that, in fact, applied to equations 
of type (1) and (2) with operators not in Banach spaces, but in a special kind of locally 
convex spaces which were described as "fans" or scales of Banach spaces. Later on, in 
the work of F. Treves, R. Nirenberg, T. Nishida, and others, the methods of Ovsiannikov 
were further developed, and the abstract theory gained its complete and modern look. 
More or less at the same time, numerous abstract results about the Cauchy method for 
the analytic representation of solutions were obtained. We also mention the results by 
Yu. A. DubinskiT (see, e.g., [71) concerning spaces with operator exponent. 

One should mention an essential difference between the cases of bounded and 
unbounded operators A and A(t) in equations (1) and (2). Namely, the results for 
bounded operators A and A(t) that are obtained using different methods (the method 
of Cauchy expansions, the method of successive approximations, the method of integral 
transforms) coincide. However, in the case of unbounded operators A and A(t) the 
situation is quite different - the three methods lead, practically, to different types of 
solutions.
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This article is devoted, first of all, to the analysis of the Cauchy method of analytic 
representations of solutions to equations (1) and (2) in the case that A is an unbounded 
linear operator in a Banach space X, and in the case that A(t) is a function whose 
values are unbounded linear operators in a Banach space X and which are continuous 
in a suitable sense. (However, we need some results based on other approaches and 
they will be presented.) The basic results of the article describe those initial data 
for which the solutions to the corresponding Cauchy problems may be represented by 
classical series of the theory of differential equations. More precisely, this refers to the 
exponential series

At	00 A ntn	
(3) 

in the stationary case, and to Peano's matriciant 

	

U(t,r)=I+	f A(a i ) . .. A(a)da ... da1	 (4) 

in the non-stationary case; here t) is the set of points (0',. . . ,a,,) E R" satisfying 
the condition r < a, < ... 5 U < t for r < t and the condition r a1 > ... > a, t 
for i- > t. Furthermore, the article discusses some properties of evolutionary operators 
(Cauchy functions), which are defined by the exponent series (3) and the matriciant (4). 

It turns out that, in the stationary case, the complete description of the set of initial 
data for which the corresponding solutions are represented in the form (3) can be done in 
terms of so-called Roumieu spaces generated by the operator A and their inductive and 
projective limits, the Gevrey and Beurling spaces. However, in some cases these spaces 
can turn out to be trivial (in the "worst" cases equations (1) and (2) can not have non-
trivial solutions represented in the form (3) or (4)). As a result, in the general theory 
some sufficient density conditions of the Roumieu, Gevrey and Beurling spaces in the 
original Banach space X must play an important role. The authors could discover only 
a few such results; the first of them is Gel'fand's remarkable lemma on the density of 
analytic vectors of the generator of a uniformly bounded group of operators; this lemma 
was essentially strengthened by Yu. I. Ljubiê and V. I. Matsaev. A new refinement in 
a different direction of Gel'fand's lemma is given in this article (Proposition 4). In 
order that one can catch the situation with different density results they are gathered in 
Section 2 (Propositions 1 - 6). The situation in the non-stationary case is more delicate; 
we present only the simplest result. 

2. Roumieu spaces and density results 

First we consider the autonomous linear equation (1) with an unbounded operator A. 
In this case formula (3) can not be considered as an equality in £(X); however, one can 
study conditions for € X under which the equality 

At	
00
	 •(5)
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holds. In the case of a continuous operator A formula (5) defines a solution to equation 
(1) satisfying the initial condition

x(0)=. (6) 

The main part of this article will be devoted to conditions under which formula (5) 
defines a solution to the Cauchy problem (1)1(6), and to the analysis of properties of 
the operator function defined by formula (5) in the case of an unbounded operator A. 
In order to characterize the sets of elements E X under which formula (5) defines 
a solution to the Cauchy problem (1)/(6), it is convenient to deal with the Roumieu 
spaces generated by the closed operator A. 

Let p be a sequence p = (Me ) with M0 = 1, and let 0 < L < oo . Recall (see, e.g., 
[10, 11, 17]) that the Roumieu space R.(A,p,L) is a space of elements x E X such that 

sup L"M' II Ax II <00 
O<n<oo 

equipped with the norm

II X 1I1?(A,iL) = sup L Th M' IIAxII, 
O<n<oo 

This is a Banach space which is continuously embedded in the space X. Usually it is 
useful to consider the closed subspace 1°(A, p, L) consisting of elements x E RA, p, L) 
such that

lim L M 'II A " x I[ = 0. 

Furthermore, we also need the Beurling and Gevrey spaces 

B(A,p) = fl R.(A,p,L)	and	c(A,p) = U R(A,p,L) 
O<L<co	 O<L<oo 

which are locally convex spaces equipped with the topologies of inductive and projective 
limits, respectively. 

Roumieu spaces (or special types of them) were considered by numerous authors. 
However, a lot of problems in their theory is still open. In particular, it is very little 
known about conditions under which a Roumieu (or Beurling, or Gevrey) space is 
dense in the original space X. The well-known example of R. Phillips [13] shows that 
the Roumieu space 1(A, ti, L) can be trivial. 

It is easy to see (see Section 2 below) that initial data E G(A, p) in the case p = (1) 
correspond to exponential-like entire solutions of equation (1). Similarly, initial data 

E 8(A, p) in the case p = (n!) correspond to entire solutions of this equation. Finally, 
initial data E 9(A, It), p = (n!), correspond to analytic solutions of this equation. 
Because of this, elements of g(A, (1)) are usually called exponential vectors, elements of 
8(A, (n!)) entire vectors; and elements of g(A, (n!)) analytic vectors. 

Let p = (1). In this case the Roumieu space R.(A, p, L) is the maximal A-invariant 
subspace of X on which the operator A is defined and has spectral radius not exceeding L 
(these spaces are not necessarily closed). The theory of these spaces is deeply connected
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with the theory of spectral operators and their functional calculus (see, e.g., [8]). The 
latter allows us to formulate various conditions under which the spaces R(A, (1), L) are 
dense in the original space X. 

Below we formulate some basic results on the Roumieu spaces R.(A, (1), L). These 
results have been obtained in an equivalent form in the articles [18, 191. More exactly, 
the authors of [18, 19] proved that, under the conditions of either Proposition 1 or 
Proposition 2, the corresponding operator A is an S-operator. In particular, by their 
definition, this means that the union of all subspaces of X which are invariant for A 
and on which A is bounded is dense in X. One can see that any subspace of X which is 
invariant for A and on which A is bounded with norm L is included in R.(A, (1), L). As 
a result, the union g(A, (1)) of R(A, (1), L) (0 < L < oo) is also dense in X. 

Proposition 1. Let X be a Banach space and A a closed operator satisfying the 
Levinson condilion a 

	

[loglog sup II R( A , A )lI dO	 (7) 
J	ReA>9 
0	 - 

for some a > 0. Then the Cevrey space g(A, (1)) is dense in X. 
Conversely, if a function M = M(9) satisfies the condition 

	

flog log M(9)do = 00	 (8) 

for some a > 0, then there exists an operator A such that 

sup R(.\, A) :5 M(8) 
ReA>9 

and 9(A, (1)) = {0}. 

Proposition 2. Let X be a Banach space and A an operator acting in X and being 
a generator of a strongly continuous group of operators T(t) (—on < t < on) which 
satisfy the Ostrovsky condition

+00 

J
log IIT(t)II


	

1 + 
t2 dt<no.	 (9)


Then the Gevrey space 9(A,(1)) is dense in X. 
Conversely, if a function w = .(t) satisfies the condition 

+00 

	

J
log(t) 

di = on,	 (10)
1+ t2 
00 

then there exists an operator A such that 

II T(t )II 5 w(t)	(t E R)
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and 9(A,(1)) = {0}. 

Proposition 2 is an essential amplification of the classical Gel'fand result [9] on 
the density of analytic vectors for a generator of a uniformly bounded and strongly 
continuous group of operators intwo directions: First, it turns out that one can assume 
the essentially weaker assumption (9) instead of the uniform boundedness of a group. 
Second, even under this weak assumption the set of exponential (not only analytic) 
vectors is dense in the original space. 

Let us mention the articles [25 - 271, in which the space g(A,i),z = ( 1), is also 
considered under the restrictive assumption that A is a generator of a uniformly bounded 
and strongly continuous group of operators. The results obtained in these articles are 
special cases of Proposition 2. We also mention the article [1] in which entire vectors of 
strongly continuous and analytic semigroups are studied, and the article [14] in which 
some refinement to the "converse" part of Proposition 2 is obtained (see also [6]). 

Some conditions for the density of the Roumieu spaces R(A, y, L) in the case p = 
(n!) in the space X are wellknown. 

Proposition 3. Let X be a Banach space and A a generator of a strongly continuous 
semzgroup which is analytic in a sector S(A,9,h) = {.\ : Re) > h I ImA I°} (here 0 < 
9< 1, h >0). Then the Beurling space B(A,(n!)) is dense in X. 

In the case 9 1 this proposition was proved in [15] for Hilbert spaces and in 
[12] for Banach spaces; the general case is studied in similar way. For another proof 
see Corrollary 8.3 of [6] and results in [1]. The assumption of Proposition 3 that A is 
a generator of an analytic semigroup implies the "good" solvability properties of the 
Cauchy problem (1)/(6) for t > 0. It is a rather strange but the assertion of Proposition 
3 means, among other things, that there exists a dense set of E X for which the Cauchy 
problem (1)/(6) is solvable for (sufficiently small) t < 0. 

Now we are in a position to formulate and prove a new result. This result shows 
that the statement of the classical Gel'fand result [9] on the density of analytic vectors 
holds true for arbitrary strongly continuous groups. 

Proposition 4. Let X be a Banach space and A a generator of a strongly continuous 
group. Then the Gevrey space g(A, (n!)) is dense in X. 

Proof. Let T(t) (—oo < t <+oo) be a strongly continuous group of bounded linear 
operators in a Banach space X, A its generator, and M and w constants satisfying the 
condition

IIT(t)II < Mcosh wt	(- < t < +).	 (11) 

Denote by .1 the set of functions defined and integrable with the weight cosh wt on R 
together with their derivatives of all orders. Further, for each x E X let 

H(f)x =Jf(t)T(t)xdt	(f El)
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It is easy to see that, according to (11), we have 

+00 

AH(f)x = urn T(h) — I J f(t)T(t)xdt 
h—.o	h

-00 
+00 

- A J f(t T(t + h) - T(t) 
-	)	 xdt -.	 h 

+00 

= - urn J f(t - h) - 1(t) T(t)xdt
	(1 E .T) 

h—O	 h 

+00 

= - f f'(t)T(t)xdt 

= —H(f')x 

Here passing to the limit under the integral sign is possible due to the integrability of 
the function f'(t) with the weight cosht. 

In a similar way, the equalities 

A0H(f)x = (-1)H(f("))	(n ? 1; 1 E F)	 (12) 

are proved. These equalities imply that 

II AThH(f)x II <M J If(t)I coshwtdt jjxjI	(n> 1; 1 E F). 

From this we get the inclusion H(f)x E D(A°°) for any x E X and any f € F (here, 
as usual, D(A°°) = fl 1 V(A")). Moreover, H(f)x e g(A,,L), where ju = (n!), if 1 satisfies the inequalities 

+00 

J lf( t ) I cosh wtdt <cL a n!	(n > 0)	 (13) 
00 

for suitable L and c. 

Denote by L the space of functions f = 1(t) which are integrable on R with weight 
cosht, equipped with the natural norm 

ill ilL	J1f(t )i cosh wtdt.
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Furthermore, denote by Lw the set of functions I = f(t) satisfying inequalities (13). It 
is evident that Lw is a subset of the space Lw. 

It is easy to see that the set 

H(Lw) = {H(f)x: f E L and x E X} 

is dense in X. In fact, putting Xn = 2nx1,1 instead of f, one can easily prove that 

+00 

lim J xn (t)T(t)xdt = 

and thus the closure of H(L,) in X coincides with X. 

Now, since H(Lw) c 9(A, A ), ,u = (n!), it is sufficient to show that the set L, is 
dense in L,,, and thus the set H(&) = {H(f)x I E L, and x E X} is dense in X. To 
this end, it suffices to remark that the functions 

+00 
1	f 

f(t)=— J cosh-1 t - s —f(s)ds 
-00 

+00	-1 where =	cosh sd.s approximate an arbitrary function I E L, in the norm of 

urn 11h(t) - f( t )IIL, = 

and that all these functions fe belong to Lw. 

The first of these statements is an evident consequence of the fact that the norms 
of the linear integral operators 

S f(t ) =
cosh' 

are uniformly bounded in the space L, and their values on Lipschitzian functions with 
compact supports (whose set is dense in Lw) tend to the identity operator as e 0. 
Both these facts are elementary corollaries of the evident equalities 

	

1	1 

	

lim—	cosh_1t '- s 
 

—ds=1 (0<6<oo) 

	

-0 -YE J	 C 
It—s I^!6

lim II ScII(L) = 1 
e-O 

where (see, e.g., [81)

+00 

	

1	 I	 t -s 
ISeIIC(L.,,L) = - sup cosh- ' ws

 
/ cosh wt cosh' —dt. 

	

7C	 J	 C
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In order to prove the second statement above it is necessary to obtain auxiliary estimates 
for all derivatives of the function cosh' z. 

Let

(z) = eZ	and	'11(w) = 2w	1 
=	+ 1 S 

w 2 +1 w+i w — z 

Then cosh z = 'I'(I(z)). Since ' ( ' ) (z) = e (n > 0) and 

= (-1)	+ (-1)" 

	

(w+i)' + '	( _ j)+l
(n > 0) 

(w + i)" + (w - j)n+l 

(w 2 + 1)+' 

then, due to Fah di Brurio's formula for the n-th order derivative of the superposition 
of two functions, we have 

(cosh' z) 
=n! 

k 1 ! k2 ! .. k! (l!)kt(2!)k2	(n!)n 

	

X (_1)2+ ..+k (ez +	 + ( cz 
(e 2z+ i)ki+k2+...+k+1 

X 

(ii > 1). Therefore, the inequality 

I(cosh' z)'
2n! 

k,-4-2k2-4-...-4-nkn 
k 1 !k2 !	k,! (l!) k i (2!) k 2	(n!)"' 

(e2 + )
kl+k2+...+kn+1 

(e2z + i)ki+k2+...+k+1 

2n! 

k,+2k2-4-...+nkn k 1 ! k2 ! .. k,! (l!) k i ( 2!) k 2	(ri!)cn 

1 
X

(e2z + 1)	(e21 + 

(n > 1) holds for z 0. Consequently, 

I(cosh 1 z)"I	
2n!

k1!kz! ... k!(1!)kI(2!)k2 ... (n!) k n (e2 z + 1)	ki+2k2+...+nk=n
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(n > 1). Further, it is easy to see that

2n! 

kj+2k2-4-...+nk=n k 1 !k2 ! . . k,! (l!) k i (2!) k 2 . . . (n!)kn 

2n! 

k 1 +k 2+ +k.,^n k 1 !k2 ! . . . k,! (l!) k i (2!) 1c 2 . . . (n!)' 

=j! 

j=1	k,+k2-f ..+k,=j k 1 !k2 ! . . k,! ( 1 !)ki(2!)k2 . . . (n!)'n 

j=1 
j! G 2!	W! 

<2ee_l n! 

(n > 1). Finally,

I(cosh' z)I < 2e'- In!	
(n ^ 1; 	z > 0). - (e2z+1)4 

Analogously,

I (cosh ' z)I <	
2e c_l n!	

(n > 1; z < 0). - (C-2: + 1)4 

Consequently, the inequality

2ee_mn! 
(cosh 1 z)I <	 (n ^ 1)
- (eI2z1 + 1)4 

holds for all z. 

Now let f be an arbitrary function from L,. We show that, for all functions f (0 < 
E < oo) inequalities (13) hold, i.e. 

JIf(t)I cosh wtdt <cLn!	(n > 1)	 (15) 

for some c and Le. In fact, the left-hand sides of these inequalities can be rewritten in 
the form 

+00	 +00+00 

J If(t)I cosh tdt =	+iJ f (cosh ' *	f(s)ds coshwtdt, 

and therefore 
+00	 +00+00 

1	1 
r 1(c,,h-1 J f(t)Icoshwtdt	JJ 	)(fl)t	If(s)IdscoshQtdt. 

-00	 -00-00

(14)
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Further, due to Fubini's theorem, 
+00	 +001+00 

-YE J 
If"(t)Icoshwtdt 7e"+ ' f (I (cosh_1)(Th)Lcoshwtdt) 

00 \-oo 

Evidently, by virtue of (14), 
+00 

fl (cosh-')('2)	 j 

El 

cosh wt dt 

+00 

<2cC_I n! I (e 2 ' 3 I+ 1)	cosh Lot dt 

+ 00 

• 2e'-In! f e_'1 t_3 1 eI t I dt 

+00 

• 2e'n! f e 1 " 1 ewlt`l+wl8l dt 

+00 • 2e'-In! f e(1+)1i_3l dt e'1 

4e'-In! 
-

for e < — 1, and hence 
+00	 +00 

--- I f(t)l cosh wtdt 
<	J f(s)e'' ds (e')" n! -ye	 (-e')ye 

-00

for all n > 0. In other words, inequalities (15) hold for 

Ce

+00 

(w - e' )e J If(s)l cW11 ds	and	L = =	
4e'- ' 

 

Thus, Proposition 4 is proved U 
Proposition 4 shows that, under the conditions of Gel'fand's lemma, the assumption 

about uniform boundedness of the group can be omitted. 
The sequence p = ( n!) seems to be a "limit case" in the problem of the density of 

Roumieu spaces in the original space X, at least for generators of strongly continuous 
semigroups on (0, co). Using methods suggested in [9] and the theory of quasianalytic 
function classes [20, 21, 241 one can repeat the proof of density in X of the set V(A°°) 
and show the validity of the following "folklore" statement. 
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Proposition 5. Let X be a Banach space and A a generator of a strongly contin-
uous semigroup. Then the Gevrey space 9(A,) is dense in X if the sequence p is not 
quasianalytic, i.e. if

(16) 

Ilk where H,, = infk>,, M,	( > 0). 

We recall that the quasianalyticity condition for a Roumieu space is equivalent to 
the existence of non-trivial C°°-smooth functions with compact support in this space; 
numerous equivalent conditions can be found in [21]. Thus, the problem about density 
of the Gevrey spaces 9(A, M) in the original space X has a sense only in the case if 

H,,' = oo. In the case of the classical Gevrey spaces p = ((n!)) (0 < s < ), 
this condition is valid for 0 <s < 1. 

Below another condition about the density of Gevrey spaces is formulated (see [3 - 
4]).

Proposition 6. Let X be a Banach space. Suppose that the resolvent R(A, A) exists 
and satisfies the inequality

II R( A , A )II	M(1 + II)N 

in a domain ReA > max {a,hIImAI°} for suitable a E IR,0 < 9< 1,h > 0, M >0 and 
N > 0. Then the Gevrey space 9(A, y) for ji = ((ri!)) (s > 1) is dense in X. 

3. Stationary linear differential equations 

Now we are in a position to describe the solutions which can be represented by exponents 
for the linear differential equation (1) with a closed unbounded linear operator A in a 
Banach space X. The following simple result is basic. 

Theorem 1. Let A be a closed linear operator in a Banach space X,p = (n!), and 
eEX. Then: 

a) Equality (5) defines a solution of the Cauchy problem (1)/(6) on some interval 
(—h, h) (on any interval (—h, h)) if and only if E 9(A, y) ( e 13(A, p)). More 
precisely, in the case e RA, p, h) equality (5) defines the solution of the Cauchy 
problem (1)/(6) on the interval (—h, h). Conversely, if the solution of the Cauchy prob-
lem (1)/(6) is defined on the interval [—h, h], then E 1°(A, p, h'). 

b) For L' < L" equation (3) defines, for t € (- h(L', L"), h(L', L")) with 

h(L', L") = (L')' - (L")'	 (17) 

a continuous linear operator eAt from R.(A,p,L') into R.(A,p,L"), such that 

li eAt lIC(1(A,,L'),(A,p,L")) < -.	 (18) - Lf
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c) The semi group identity

e A() = eAt eAT	 (19) 

holds for r,t,t + r E ( - h(L', L"), h(L', L")) and L' < L < L where e .4t , eAT and 
eA(t+T) are considered as operators from R(A, p, L') into R.(A, p, L), from R(A, p, L) 
into R.(A, p, L"), and from R(A, p, L') into R.(A, p, L"), respectively. 

Proof. Suppose that the series (5) with a fixed e e X is absolutely convergent 
an interval [— h, h]. Then

lim = 0	(—h t h) 

and, consequently,

h"IIAII
lim	=0. 
n—.oo	n! 

This means that E R. 0 (A , IA, h_I) for p = (n!). Conversely, if E 7?.(A,p,h'), then 
the series (5) is absolutely and uniformly convergent on every compact subset of the 
interval (—h, h). Thus, the right-hand side of (5) defines, for each t E (—h, h), a linear 
operator e At on the set of all E R.(A,p, h') with values in the space X. In general, 
the sum of the series (5) is defined, at least for small t, for all from the space g(A, p) 
with p = (n!). 

Further, let E (A,p) ( E B(A,p)), where p (n!). Then equality (5) de-
fines a continuous function on an interval (the fixed interval) (—h, h). This function is 
differentiable, because formal differentiation of (5) lead to the series 

°° t' 1 A'	t" A"' 
Q(t) =

n=1 (n—i)! 

which is absolutely convergent. Due to the classical theorem on the differentiability of 
function series the sum Q(t) of this series is the derivative of the left-hand side of (5). 
In addition, since the operator A is closed the identity 

=A 
n!	 n! 

n0	 T%=O 

holds, and, as a result, the left-hand side of (5) is a solution of the Cauchy problem 

Now, let L' < L" and E R.(A,p,L'). Then for each n> 0 and Iti < h(L',L") we
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have
eA At

 
= sup (L)_(ri!)_hIIAh1eAII 

o n <00

00 
< sup (L")(n!)'	

k! 
Ii 

o n <00 k=O
00 

ItI'(L')'(n + k)! 
IIeIIR(A,P,L)	sup (L)_hl(n!)_l(LI)t2 >

	k! o n <00 k=O 
00 

= iIeII1z(A,,,L') sup (L")(n!)—'(L' )n >(ItIL)k (k + 1)	(k + n), 
o <fl <00 k=O 

and after elementary calculations (z = ilL') 

iIeliR(A,,L) sup	(L")(n!)'(L')'
(' 

'9 
b;)

flOO

(ltiL')' o fl <00  

= IIII1(AL') sup (L"Y"(n!Y'(L'Y
f'9\' 1 

o <00 1 - L'ItI 

= IIeII1z(A,,L 1 ) sup	(LhI)_hl(n!)—'(L' )n
(1 - L'Itl)''

- L" 
- - ll'111Z(Aj,L1). 

Now, let L' <L < L". By what has been proved above, the operator eAT is defined for 
ri < (L')	- L' and acts from R.(A, j ,L') into 1Z(A,p,L), while the operator e41 

is defined for Itl <	- (L") 1 and acts from R(A, j c,L) into R.(A,,L"). Therefore

the operator e'4' cAr is defined and acts from 1(A, jz, L') into R(A, i, L"). It remains 
to check the equality eA(+T) e =	for all E R.(A,1z,L'), i.e. the equality 

00 00 (t + r)'A 	3	 rtAk 
=	A) \Ld k! I	( E 1(A,,,L')). 

n=0	 j0	k=0 

Since the operator A is closed and the series Ew 0 rkA3e  0) are absolutely 
convergent for in < (L')' -.L—', the right-hand side of the above equality can be 
rewritten in the form 

	

00 
tj AJ (Te) =(

	

iircAi+ke) 

Therefore, it is sufficient to prove the equality 

(I + r)'A	00	00 k +k 
L_

\ 

	

n!	= 	(1: 
VT

n=o	 j=O k=O	j!k!	) 
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The right-hand side of this equality, in virtue of absolute convergence for In <(L')' - 
L' and Itl < L' - (L")', can be rewritten in the form 

00 00 00 t)nkA)+\	1 /	n! 

j=o k=O	
j!k!	) 

= 00 

2	(E j!k!tT)A 

	

n0	k=n 

and thus the equality e A ( t + T ) = e At . eAr holds. Theorem 1 is proved U 

Theorem 2. Let A be a closed linear operator in a Banach space X, p = (n!) for


	

0 < $ < 1. Then the operator	defined by the right-hand side of equation (5) for all 

I E (—co, cc), is a continuous linear operator from R(A, p, L') into R(A, p, L") (L' < 
L"), and

	

00	1	L"	k 
IIeAtIIt(R(AL,),1z(ALo))	 3L' t

(k!)' — ((Lu - L')3) .
	(20) 

Moreover, the semigroup identity

e A ( t + 7 )	e At . e 4 '	 (21) 

holds for n,t,t+n E (—oo,00) and L' < L <L" where e4t, e Ar and et+T) are consid-
ered as operators from R.(A,p,L') into 1(A, 1z,L), from R(A,,L) into R.(A,/2,L"), 
and from R.(A, z, L') into R.(A, p, L"), respectively. 

Proof. It is evident that, for each E R.(A,p,L') and each t e (—oo,co), the 
estimate

At e	tII1(A,iL") 
= sup (LhI)_Th(n!)_aiIAneAteii 

o <n <00 

< sup (L")(n!)	co
	k IA +ceII 

3	
k! o <n <00 k=O 

< IIII1(A,,L') sup (L")'(L')" F- 
Iti k (L(( + k)!)3 

k=O o <00 

= IiII1Z(A,pL) sup (L")"(L')'1 00 
I t lk 	+ k)!)3 

k=o o <fl <00 

= IIii(A,,L') sup (L")(L') 
00, (n + k)!

) 8 (k!) 1-3
(ItILs)k 

o n <00 k=O	ri!k! 


holds. Further, the elementary inequality

k
(1<z<oo)


	

n! k!	\z-1)
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for z = L"(L') 1 implies

L"	ka (It lLi) k 
Il C Il(A, M ,L) ^ lIlIR(A,,L')	

(L" - L, )	(k!)'-3 k=0 

	

CO	
1	/ (L")3L'Itl k 

llll(A,,L')(k!)'—	- k=O 

The latter proves the basic statement of Theorem 2. The proof of the semigroup property 
repeats literally the corresponding reasoning in the proof of Theorem 1 1 

The estimate (20) for .s = 1 is rather rough in comparison with the estimate (18). 
The statements of Theorems 1 and 2 can be extended to the case of a sequence 

p = (M,,) which satisfies the condition 
= urn sup (n!)'M0 <co	 (22) 

In this case the operator eAt defined by the right-hand side of equation (5) is defined on 
the space R.(A, p, L') and takes its values in the space 7.(A, p, L") (0 < L' < L < oo) 
for tE ( - h(L',L"),h(V,L")), where 

h(L',L") = (L') — 1 sup {h: It (h) 

Moreover, this operator satisfies the estimate 
At e	llt((A,,L'),7Z(A,,,L"))	

(, 
L'l t i) 

where

c1(u,v)= sup {unMn+kic} 
0 fl <00 

In fact, for each E 7?.(A,p,L') and each t E (—co,00) we have

lleAt ell l(AL,, ) = sup (L" )'M,' llAneAtell 

0 fl <00

00 ltlkllA+ll 

	

sup ( L"r'M ' i	k! 0< n <00 k=0 

IllI1(A,i,L') sup (L")(L')" 
00 liI"(L') kMfl+k 

M I.? 0<n<oo k=0 

= llIlA,,L') 

As a matter of fact, Theorems 1 and 2 reduce the problem of the exponential representa-
tion of solutions to the Cauchy problem for equation (5) to the analysis of the Roumieu 
spaces generated by the corresponding operator A for sequences It = (Mn ) with factorial 
growth. Propositions 1 - 6 allow us to give effective sufficient conditions under which 
the set of initial data of solutions which may be represented by an exponential series 
is sufficiently "rich" (dense in the original Banach space). In the well-known example 
of R. Phillips (see [131) the statements of Theorems 1 and 2 are applicable only to the 
zero vector and, therefore, useless.
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4. Non-stationary linear differential equations 

In this section the linear equation (2) is considered, where A(i) is a family of closed 
linear operators with a dense domains in X. It is clear that in this case equation (4) can 
not be considered as an equation in the space £(X). However, one can study conditions 
for E X under which the equation 

U(t, r)e = e + 

co

	

 f A() A()	d1	(23) 
n=I(1) 

defines (as in the case of continuity of the operators A(t)) solutions of equation (2) 
satisfying the Cauchy initial condition

	

X(T) =	 ( 24) 

The analysis of the representations (23) of solutions to the Cauchy problem (2)/(24) is 
deeply related with the verfication of rather subtle convergence conditions for the series 
(23), and, up to present, nobody can say that such an analysis is complete. We restrict 
ourselves only to a new simple result which is formulated in terms of some auxiliary 
operator C. 

Let F be an infinite matrix with non-negative elements 7kj ()*, k > 0); in usual cases 
in applications the equalities

7jkO	(j>k+1, k>0) 

are supposed for some 1. The smallest I with this property can be considered as the 
"order" of the right-hand side of equation (2) with respect to C. 

Let C be a closed linear operator in a Banach space X with dense domain, 1L a 
sequence, and K an interval from R. We say that an operator function A(t) satisfies a 
F-condition with respect to I' and it on the interval 11, if 

00	

00 II CtA ( i ) II :S	7kiIICeII	(t E K,	 k 2 0	(25) 

We need some notation. Let, for n 2 1, 

	

9(L', L") = inf {e(L0 ,L 1 ). 6(L_ 1 ,L):	= L0 < L 1 <...< L = L"} (26) 


where

9(L', L") =sup {(L1)_kM1 TYki(L'YMi}	(27) 
I<k<oo	j=O 

and
9(L) = urn O(L,A)	(n > 1).	(28) 

A —.00
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Further, let

= 1 + 

w(p,L,h) = 1 +

CO

(n!)' 9(L', L")h"	 (29) 

CO

(n!)' 9(L)h n	 (30) 

and h(L', L"), h(L) be the radii of convergence of these series. 

Theorem 3. Let C be a closed linear operator in a Bamach space X with dense 
domain, /2 a sequence, and II an interval from R. Suppose that each operator A(t) (t E 11) 
is a closed linear operator on the Banach space X, the functions 

A(ai)...A(a)e	(EV(C'),n>1) 

are continuous on 1Il, and the operator function A(t) satisfies a r-condition with respect 
to r and M on the interval 11. Then: 

a) Equation (23) defines, for e € R.(C, y, L), on the interval (r - h(L), r + h(L)) 
the solution to the Cauchy problem (2)/(24) and this solution satisfies the inequality 

x(t)II(c,,L)	w(p, L, It - T I)IIII(A,,L)	(t, r € 11, It - TI < h(L)).	(31) 

b) For L' < L" equation (23) defines, for t,7- E II with It - T  < h(L', L"), a 
continuous linear operator U(t, r) from R.(C, p, L') into 1(C, z, L") such that 

IIU(t,	 < w(p, L', L", It - TI).	 (32) 

c) The equalities 

u;(t,r) = A(t)U(t,r)	and	U(t,r) = —U(t,T)A(r)	(33) 

hold for t, r € 11 with It - rI < h(L', L"), and the formula 

U(t, s) . U(s, r) = U(t, r)	 (34) 

holds fort, r,a €11 with It —al < h(L',L) and la-7-1 < h(L,L") were U(t,$), U(s,T) and 
U(t,r) are considered as operators from 1?.(C,p,L) into R.(C, IL, L"), from R.(C,/2,L') 
into R.(C, M, L), and from 1?(C, p , L') into R.(C, /1, L"), respectively. 

Proof. First we note that, by virtue of inequality (25), each operator A(a) acts 
from the Roumieu space R.(C,/2,L') into the Roumieu space R.(C,/2,L") for L' < L", 
and by (27) 

II A( a)eIIR(c,L .. )	SUP I(Lll)_kMI	7ki(L')Mi} IleIIR(C,,L') 
kt. j=o 

= O(L', L") IIII1(C,ii,L')•
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This inequality and (26) imply that 

IA(ai)... A( CY fl)eII(C P L) :5 O(L',L") IIII1Z(C,p,L1)	(n > 1).	(35)


Further, by (28),

II A ( a i)	A(an)II	On ( L ) IIII1(C,,,L)	(n >_ 1).	 (36) 

The last inequality implies that the series in the right-hand side of (23) for e e RC, p, L) 
is absolutely and uniformly convergent in the norm of the space X on each interval 
(r - h, T + h) (h < h(L)) where h(L) is the radius of convrgence of the series (30). 
Thus, equation (23) for It - T  < h(L) defines a function x(t) = U(t, r). Repeating the 
reasoning in the proof of Theorem 1 one can see that x(t) = U(t, r)e is a solution of the 
Cauchy problem (2)/(24) on the interval (r - h(L),r + h(L)). Moreover, the estimate 
(31) is proved.	 - 

Let L' < L" and	7(C, It, L'). Then statement b) and inequality (32) follow

from the chain of inequalities 

II U ( t , T)eIlfl(c,L.)
00 

^ IIIR(C,L") +	f II A(i)	 dai 
n0A (ri) 
00 

^ IIII1(C,p,L') +
n=O 

< w( ji, L', L", h) IIeIIRC,M,L) 

for I - TI < h, with h < h(L',L"). In order to prove the semigroup property U(t,$) 
U(s, T) = U(t, T) one can see that the left-hand and right-hand sides of this equality are 
operators which act from 7?.(C, a, L') into R.(C, j, L") under the hypotheses of Theorem 
3. Moreover, the formal composition of series 

U(t,$)=I+> f 
°A1 (3,i) 

U(s,r)=I+> I
A(o1)...A(p)dp ... dço1 

can be written (after an evident substitution) in the form 
co J J 

J,k=OA. (8,i) Ak(r,$) 

=	f A(a j ) ... A(a0)da...dai 

= U(t,r). 
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To justify the formal composition it is sufficient to verify absolute convergence of the 
left-hand side of the latter equation; however, this is a consequence of the evident chain 
of inequalities 

co
J J 

7k=O,,, (s,t) Ak(r,a) 

<00 
-	(j!)1 (k!)'9(L', L)Ok (L, L")h(L', L)'h(L, L1 

(j,k=0

	

 (E(k!)-1(j!)'O(L', L)h(L', L) )
	

8k(L,L")h(L,	IIIIR(C,,L') 
j=O	 k=o 

= w(/L, L', L, h 1 )w(i, L, L", h2 )) IIeII(C,,L) 

for IT -	< h i and It - sl < h2 , with h 1 < h(L',L) and h 2 < h(L,L")). Thus, the 
statement of Theorem 3 is proved I 

One can see that the application of Theorem 3 can give non-trivial results only if 
the Roumieu spaces R.(C,ii,L) (0 < L < co) are sufficiently "rich", at least, dense in 
the original space X. Thus, we need different density results for the Roumieu spaces 
as well as for the Gevrey and Beurling spaces. In particular, in applying Theorem 3 
Propositions 1 - 6 are useful. 

The conditions of Theorem 3 are rather cumbersome and tedious to verify. However, 
simple examples of linear partial differential equations show that they are sufficiently 
natural. Moreover, one can see that the calculation of the values h(L), h(L', L") and 
w(,L',L",h) is standard; in particular, one can consider the special cases from [2, 22, 
23].

The case considered in [5] is more difficult. Condition (25) in this case can be 
written in the form

k+1 
IIckA(teII	

k+I	k!	Ak_i II c eII	( E R, E nD(C'), k 
( - 1)! j=' .7 

Simple calculations show that 9(L', L") = oo for L" < 1; in the case L" > L > 1 the 
inequality

8(L', L") <
	c(L) 
(V) — ' - (L")—' 

holds. Applying Theorem 3 in this case allows us not only to get existence of solutions 
to the Cauchy problem on the corresponding interval, but also to define the Roumieu 
space in which the corresponding solutions lie.	 -
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