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The 2-Dimensional Dirichiet Problem
in an External Domain with Cuts 

P. A. Krutitskii 

Abstract. The Dirichlet problem for the Laplace equation in an external connected plane 
region with cuts is studied. The existence of a classical solution is proved by potential theory. 
The problem is reduced to a Fredhoim equation of the second kind, which is uniquely solvable. 
Consequently, the solution can be computed by standard codes. The solvability of the Dirichlet 
problem in an internal domain with cuts is proved with the help of a conformal mapping. 
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1. Introduction 

Boundary value problems in arbitrary plane domains with cuts were not actively studied 
in the theory of partial differential equations before. Problems outside cuts in the plane 
and problems in domains bounded by closed curves have been studied separately, be-
cause different methods for their analysis were used. The 2-dimensional Dirichlet bound-
ary value problem for the Laplace equation in a multiply connected domain bounded 
by closed curves is considered, for instance, in [2, 8]. The Dirichlet problem for this 
equation in the exterior of cuts is studied in [8]. The present note is an attempt to 
join these problems together and to consider domains containing cuts. From practical 
stand-point such domains have great significance, because cuts model cracks, screens or 
wings in physical problems. Domains without cuts are a particular case of our problem. 
Our approach is different from [2, 8] even in this case. 

The approach proposed in the present paper can be applied to other elliptic problems 
in domains with closed and open boundary. The Dirichlet and Neumann problems for 
the Helmholtz equation in plane domains with cuts have been recently investigated in 
[4, 6, 7]. Some nonlinear problems on fluid flow over several obstacles, including wings, 
were treated in [5]. 

The uniqueness theorem in the Dirichiet problem for the Laplace equation follows 
from the maximum principle, unlike the Dirichiet problem for the Helmholtz equation 
[4, 7], where the energy equalities are used. This enables to study the problem in the 
present paper under weakened smoothness conditions in comparison with [4, 71. 
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2. Formulation of the problem 

By a simple open curve we mean a non-closed smooth arc of finite length without 
self-intersections [8]. 

In the plane x = (11,12) E R2 we consider the external multiply connected domain 
bounded by simple open curves r, ..., r 1 E C2, " (N i ^: 0) and simple closed curves 

E C 1 ' (N2 ^! 1) with ) E (0, 1], so that the curves do not have points in 
common. We put

Ni	 N2 

r '=U r ,	r2 =U r ,	r=r'ur'2. 

The external connected domain bounded by r2 will be called V. We assume that each 
curve r is parametrized by the arc length s: 

rk 
= {x: x = x(s) = (x1(s),x2(s)), sE [a,b]}	(n = 1,...,Nk, k = 1,2) 

so that
a <b <...<aq 1 <b 1 <a <b <...<a 2 <b2 

and the domain V is on the right when the parameter s increases on r. Therefore, 
points x E r and values of the parameter s are in one-to-one correspondence except 
a, b, which correspond to the same point x for n = 1,..., N2 . Below the sets of the 
intervals on the Os-axis 

N 1	 N2	 2 Nk 

U kz, bk],	 U U [ak bkl fl' VII 
n1	71=1	k=1 n=1 

will be denoted by the same symbols as corresponding sets of curves,- that is, by F', F2 
and F respectively. 

We put

C°(I') {F = F(s): F E C O [an , b], F(a) = F(b)} 

and
N2 

C°(r2) 
= 

71 C°(r) 

By V, we denote the internal domain bounded by the curve .r 2 (n = 1, ..., N2). 
The tangent vector to F at the point x(s) we denote by r = (cosa(s), sina(s)), 

where cosa(s) = x i (s) and sin a(s) = x(s). Let n.= (sina(s),— cos a(s)) be a normal 
vector to r at x(s). The direction of n is chosen such that it will coincide with the 
direction of r if n is rotated anticlockwise through an angle of f. 

We consider the curves F' 1 as a set of cuts. The side of F" which is on the left, 
when the parameter s increases, will be denoted by ( rl )+, and the opposite side will be 
denoted by (F')—. 

Let us formulate the Dirichlet problem for the Laplace equation in the domain V\F1
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Problem (U). To find a function u = u(x) of class C°(D\F')flC2(V\1"), so that 
u(x) satisfies the Laplace equation 

52	52 
—u(x) + --u(x) = 0	(x E V\r'),	 (1)a 
Ox,	ax 

the boundary conditions 

u(x(s))I(r1)+ = F'(s),	u(x(s))I(rl)_ = F(s),	u(x(s))1p2 = F(s)	(1)6 

and the condition at infinity 

Iu(x)1 const	flxI =	+ x -* x).	 (1) 

All conditions of the problem (U) must be satisfied in the classical sense. 

Remark. By C°(V\F') we denote a class of functions, which are continuously 
extended on cuts F' from the left and right, but their values on F' from the left and 
right can be different, so that the functions may have a jump on F'. 

If N, = 0 and cuts F' are absent, then problem (U) transforms to the classical 
Dirichiet problem in a domain V without cuts. 

On the basis of the behaviour of harmonic functions in external domains [9: Sub-
section 26.1] and the maximum principle we can readily prove the following assertion. 

Theorem 1. Problem (U) has at most one solution. 

3. Integral equations at the boundary 

Below we assume that the functions F+ = F(s), F– = F(s) and F = F(s) in (1)6 
are subject to the following conditions: 

F, F E C1A(11), F E C°(r2 )	(\ E (0,1])	 (2)a 

F(a,) = F(a,), F(b,) = F(b)	(n = 1,...,N,).	(2)& 

If B,(F') and 8 2 (F2 ) are Banach spaces of functions given on F' and F 2 , then by 
B,(F') fl 82 (F2 ) we denote the Banach space of functions F = F(s), which are defined 
on F = F' u r2 and such that FIj' E 13m (1 m ), where rn = 1, 2. The Banach space 
8,(r')n8 2 (r2 ) is endowed with the norm 

II	II6 1 (r)nB2 (r) = II	II61(r') -1-Il . IIB2(I2). 

An example of such a Banach space is C°(F) = C°(F') fl C°(F2).
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We say that the function u u(x) belongs to the smoothness class K if the following 
conditions are fulfilled: 

1) u e C°(E)\I") n c2(v\r'). 
2) Vu E C°(D\["\I'2\X), where X is a point set, consisting of the end-points of r': 

N, 
X = 'U(x(a,) U x(b)). 

3) In the neighbourhood of any point x(d) E X, for some constants C >0, > —1 
the inequality

IVul <CIx - x(d)1'	 (3)
holds, where  --+ x(d) and d=a, ord= b (ri = i,...,N1). 

We shall construct the solution of problem (U) from the smoothness class K with 
the help of potential theory for the Laplace equation (1),,. 

By frk ... do, we mean

>f...da. 

We consider an angular potential [1] for equation (i)a: 

t 
v i [v](x) =.- i --J u(oV(x,y(o))do 

The kernel V(x,y(a)) is defined (up to indeterminacy 27rm, m = ±1, ±2,...) by the 
formulae

- Y 1 (a )	 - !12(E7) cosV(x,y(c)) 
=	

,	sinV(x,y(a)) 
Ix—y 

where 

Y = y(a) = (y1(o),y2(01)) E r',	Ix - y(a)I = ' .,/(x 1 - y , (C))2 + ('2 - !J2(1))2. 

One can see that V(x,y(cr)) is the angle between the vector and the direction 
of the 0x 1 -axis. More precisely, V(x, y(o)) is a many-valued harmonic function of x 
connected with In I , - (°)I by the Cauchy-Riemann relations. 

Below by V(x,y(a)) we denote an arbitrary fixed branch of this function, which 
varies continously with a along each curve 1' (ri = 1, ..., N1 ) for given fixed x r'. 

Under this definition of V(x, y(a)), the potential v 1 [v](x) is a many-valued func-
tion. In order that the potential v 1 [v](x) be single-valued, it is necessary to impose the 
following additional conditions:

(4) 

Iv(or) do, = 0	(n=i,...,Ni).	 (5)
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Below we suppose that the density u = u(s) belongs to CoA ( r1 ) and satisfies con-
ditions (5). As shown in [1, 31, for such ii = u(s) the angular potential v 1 [u](x) belongs 
to the class K. In particular, condition (3) is fulfilled for any € E (0, 1). Moreover, 
integrating v 1 [u](z) by parts and using (5), we express the angular potential in terms 
of a double layer potential 

,, I 1V1(X) = -. 
j p(a)— in Ix - (°)I dci	 (6) 

27r	any 

with the density

(7) 
a n1 

Consequently, v 1 [u](x) satisfies both equation (1) a outside F' and the condition at 
infinity (1).  

Let us construct a solution of problem (U). We seek a solution of the problem in 
the form

u[u, z)(x) = v [u](x) + -[/,I(x )	 (8) 

where v 1 [v](x) is given by (4), (6) and 

-[](x) = Wi [p](x) + W2[/L](X) + h[j ](x).	 (9) 

Here

= --2--J 
j (ci)lnx — y(ci)Idci 2ir p 

f 
W2[91( X ) =	i Jr2 p(a) a — In Ix - y(a)Ida. 

By h[p)(x) we denote the sum of point sources placed at the fixed points Yk lying inside 
r (k=1,...,N2) and aconstant: 

N2

z(a)dci ln I x — YkI 2ir 
k=2 r 

+ i ^jy(,)d,-1 p(ci)dcil lnlx—Y,I+
2lr 	]	Jr 

where Yk E Vk (k = 1, ..., N2 ). Clearly, h[z](x) obeys equation (i)a and belongs to 

N2 

C OO  

Besides, if x(s) E F, then h[p](x( . )) E CIA(F).
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As noted above, we will look for the density ii = u(s) satisfying conditions (5) and 
belonging to 

We will seek j = u(s) in the Banach space C() fl C°(1'2 ) (w E (0, 1], q E [0,1)) 
with the norm	IIc(r 1 )nc o (r 2 ) = II IIc (r 1 ) + 11 IIc(r2)• We say that it E C'(r') if 
the funtion 8 = 8(s) defined by

N, 
8(s) =jz(s) JJ 

n=1 

belongs to the Holder space C°''(r') with the exponent w and 

IIPIIc ( r' ) = I0IIC0.(rl) 

It can be checked directly with the help of 13, 8] that for such j. = U(s) the function 
w 1 [](x) obeys equation (1) a and is of class K. In particular, inequality (3) holds with 

= —q if q E (0, 1). The potential w2[,U](x) satisfies equation (1)a and belongs to 
C°() fl C2 (V). Consequently, w2 [z](x) belongs to the class K. The function h[,il(x) 
is constructed in such a way that w[ji](x) meets at infinity condition (1), because 
according to our assumptions N2 ? 1. 

To satisfy the boundary conditions, we put (8) into (1),, and arrive at the system of 
integral equations for the densities IL(s), u(s): 

± !() - 	f(,)V(,(s),y(,))d, 2 
-	p(cr) In Ix(s) - y(a)I da	 (s E ')	(10)a 2ir ri 

1 - -	in Ix(s) - y(a)l d + h[IL](x(s)) = F(s) 2ir 

and
if -	J u(a)V(x(s), y(o))da 

- - 
j i(a)ln Ix(s) -y(a)Ida + L(s)	 (s E 2 )	(iO)b 

- 21r ..12 •On In Ix(s) - y ( a )I da + h[IL](x(s)) = F(s) 

where p(s) is defined in terms of u(s) in (7). The kernels of the second integral term in 
(10)a and the third integral term in (10) b have a weak singularity as s = a. 

To derive limit formulas for the angular potential, we used its expression in the form 
of a double layer potential (6). 

Equation (10)a is obtained as x - x(s) E (r l )± and comprises two integral equa-
tions. The upper sign denotes the integral equation on (rl)+, the lower sign denotes 
the integral equation on ([").
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In addition to the integral equations (10) we have conditions (5). 
Subtracting the integral equations (10)a and using (7), we find 

	

p(s) = Ft (s) - F(s), u(s) = F'+ (s) - F(s), F'(s) =	F(s),	(11)
ds 

so that
P € C''(r'), ii € C0A(rl) 

Clearly, ii = u(s) is found' completely and satisfies all required conditions, in partic-
ular, (5). Hence, the angular potential (4), (6) is found completely as well. 

We introduce the function f = f(s) on r by the formula 

f 

	

f(s) = F(s) + i j (F'(a) - F'— (,)) V (x(s), y(u)) dci	(s I')	(12) 

where F = F(s) is a function defined on r, so that F(s) on r'2 is specified in (i)b, while 
F(s) on r' is specified by the relationship 

F(s) = (F(s) + F(s))	(s E F'). 

As shown in [3], 1 E C"(F'). Consequently, f e C A(F 1 ) n C°(r2). 
Adding the integral equations (10)a and taking into account (10),,, we obtain the 

integral equation for 4s) on F 

w[](x(s))Ir = 
--- f (ci)lnx(s) - y(a)J do, + 8(F2,$)p(s) 

	

- _ f t(ci) — In Ix(s) - y(ci)I dci + h[p](x(s))	(s € F) (13) 
27r	any 

=1(s) 

where f(s) is given in (12), and the limit values of the function (9) as x - p x(s) € r 
(x € D) are denoted by w[j](x(s))r. Furthermore, 

lo ifsF2 S(F2,$)=1	
ifsEF2. 

Thus, if i = z(s) is a solution of equation (13) from the space C'(F') fl C°(F2) 
( E (0, 11, q E 10,1)), then the potential (8) with u(s) from (ii) satisfies all conditions 
of problem (U) and belongs to the class K. The following theorem holds. 

Theorem 2. Let F' E C2 -1 , F2 E C IA and conditions (2) hold. If equation (13) 
has a solution j = u(s) from the Banach space C'(r') n C°(r2 ) for some w E (0,1] 
and q € [0, 1), then a solution of problem (U) exists, belongs to the class K and is given 
by (8), where u = u(s) is defined in (11).
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If .s E F2 , then (13) is an equation of the second kind. If S E T i , then (13) is 
an equation of the first kind, and its kernel has a logarithmic singularity. Our further 
treatment will be aimed to the proof of the solvability of (13) in the Banach space 
C(r') fl C°(r 2 ). Moreover, we reduce (13) to a Fredholm equation of the second kind, 
which can be easily computed by classical methods. 

By differentiating (13) on T i , we reduce it to the Cauchy singular integral equation 
on Ti:

1	f	 sin o(x(s),y(a)) do, -w[IL](x(s)) 
= 2 fri /2()	

x(.$) - y(a)I 
it	aa 

2rJr2	as an	-y(o)Ida	(sET')	(14) 

+ 

=f'(s) 

where 0 (x, y) is the angle between the vector and the direction of the normal n. 
The angle 0 (x, y) is taken to be positive if it is measured anticlockwise from n, and 
negative if it is measured clockwise from n. Besides, o(x, y) is continuous in x, y E F 
if x y. Note, that for x(s),y E T and x 54 y we have the relationships 

lnx(s) - 	'3 V(x,y) 
as 

	-yI=- lnIx - yI_- -- 

sin o(x,y) - cos (V(x(s), y) -a(s)) 
-- Ix — y l -	Ix(s) — yI 

and

	

-V(x(s),y) = -V(x,y)	a = - In Ix - y 

- - cos ço(x, y) - - sin (V(x(s), y) - a(s)) 
-	Ix — y I	-	Ix(s) — yI 

where a(s) is the inclination of the tangent r to the 0x 1 -axis, and V(x,y) is the kernel 
of the angular potential from (4). 

Equation (13) on	we rewrite in the form 

P(S ) + Ir (a)A2 (s, a) da = 21( s )	(s E F2 ),	 (15) 

where 

A2 (s,a) = I - (1 - 6(r2 , a)) In Ix(s) - y(a) I -	( F2 , a)— '3 
In Ix(s) - y(a) I 

7I	 ii- 

it 
k=2
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The function 6(1 2 , a) was introduced in (13), and 

10 if  
(r,a)	

1 1 if a E	
(k	1,...,N2). 

The kernel A 2 (s, a) has a weak singularity ifs = a E r2 . Consequently, the integral 
operator from (15) is a compact operator mapping C°(r) into C°(r2). 

Remark. Evidently, f(a) = f(b,) and A2 (a,,a) = 2', or) for a E r, a 
a, b (n	1, ..., N2 ). Hence, if i = i(s) is a solution of equation (15) from 

	

(n=1

N2
2C° 	[a
	)	--

then according to the equality (15), p(s) automatically satisfies the matching conditions 
= p(b,) for n = 1,..., N2 and, therefore, belongs to C°(r 2 ). This observation is 

true for equation (13) also and can be helpful in finding numerical solutions, since we 
may refuse from the matching conditions (a) = p(b) (n = 1,..., N2 ), which are 
fulfilled automatically. 

We note that equation (14) is equivalent to (13) on 1" if and only if (14) is accom-
panied by the additional conditions

= f(a,)	(n = 1,...,N1 ).	 (16) 

The system (14) - (16) is equivalent to the equation (13). 
It can be easily proved that 

sino(x(s),y(a)) -	E C0A (r1 1") 

	

Ix(s) - y(a)I	a - 

(see 1 3 , 81 for details). Therefore, we can rewrite (14) in the form 

:
w[ ](x(s))	

1 r	
'0' + I j (a)M(s,a)da = 2f'(s) (s e F')	(17) —	= - / (a 2	 1,(,) '0' 

Jr'	a - s  

where f'(s) = s-f(s) belongs to C0A(I1) and 

11  M(s,a) = - (1 - 5(F2,a)) 
[sin ^po(x(s) , y(c)) 

Ix(s) - y(a)I 
l a	 N2 

	

- 6(F2,a) 
a 
- L
	

ln Ix(s) - y(a)I +	S(F,a)ln Ix(s) - YkI] 

+ (1 -8(F,a)) - lnIx(s) — v1i} € coA(Fl x F).
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4. The Fredhoim integral equation and the solution 
of the problem 

Inverting the singular integral operator in (17), we arrive at the following integral equa-
tion of second kind [8]:

N,-1 
A( S ) +	f a(o, )A 1 (s, a) da  +	E G,,s" - 

Qi(s)'	(s E F') (18) 

where N,	 ________ 

A,(s,a) _.f M(ea) Q,(e)de	,(s) 
=

I f 2Qi(ci)f'(a) da 
r'	 ir	0—s 

and Go,..., GN,1 are arbitrary constants. It can be shown using properties of singular 
integrals [8] that ibi = ,(s) and A, = A i (s,o) are Holder functions on F' and F' x F 
respectively. Consequently, any solution of (18) belongs to C'12 (I i ) and below we look 
for z = p(s) on F 1 in this space. 

We put

	

Q(s) = (1 - 6 (r 2,S)) Q,(s) + S(F2 ,$)	(s E F). 

Instead of it E C 2 (r') n C°(r'2 ) we introduce the new unknown function y. = 
so that p. (s) = j.i(s)Q(s) and p. E C°''(F')flC°(F2). Now we rewrite (18), (15) in the 
form of one equation in terms of .(s):

N,—! 
z(s) + fi * (a)Q'(a)A(sa)da + (1— (F2 , s)) E Gs = (s) (s E F) (19) 

where
A(s, a) = (1 - ö(F2 , s)) A 1 (s, a) + 8(I 2 , s)A2 (s, a) 

(s) = (1 - 6(F 2 ,$)) ' i (s) + 26(f2,$)f(s). 

To derive equations for Go ) ... , GN I _l, we substitute y(s) from (18), (15) in the 
conditions (16). Then in terms of p. (s) we obtain 

NI -1 

	

f Q'()s()1n()ck+ >BnmGmHn	(n=1,...,N,)	(20) 

where

	

= —w [Q'(.)A(.,e)J (a) ,	H,, = —w [Q 1 (•)( . )] (ak) + f(a,) 

B,,,,, = —w {Q- '( . ) (1 - 8(F2,.)) (.)m] (aj.	 (21)
By we denote the variable of integration in the potential (9). 

Thus, system of equations (14) - (16) for s(s) has been reduced to system (19), (20) 
for the function &,(s) and the constants G0 , ..., GN,.!. It is clear from our consideration 
that any solution of system (19), (20) gives a solution of system (14) - (16).
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As noted above, 4I	i(s) and A 1 A 1 (s, a) are Holder functions on r' and r' x 1' 
respectively. More precisely (see [8)),	E C°"(r') (p = min { j ,A}) and A i ( . ,a) E
C° P(r') uniformly with respect to a E r. We arrive at the following assertion. 

Lemma. Let r' E C2 , I2 E Ci A (A E (0,1)), and	= (s) is such that
C°(r')n c°(r2 ), where p = min{A, }. If u = j(s) from C°(r) satisfies equa-

tion (19), then z, E C° P(r') fl C°(r2). 

The condition 1 E C°P(r') n C°(['2 ) holds if conditions (2) hold. Hence below we 
will seek	= ji.(s) in C°(r). 

It was noted above that the integral operator from (15) with the kernel A2(s,a) 
is compact from C°(r) into C°(f2 ). Since A 1 = A i (s,a) belongs to C°(I x ), the 
integral operator from (19)

Ap. = f*(a)Q'(a)A(s,a)da 

is a compact operator mapping Co (r) into itself. We rewrite (19) in the operator form 

	

(I+A)ji+PG=	 (22) 

where P is the operator, multiplying the row P = (1— ö(r2,.$))(s°,...,s'"') by the 
column G = (Go,...,GN,_l)T. The operator P is finite-dimensional from EN, into 
C°(r) and therefore compact. 

Now we rewrite equations (20) in the form 

IN, G+Lfl.+(B—INjGH	 (23) 

where H = (H 1 , ..., Hv, )T is a column of Ni elements, 'N, is the identity operator in 
EN,, and B is an (N 1 x Ni )-matrix consisting of the elements Bnm from (21). The 
operator L acts from C°(1') into EN,, so that L. = (Ll,uS,...,LN,,t)T, where 

= 

The operators (B - IN,) and L are finite-dimensional and therefore compact. 

We consider the columns ji = (v),
	= () in the Banach space C°(r) x EN,

with the norm III2IIc0 ( r ) xE 1 = I/2 .IIco ( r ) + lIChEN, 
We write system (22), (23) in the form of one equation 

- -	 (A	P\ (I+R)=,	R=L B—IN,)	 (24) 

where I is the identity operator in the space C°(r) < 
It is clear that R is a compact operator mapping C°(r) x EN, into itself. Therefore, 

(24) is a Fredholm equation in this space.
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Let us show that the homogeneous equation (24) has only a trivial solution. Then, 
according to Fredholm's theorems, the inhomogeneous equation (24) has a unique solu-

tion for any right-hand side. We will prove this by a contradiction. Let j° 
= ( GO) 

E 

C°(1') x EN, be a non-trivial solution of the homogeneous equation (24). According to 

the Lemma, AO = () E C°"(r') n c°(r2 ) x EN, where p = min{ A, 1 1. Therefore, 
GO	 2 

the function ,u°(s) = 2( s)Q'(s) belonging to n C°(1' 2 ) and the column G° 
convert the homogeneous equations (18), (15), (20) into identities. For instance, (15) 
takes the form

lim	w[p°J(x) 0	(x E V).	 (25)a z_z(s)Er2 

Using the homogeneous identities (18), (15), we check that the homogeneous identities 
(20) are equivalent to

w [j°] (ak) = 0	(n = 1,..., N1 ).	 (25)b 

Besides, acting on the homogeneous identity (18) with a singular operator with the 
kernel (s - i)', we find that p°(s) satisfies the homogeneous equation (17): 

a

	

—w [M o ] ( X ( S ) ) I	= 0.	 (25)
In 

It follows from (25) that p°(s) satisfies the homogeneous equation (13). On the basis 
of Theorem 2, u [ 0 , p°]( x) = w [iz°]( x ) is a solution of the homogeneous problem (U). 
According to Theorem 1, w[z°](x) 0 on V\17 1 . Using the limit formulas for normal 
derivatives of a single-layer potential on F 1 , we have 

a lim	—w[z°](x) -	urn --W[0	0P 	= °(s) 0	(s E F1) 
x_.x(3)E(r')+ ôn	x—z(s)E(r') afl 

Hence, w[z°j(x) = w2 [z°](x) + h2 [p°](x) 0 for x E V, where 

N2 
h2 [110 ](x) =	 j i(a)dci ln I x — YkI

(26) 
11! 

2ir	 In?	 Jr2 
+— 	p(o)da —	(a)d ] ln l x — YiI+	p(o)da 

and p°(s) satisfies (25), which can be written as 

, 
p (s) — 1	

jz 
- J	(lr) 

0 
— in Ix(s) — (°)l do, + h2[p°](x(s)) = 0 (s E F2).	(27)an y 2	27r

The Fredholm equation (27) arises when solving the Dirichlet problem for the 
Laplace equation (1) a in the domain V by the double layer potential with the sum
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This inequality and (26) imply that 

A(ai)... A (a fl)eII . (c,,z,L o ) !^ 9(L',L") IIII1C,p,L')	(n 2 1).	(35)

Further, by (28),

A(a j ) .. . A(o)JI <9 fl (L)IIII R(c ,L)	(n 2 1).	 (36) 

The last inequality implies that the series in the right-hand side of (23) for E R.(C, z, L) 
is absolutely and uniformly convergent in the norm of the space X on each interval 
(r - h, ,r + h) (h < h(L)) where h(L) is the radius of convrgence of the series (30). 
Thus, equation (23) for It - T  < h(L) defines a function x(t) = U(t, r). Repeating the 
reasoning in the proof of Theorem 1 one can see that x(t) = U(t, T )e is a solution of the 
Cauchy problem (2)/(24) on the interval (r - h(L),T + h(L)). Moreover, the estimate 
(31) is proved.	 -	 - 

Let L' < L" and E 1?.(C,1i,L'). Then statement b) and inequality (32) follow 
from the chain of inequalities 

II U ( t , -)II R(C,i,L") 

IIIIR(C,,L") +	J II A(')	A(fl)eII(C,L') da .. da1 

A,,(r,i) 
00 

IIII1(C,,L') +

	

	I(n! ) ' 9,1(L',

n0 

w(.i, L', L", h) III1(C,L') 

for I t - rI < h, with h < h(L',L"). In order to prove the semigroup property U(t,$) 
U(s, r) = U(t, r) one can see that the left-hand and right-hand sides of this equality are 
operators which act from 7.(C, p, L') into 7(C, M , L") under the hypotheses of Theorem 
3. Moreover, the formal composition of series 

U(t,$)=I+ E f =0 ój (si) 

U(s,T)=I+> I 
k=OA , (r, s)

can be written (after an evident substitution) in the form 

f f k=0 ó 1 (ii) A,(r,$) 

=	f A(a i ) ... A(a)d...dai 
nO&, (t , r) 

= U(t,r). 
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To justify the formal composition it is sufficient to verify absolute convergence of the 
left-hand side of the latter equation; however, this is a consequence of the evident chain 
of inequalities 

f f 
'00 

< ( (i!)'(k!)—'9(L', L)Ok(L, L")h(L', L)h(L,	IIeII(C,,L') 

(oo	

)/co 

	

L)h(L', L)3	((k!)_1Ok(L, L")h(L,	IIII(C,,L') -	.	3 
\j0	 \k=o 

= w(,t, L', L, h i )w(, L, L", h2 )) II'II1Z(C1,L') 

for IT - s I < h 1 and It - s I	h2 , with h 1 < h(L',L) and h2 < h(L,L)). Thus, the 
statement of Theorem 3 is proved I 

One can see that the application of Theorem 3 can give non-trivial results only if 
the Roumieu spaces R(C,jt,L) (0 < L < ) are sufficiently "rich", at least, dense in 
the original space X. Thus, we need different density results for the Roumieu spaces 
as well as for the Gevrey and Beurling spaces. In particular, in applying Theorem 3 
Propositions 1 - 6 are useful. 

The conditions of Theorem 3 are rather cumbersome and tedious to verify. However, 
simple examples of linear partial differential equations show that they are sufficiently 
natural. Moreover, one can see that the calculation of the values h(L), h(V, L") and 
w(,u, L', L", h) is standard; in particular, one can consider the special cases from [2, 22, 
23].

The case considered in [5] is more difficult. Condition (25) in this case can be 
written in the form

	

Ic'eII	
( 

ICkA(i)eII	k! Ak_3	 t E ,e e n V(C), k ^ 
(j - 1)! 	

0)j=1  

Simple calculations show that 8(L', L") = oo for L" < 1; in the case L" > L > 1 the 
inequality

	

9(L', L")	(Ll )—_ (Lit ) 71-

holds. Applying Theorem 3 in this case allows us not only to get existence of solutions 
to the Cauchy problem on the corresponding interval, but also to define the Roumieu 
space in which the corresponding solutions lie.	 -
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