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The Hausdorif Nearest Circle 
to a Convex Compact Set in the Plane 

I. Ginchev and A. Hoffmann 

Abstract. The problem of finding the nearest in the Hausdorif metric circle to a non-empty 
convex compact set T in the plane is considered from geometrical point of view. The consid-
eration is based on the equivalence of this problem with the Chebyshevian best approximation 
of 27r-periodic functions by trigonometric polynomials of first order, whence it follows that the 
Hausdorif nearest circle to a convex compact set in the plane exists and is unique. It can be 
characterized by a geometric Chebyshevian alternance. As a consequence, in the particular 
case of a polygon the centre of the circle is described as an intersection of a midline between 
some two vertices and a bisectrix of some two sides. In the general case, geometrical algorithms 
corresponding to the one and the four point exchange Remez algorithms are described. They 
assure correspondingly linear and superlinear convergence. Following the idea, in the case of 
a polygon to get the exact solution in finite number of steps, a modified two-point exchange 
algorithm is suggested and illustrated by a numerical example. An application is given to esti-
mate the Hausdorif distance between an arbitrary convex set and its Hausdorif nearest circle. 
The considered problem arises as a practical problem by measuring and pattern recognition in 
the production of circular machine parts. 
Keywords: Convex sets in two dimensions, geometric construction of best approximation, 

Hausdorff metric, approximation by circles 
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1. Introduction 

Throughout this paper we denote by: 

E - the Euclidean plane 

7 - the class of the non-empty convex compact sets on E 
AC - the class of all the circles (closed Euclidean balls) on E 
B = K(0, 1) - the closed unit circle, K(X, r) = X + rB 
S = IF 11 1 611 = 11 - the unit circumference, where	is the Euclidean norm 

ST( IF ) = ST,Q(ë) = maxMET ë' UM - the support function of T E T. 
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The support function ST(6 ) = sT,o( e ) is related to the origin 0 and 

sT,X( e ) sT,o( e ) - IF O3	 (1.1) 

to another initial point X. The Hausdorff distance h(T1 ,T2 ) between T1 ,7'2 E 7 is 
defined by

h(T1 ,T2 )= inf{e > 0T1 CT2 +cB and T2 CT1 +eB}. 

Let T E 7 be fixed. We consider the problem 

h(T, K) -p mm	(K E K;),	 (1.2) 

that is we look for the Hausdorif nearest circle K E K; to a given convex compact 
set T. This problem was brought to the authors by an engineer who was facing the 
following practical situation. The engineer produces machine parts which should be 
(ideal) disks but due to random fluctuation he gets declining (non-ideal) disks. Provided 
the produced disk satisfy certain admittances requirements, then they must be sorted 
according to their radius. We can imagine for instance such a situation by the production 
of piston rings and pistons, where sorting the rings and the pistons according to their 
measure, we are able easily to complete later the pistons with the corresponding rings. 
The problem which arises is how to measure the radius of the non-ideal disk, whose 
shape in fact is not a circle, and how to find the position of its centre. The knowledge 
of this position could be important for the eventual further production operations. The 
problem can be extended to the case when the produced details do not satisfy the 
required admittance, that is they are far from ideal disks (or their measured radius is 
outside the interval of admittance). Such machine parts must go to trash, therefore we 
deal with the problem of quality control and pattern recognition. 

The mathematical model of the described situation is the optimization problem 
(1.2), where in general h is some distance functional. We consider this problem with 
respect to h being the Hausdorif distance, finding it proper to treat the described 
practical problem. 

The contemporary methods of quality control require often visualization on a screen, 
which is particularly desired if the initial problem admits geometrical description. It 
is therefore important to have algorithms being real time geometric procedures. This 
paper solves the posed problem. The suggested geometric procedures give the solution 
not only in the "nearly circle case from the practice" that motivated initially this study 
but also for an arbitrary convex compact body T. 

A similar problem is considered in Przeslawski [13]. He studies centres of convex 
sets in L 1' metrices in the sense that he considers the problems 1) 

H(T + tB, {y}) -p mm (y E R") and H(T, y + tB) -* mm (y e RTh) 

' The distances H are defined in Gruber [5] for 1 < p < oo by H(T, K) = (f I sv(fl -
s K( e )I da ( e ))' where a is the normalized Lebesgue measure on S.
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for a real parameter t > 0. The case H9 = h, i.e. p , is relevant for our consid-
erations. Obviously, the first problem has the Chebyshev centre as unique solution for 
any i > 0. The solutions of the second problem are uniquely determined [13: Theorem 
4.11 and belong to T for any t> 0 and the curve i y,(i) seems to have interesting 
properties. In the case of a triangle t i- y(t) consists of a part of a bisectrix and a 
part of a midline. For t sufficiently close to 0 we get the Chebyshev centre (centre of 
the smallest circumscribed circle) and for t sufficiently large we get the centre of the 
incircle. Ginchev [3] finds in a straightforward manner the solution of problem (1.2) 
for the case, when T is a triangle. The intersection of some bisectrix and some midline 
defines the centre of the ball of best approximation in this case. 

Several authors investigate problem (1.2) but rather with a metric h different than 
the Hausdorif metric. Alt and Wagener 11) give a computational procedure to find 
the circle of the best approximation for a convex polygon, provided the metric h into 
consideration is the area of the symmetric difference between T1 and T2 . Some works, 
e.g. Bani and Chalmers [2] suggest a connection with the L2 and V norm. Kenderov 
[8] and Kenderov and Kirov [9] use the Hausdorif distance too, however they consider 
the approximation of a convex compact set in the plane by convex polygons. 

In this paper we use the obvious fact that the considered problem is equivalent 
to the problem of Chebyshevian approximation of continuous or, more precisely, of 
sinusoidal convex functions by trigonometric polynomials of first order. This problem 
has a unique solution characterized by the Chebyshevian alternance property. If the 
support function of the convex set is known, the solution can be computed by using 
well-known algorithms of semi-infinite programming, Remez algorithm included [6). 

However, our intention is not to repeat these known facts but to generate a ge-
ometrical procedure which gives the exact solution (in the case of a polygon) or at 
least an approximate solution (in the case of an arbitrary convex compact set). The 
procedure bases on the Remez algorithm for finding the nearest in the uniform metric 
trigonometric polynomial of first degree to a given continuous 27r-periodic function. 

2. The alternance property 
The Hausdorif distance between two convex sets TI , T2 E 'T can be expressed by their 
support functions (see, e.g., Leichtweif3[111): 

h(T1 ,T2 ) = 1I ST1 - S T2 uS := max lsT1 (e) - sT,(ë.)l	 (2.1)

ES 

Using the support function s K,Q( è ) = p +	of K(X, p) problem (1.2) is equivalent 
to	

h(T, K) = max j 3T() - (p +	. mm	(X E E, p > 0). 
FES 

Suppose that an orthogonal coordinate system origined at 0 is introduced and let 
X = (a, b) and ë = (cos i, sin i) be the coordinates of X and e, respectively. Then we 
come to the problem 

h(T,K) = max I() - ( p + acost + bsint)I -p mm	(a,b E R,p ^: 0)	(2.2) 
i EO ,2 i]
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where s(t) = ST,O(COSt, sift) is a continuous 27r-periodic function. The function s(t) is 
a supremum of sinusoids of the type s. , (t) = 7cos(t - ) with (y cos(qS), 7 sin(q)) E T. 
Such a function is sometimes called sinusoidal convex. This property implies that the 
solution of the minimization problem (2.2) upon a, b, p E R satisfies automatically p> 0. 
Hence, our problem is equivalent to the problem of Chebyshevian approximation of a 
27r-periodic continuous functions by trigonometric polynomials of first order satisfying 
the Haar condition [7, 101. From the general alternance theorem the following corollary 
follows. 

Corollary 2.1. Ifs is 21r -periodic function, then there exists a unique trigonometric 
polynomial 0, 0(1) = p + a cos t + b sin t, being the nearest to s among the trigonometric 
polynomials of order at most I in the uniform on [0, 27r] metric. The following alternance 
Property characterizes 0: 

The trigonometric polynomial 0 is the nearest to s if and only -if there are four 
points 11 <t2 <t3 <14 , t 4 — 11 < 27r, and a number e = ±1, such that 

s(t 1 ) - 0(t) = e (- 1 )'II s - 0	(i = 1,2,3,4)	 (2.3) 

where we put 11011 = max0 <j< 21 I(t)I for a 27r-periodic function 0. 

Remark. 1. If one considers the approximation of  by a convex n-gon with respect 
to the above Hausdorif distance, then the alternance property is only necessary but not 
sufficient for the best approximation [8, 9]. The next corollary says that the alternance 
property is both necessary and sufficient for the best approximation of T by a circle. 

Definition 2.2. We say that the vectors è j E S. (i = 1,2,... ,n) follow in a 
circular order, if there are numbers t 1 < t2 < ... < t,, t,, - 11 < 27r such that ë = 
(cost, sin t) (i = 1,2,... ,n).	- 

The following corollary is a geometric interpretation of Corollary 2.1. 

Corollary 2.3. If T is a non-empty convex compact set on the plane, then there 
exists a uniquely determined circle K = K(X, p) being the nearest to T in the Hausdorff 
metric. The following alternance property characterizes K: 

The circle K = K(X, p) is the nearest to T if and only if there are four unit vectors 
e, (i = 1,2,3,4) following in a circular order and a number e E{-1, 11 such that 

ST( e ) - S K(,) = e(-1)'h(T,K)	( i = 1,2,3,4).	 (2.4) 

Defining the difference 6(ë) := S T( IF ) - S K( F ) as the deviation of T from K = 
K(X, p) in direction iF, condition (2.3) can be written in the form 

= e(_1)*h(T,K)	(i = 1,2,3,4).	 (2.5) 

We show that the deviations in direction e (i = 1,2,3,4) alternate and their absolute
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values are the maximal possible (cf. Figure 2.1). 

Figure 2.1: The Hausdorif nearest circle K to the plane convex compact T 

We denote by PT( F ) the support line of T in direction ë, i.e. if M is the current 

	

point on pT(i), then pr	 1 (i ) = {MI b F = sT(i)}. The deviation 5(i) is the oriented 
distance between the support lines of T and K in direction ê (cf. Figure 2.1). It 
seems that the points L, in which the axis in directions Fi originated in X meets the

boundary of T, lie on the support lines pT(ëj). This fact we prove in Section 3. Let 


e 2 , e3, e4 be the vectors, for which the alternance property holds. The deviation 
6(e) = S T( ë ) - S K(F) attains according to (2.4) extrema inthe directions ê. We can 
relate in this difference the support function to different initial points, in particular to 
the centre X of the Hausdorff nearest circle K = K(X,p). Then 6(e) = STx(i ) — p and 
therefore s K,X( ë ) should attain extrema at i (i = 1, 2,3,4) where ST,X(I) = 
and sT,X( e2) = sT,x( è4), one of these two values is a maximum, the other is a minimum. 
Let

s' := rninsT,x(e)	and	s	:=rnaxsT,x(). 
cES	 eES 

Then formula (2.4) gives

h(T, K) = S
max	 ruin 
T,X - p = O - 5TX	 (2.6) 

	

max	mm	 1 max	mm P = (ST, X + S T, X)	and	h(T,K) = ( STX - STX)	(2.7) 

which can be used for the construction of p. 

Proposition 2.4 (see [13: Theorem 4.1]). Let T be a convex compact set and 
K = K(X, p) be the Hausdorff nearest circle to T. Then X is a point of T.
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Example 2.5. If T is a rectangular with sides a b, then the centre X of the 
Hausdorif nearest circle K = K(X, p) is the centre of the rectangular. Its radius p and 
the Hausdorif distance h h(T, K) are 

p=(Va2 +b2 +b)	and	h=/a2+b2_b). 

3. Geometric characterization of the extremality of (ë) 

The following characterizations of extrernality of 8(e) are important for the geometric 
construction of the Hausdorff nearest circle. 

Proposition 3.1. Let T be a convex compact set and K = K(X,p) be a circle. 
Let the deviation b ( OF ) = S T( F ) - S K( IF ) (e' e S) attains a local extremum in direction 
o (the extremum is understood with respect to the relative topology on S). Let 1 be the 

axis containing X and êo. Then there is a non-empty segment LZ, in which 1 intersects 
T and having the direction of oFo. The point L0 lies on the support line pT( eo) and if 
the extremum is a local maximum, then T fl PT(e0) consists of the single point L0. 

Proof. The statement is trivial if T {M}. Now let the dimension of T be larger 
than zero. It holds

= S TX( C ) - S K,X( e ) = sr,x( ë ) - P. 
Therefore, any minimum (maximum) of 8 is also a minimum (maximum) of ST,X and 
vice versa. Let {L 1 }	1  pT(eo), i.e. 

pT(CO)= {I'0 =sT,X( IF0)}	and	IsTX(eO)IeO=XL1. 
a) Let sT,X(e) have a minimum at e.o. Assume L 1 T. At first we consider the 

case ST,X(eO) ? 0. Using a standard separation theorem we find some Fi E S arbitrary 
close to ëo such that V	sT,x(el) for all YET and XL 1 E, > sT,x( e l) . Hence 

ST,X( Co) ST,X( Co) eo eo >_^ST,X(eo)&)ë1 =XL 1 e 1 >STx(el) 

contradicting the assumption that ST,X(ë) has a minimum at ëo. Now let S T,X( 60) < 0. 
Then X V T, the closed ball B around X with the radius ST,x(eo) contains L 1 and does 
not meet T. Hence, there is some è arbitrary close to é0 such that sT,x( ë1) < sT,x(eo) 
which again contradicts that .sT,x(ë) has a minimum at i0. 

b) Let ST,x(ë) have a maximum at ë 0 . Assume L 1 V T. Choose M with XM 
S T,X( eo) . Obviously, sT,x(e ) > 0, whenever T consists of more than one point. Since 
L i V T, we have M 0 L 1 . We choose i, = (1— A)e0 + XXYMIJIXYM11 where 0< A < 1. 
Let P, be the orthogonal projection of M to the line I,, having direction ë and passing 
through X. Then II Z II = TA1 40 and

-3 
lI i ii =	

(1 - A0 + A II A II	IXL1II 
- 

II e AII	 11411lI	.	
>	

IIeAIl	
> II XL II.
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Therefore,

'	 I 
II 
CA\ 

	

sT,X( eO) = II XL1II < II XPAII = XM -::---	ST, (-----), 

	

All
	

X 
\ e AII I 

a contradiction with the assumption that ST,X has a local maximum at io. Therefore 
L 1 E T. 

We prove now that PT(co) fl T contains only the single point L0 . Otherwise we can 
find a point M E p(io) fl T different than L0 to which exactly the same reasonings as 
above can be applied and in the same way a contradiction can be obtained I 

Let X,L0 e T and io E S be such as in Proposition 3.1. Then the circle with 
the radius XL0 contains T (smallest circumcircle with centre X) if 6(io) is a global 
maximum and is contained by T (largest inscribed circle with centre X) if 6(io) is a 
global minimum. In both cases the circle is supported in L0 by the line pT(io). 

If T is a convex polygon, we get some sharper characterizations of extremality of 
6(i).

Proposition 3.2. Let T be a convex polygon and K = K(X,p) be a circle, for 
which X E T. Let the deviation 6 = 6(i) = ST( IF ) — s K(i ) (i S) attains a local 
extrernum in direction i0 . Let 1 be the axis containing X and having direction i0 . Then 
there is a non-empty segment L7, in which 1 intersects T and having the direction of 
io. The point L 0 lies on the support line pT(io). 

a) If the extremum of 6(i) is a local minimum ate = e0 , then L0 lays on the relative 
interior of a side of T having i0 as an outer normal (only here the assumption X E T 
is used). 

b) If the extrernum of 6(i) is a local maximum at e = e 0 , then T  pT(io) consists 
of the single point L 0 and is a vertex of T. 

Proof. a) Let 6(i) attains a minimum. As it is shown in Proposition 3.1, L0 E T. 
If L0 is in the relative interior of a side, then since L0 E PT (8o) and pT(io) is a support 
line of T, we see that i0 must be an outer normal of this side. If L0 does not belong 
to the relative interior of a side, then it must be a vertex. Therefore, there must exist 
a further side of T through L0 with an outer normal vector i2 54 io. We choose i1 
between io and i2 arbitrary close to i0 . Then i1 io < 1 and L0 E PT(FO ) fl pT(il). 
Using .ST,X(eo) ^: 0 (because of X E T) we get 

--9 --9 
ST,X(CO) = 5T,X( 60) 60 60 XLo 40 > XLo i l = ST,X(e1) 

which means that ST,x(i) does not attain a maximum at i0 — a contradiction. 

b) Let 6(i) attains a maximum at i0 . Since {L0 } = T  pT(io) is the single point 
of this intersection, L0 must be a vertex 0
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Proposition 3.3. Let T E T and let E := {e,e 2 ,e3 ,e 4 } c 5, where e (k = 
1,2,3,4) are given in a circular order. The centre X of the circle K with 

fl(E,T,K) := max { I sT( e ) - sK(e)I} - mm	(K E AC)	(3.1) 

is the cutting point of the both bisecirices generated by the supporting lines of pT(ei), 
PT( 153) and pT(6),pT(e4). The radius fi is given by the mean value 1(ST(1) + 
.ST,.k(e2)) of the distances of X to the lines PT(i1) and PT(e2) as well as the optimal 
value by 7-I(e,T,k) = IST, X(C1) - 

Proof. The solution K with the centre X and the radius 5 of (3.1) fulfils the 
alternance condition, ST( ëk) - sk(ëk) = ST,.( ëk) - sk,X(ek) for any X E R2 and 
sk)(ek) = . Therefore, we get the bisectrices property ST , g(eI) = S T , ( 53) and 
ST, (e2) = ST(4) . Since e, (k = 1,2,3,4) are given in a circular order the bisectrices 
cut each other. From 

Max .s 1<;<4 T, g( ej) = 5+ 11(e,T,i)	and	min ST(ei) = - ?-I(E,T,k) 1<i<4 

there follows
2fi = ST , x( e l) + ST, 9(e2) = ST, , ( e3) + sT9(ë4) 

and

fl(E, T, K) = ( S T,g(ë) - 11 4 ST, f((Ci)) = I3T, (e1) - sT,j(e2)I 

and the statement is proved I 

If it happens that all Fj belong to a supporting cone of T at the same point P, then 
7(e,T,K)	p = 0 since sT , x( ëi) = 0 for all i = 1,2,3,4. 

4. The Hausdorif nearest circle to a convex polygon 

Now we give a characterization for the Hausdorif nearest circle to a convex polygon as 
intersection of some midline and besectrix of suitable vertices and sides, respectively. 

Definition 4.1. Let T be a convex polygon with vertices A 1 , A2 ,... , A,, and sides 
a 1 ,a2 ,... ,a,,. For a point X denote by r(X) the distance from X to A1 and by 
d1 (X) the distance from the point X to the side a 1 . Let r(X) = max 1 < 1 <,, r1 (X) and 
d(X) = min 1 < 1 <,, d1 (X). Introduce the sets 

Pi = {X E T I r (X ) = r1(X)} 

for i=1,2,...,n,

rp = 

where OP1 and t9Q t are the boundari

and	Q1 = { X E T I d(X ) = di(X)} 

and rQ=UoQ 
es of P1 and Q 1 , respectively. 

Now the Hausdorif nearest circle to a convex polygon can be determined as follows.
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Theorem 4.2. Let T be a convex polygon with vertices A 1 ,A2 ,. ,A, and sides 
a 1 , a2 , , a,,. Then the centre X of the Hausdorff nearest circle lies at the intersection 
r = rp fl rQ . It is the unique point of r, for which the following alternance property 
holds. 

There are four directions following in a circular order i 1 , i2 , ê3 and e4 , such that: 

(i) There are vertices A, and A,, for which r(X) = r(X) = r,(X) and XA i and 
XAi have directions i1 and i3 (or E 2 and i4). 

(ii) There are sides a k and a, for which d(X) = dk(X) = d1 (X) and the outer 
normals for the sides a k and al have directions E2 and e4 (or è and C3). 

The radius of K is p = (r(X) + d(X)) and the Hausdorff distance h = h(T, K) is 
h = (r(X) - d(X)).

Figure 4.1: The Hausdorif nearest circle K to a polygon T 

Proof (For illustration see Figure 4.1). Let K = K(X, p) be the Hausdorif nearest 
circle and let Fj, è'2 , e 3 and e4 be the vectors, for which the alternance property holds 
by Corollary 2.3. Suppose for determination that 

sT,x( e l) = S TX(e3) = maxsT,x(e) and sr,x( ë2) = STx( e4) = minsT,x(). 
ëES	 Es 

Let l i be the axis through X having direction i 1 and L = li fl pT(t) . According to 
Proposition 3.2 the points L 1 and L3 are vertices, say A 2 and A,. Since the maximal 
property yields that for arbitrary vertex A, it holds r,(X) r(X) = r,(X), we see 
that X E P2 fl Pf C oP2 C rp. 

Similarly, from Proposition 3.2 and the minimal property we see that there are sides 
ak and a such that for arbitrary side a, we have d,(X) :5 dk(X) = d1 (X), therefore
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X  C2k nQ 1 c 3Qk C r, thus X  r'pnrQ. The formulas for p and It come from 
(2.7). 

Now, let X E rp fl rQ . Since X is in rp, then there exist at least two regions P 
and P such that X is in the boundary of both of them. Let ë and F3 be unit vectors 
giving the directions of XAj and XAj and r,(X) :^ r 1 (X) = r3 (X) for arbitrary vertex 
A,. Similarly, from X E I'Q there follows that X is in the boundary of some regions 
Q k and Qj. Let ê2 and e4 be the outer normal vectors for the sides a k and ai, and 
d,(X) ^! dk(X) = d,(X) for arbitrary side a,. We have therefore for arbitrary EE S 

d(X) = dk(X) = di (X) <sK,x(e) <r(X) = r,(X) = r(X). 

If i , ë, F3 and e 4 follow in a circular order and p = (r(X)+d(X)), h = 
then obviously the alternance property (2.4) is satisfied. Therefore K = K(X, p) is the 
Hausdorff nearest circle to T U 

Naturally, Fp is contained (but generally not equal to) in the union of the midlines 
of the segments A 1 A3 , whose end points are vertices of T. Similarly, rQ is contained 
(but generally not equal to) in the union of the bisectrices of all the angles (ai,a,) 
obtained by the sides of T. For illustration we consider the simple cases of a triangle 
and a quadrilateral. 

Example 4.3. If T is a triangle, then the centre of its Hausdorff nearest circle is the 
intersection of the midline of the longest side and the bisectrix against the shortest side. 
If the sides of  have lenghts a 1 a2 a3 and its angles have measures A 1 ^! A2 ^! A3, 
then the radius p and the Hausdorif distance h = h(T, K) are 

1	1 + sin A3	 1	1 - sin A3 

	

'A	
and	h=a1 

cosA3	
(4.1) 

4	Cos

aA3

Figure 4.2: The Hausdorif nearest circle to a triangle
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Indeed, let for determination a 1 a2 a3 (see Figure 4.2) and all the angles are 
acute (the reasoning does not change much if this condition is not true). Let M1 , tv!2 
and M3 be the middle of the sides and let B 1 , B2 and B3 be those points different 
from M1 , M2 and M3 , in which the midlines of the sides intersect the boundary of T. 
Further, let C and I be the cross of the midlines and the bisectrices, respectively. Then 
rp = CBI U CB2 U CB3 and rQ = IA 1 U IA2 U IA3 . Using the fact that a midline of a 
side and a bisectrix to it cross at the circumcircle, we see that that rp and FQ intersect 
at only one point X being the intersection of the midline of the longest side a 1 and the 
bisectrix toward the shortest side a 3 . The existence of the Hausdorif nearest circle and 
Theorem 4.2 imply that X as the single point in the intersection Fp fl rQ , is the centre 
of the Hausdorif nearest circle. This can be also directly derived from the alternance 
property. We have 

	

r(X) = r i (X) = r2 (X) =	and d(X) = d 1 (X) = d2 (X) = a 1 tan A3, cos A3 

whence (4.1) follows from the formulas in Theorem 4.2. On Figure 4.2 the unit vector 
iFi for the alternance property are the directions of )Z (i = 1,2,3,4). The alternance 
property is better underlined by drawidg the two bold-face dotted circles obtained by 
the Hausdorif nearest one by enlarging and diminishing its radius by the Hausdorif 
distance. Such circles are drawn also on Figures 4.1 and 4.3. 

A4

,i 

\S12..' 

	

(/1	 12 3 

b 14
b1& 

S23 	
bJa2 

Sj4

El 

A,	 I 
^aj 

.. ..... 

Figure 4.3: The Hausdorif nearest circle to a quadrilateral 

Example 4.4. We consider the quadrilateral A 1 A2 A3 A4 given on Figure 4.3 (in 
another quadrilateral the configuration may be different). We have 

rp = S 12 U S 14 U .533 U $24 U s34	and	FQ = b12 U b 13 U b 14 U b23 U b34.
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Here s 17 is a part of the midline of the segment A 1 A, and b,, is a part of the bisectrix 
of the angle (as, a,). We see that 

rp fl rQ = {X,X 1 ,X2 }	where X = b 13 fl s 12 , X1 = b12 fl s23 , X2 = b14 fl s23. 

The point X is the centre of the Hausdorif nearest circle, since the unit vectors e (i = 
1,2,3,4) (those giving the directions of XE i on the figure), in which the deviations 
5() obtain maximal absolute value and alternate in sign, follow in a circular order. 
The points X1 and X2 , as seen from the figure, do not possess this property. 

For an arbitrary convex polygon, similarly like in Example 4.4, the curves rp and 
rQ may intersect in more than one point. The existence and the uniqueness of the 
Hausdorff nearest circle implies, however, that there exist a single point X E rp fl rQ 

and four unit vectors iFi (i = 1,2,3,4) following in a circular order such that t5(é), 
where 8(ë) = sT,x( e ) - p, p = ( ST,X( ë'I) + sT,X( 62)), obtain a maximal absolute 
value, alternate in signs. 

5. The Remez algorithm - a geometric interpretation 

5.1 Remarks to the Remez algorithm. We shortly discuss the well-known Remez 
algorithm for solving the problem 

max Is(t) - (p + acost + bsint)j -* mm	(a,b,p E R)	(5.1) 
tE[O,2'r] 

where s is a 27r-periodic function (see, e.g., Laurent [101 or Karlin and Studden [7]). 
The basic idea is to determine four points i j <t 2 <i <t. <i + 27r, S > 0 and a, b, p 
such that for some a E {-1, 1) the system 

e(i,p,a,b) := s(t 1 ) - (p + a cos i + bsini 1 ) = (-1)'a S (1	< 4)	(5.2) 

H(p,a,b) := max I() - (p+ a cos i + bsint) = 5	 (5.3) 
tELO,27r1 

is satisfied. One starts with some selection i I <1 2 <13 < 14 <t j + 27r and solves system 
(5.2). If S(p, a, b) = H(p, a, b), then the solution is found. Otherwise determine a value 
i e [0,27r] where H(p,a,b) is attained. Replace in the selection ti < 12 < t 3 < 14 one 
of the points (one point, exchange) tk or t	by t such that tk < t * < t i (k 
0,1,...,4; to = t 4 —27r,t 5 = I i +27r) and sign(e(ik,p,a,b)) = sign(e(t',p,a,b)) where to 
and 1 5 can be identified with 1 4 and Ii, respectively. The procedure now repeats with 
the obtained updated selection. 

Remark 2. Detailed descriptions about several algorithms from the numerical 
point of view, the Remez algorithms included, can be found in Hettich and Zencke 
[6: pp. 147 if.]. The above mentioned one point exchange is at least linearly conver-
gent. The full exchange (four point exchange) by using the local reduction theory is 
superlinearly convergent. 

The value of H' : = H(p', a 3 , b') strictly decreases and the solution 5) of system 
(5.2) strictly increases with respect to the iteration index y in both methods. Both
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sequences converge to the optimal value of (5.1). They are used for error estimations 
and stopping rules. 

Remark 3. The solution '(i) := p+a cost + b sin t of system (5.2) can be calculated 
explicitly. Using the abbreviation k(t 1 ,t2 ,t 3 ,t4 ) := 2sin (t4 - 6 + t 2 - ti) we get 

k(t i ,t 2 ,t 3 ,t4 )sin I (t 3 - t1) 

X (- COS  (t 4 —t 3 ) cos (6 - t 2 ) + cos (i - ( t4 + t 2 ))) s(ti) 

+ k(t i ,t 2 ,t3 ,t4 ) sin (t4 —t2) 

(-COS — t1)cos (t4 - t 3 ) + cos ( -	+ t 1 ))) s(t2) 

+ k(t i ,t 2 ,t 3 ,t 4 )sin (6 - ti) 

X (-COS  (t4 - t j )cos 1 (t 2 - t 1 ) + cos ( - ( t 4 + t 2 ))) 1(t3) 

1 
- k(t i ,t 2 ,t 3 ,t4 ) sin (t4 —t2) 

X (-COS  (t 3 - t 2 ) cos 1 (t 2 - t 1 ) + cos (t - ( 6 + t 1 ))) s(i4). 

Remark 4. If an approximate solution is determined with sufficient accuracy, then 
we can use the four point exchange. Here at each step all local maxima of (5.3) must 
be determined. The arguments t i are implicitly given twice differentiable functions of 
the parameter a, b, p. The corresponding local reduction method is in this case at least 
superlinearly convergent (for detailed description cf. [6: Chapter 5.4]). 

5.2 Geometric versions and modifications of the Remez algorithm. In this 
subsection we describe three algorithms for the geometrical construction of the Hausdorif 
nearest circle to a convex set. First we start with direct anologies to the one and four 
point exchange. 

Algorithm 1: One point exchange (see Fig. 5.1). 
Initialization: Choose E' = {ë : i = 1, 2,3,41, Fi E S (i = 1, 2,3,4) in a circular 

order and accuracy e > 0. 
Iteration: 

Step 1: Construct with Ek the circle K  with centre Xk, radius Pk and distance 
H(E k , T, K k ) according to Proposition 3.3. Denote the corresponding supporting points 
by Pik (i=1,2,3,4). 
Step 2: Construct the incircie and circumcircle of T using the centre XC. Let r  and - 
R c be the radius of the constructed approximately incircle and circumcircle.
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If 1(Ek, T, jk)	max(Rk - k	- rc) (i.e. each of the incircle and circumcircle

supports T in at least two points with an accuracy e) 

then Stop, approximate solution with desired accuracy is found. 
Ifpk —r' > R  _k 

then ë'E S is the common outer unit normal of the incircle of  and K(Xk,rc) 
at a point P E T  K(Xk,rc) 

else i	S is the common outer unit normal of the circumcircle of  and K(X k , fl k)

at a point P E T  K(Xk,rk). 

Step 3: Exchange P with that neighbouring P/c which is on the same side (inner or 
outer point) of K k as P. This defines the new selection P/c' (i = 1 ) 2,3,4) and the 
associated ek+I 

Step 4: k := Ic + 1, go to Step 1. 

Figure 5.1: Construction of one iteration in Algorithm 1 

Remark 5. This algorithm is an exact geometric interpretation of the one-point 
exchange Remez algorithm. Also the name "one-point exchange" is inherited from the 
analytical setting, but from geometrical point of view what is really -exchanged by each 
step is one direction and not one point. Let us especially underline that in Step 1 the 
centre X k of the circle K  is the intersecting point of the bisectrix of the supporting lines 
through P/c and P and the bisectrix of the supported lines through P and P. This 
simple construction solves geometrically problem (5.2) replacing the rather extensive
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analytic solution given by the formula in Remark 3, and in some sense it is the central 
moment in our considerations. Let us also observe that from iteration to iteration one 
bisectrix remains the same. The convergence of this algorithm is at least linear [6] for 
arbitrary initial directions. 

Algorithm 2 : Four point exchange. 

Initialization: Choose X' in the interior of T and accuracy E. Construct (e.g. 
bisection) an approximation of the two best local incircies and circumcircles of T using 
the centre X'. Let ê, F3 be common outer unit normals of the locally incircles and 
T and let ë2 , e4 be common outer unit normals of the locally circumcircles and T at 
common supporting points. Choose F1, c, e 3 , e4 such that they are in a circular order. 
Set E' = 

Iteration: 

Step 1: Construct with Ek the circle K c with centre Xk, radius Pk and distance 
H(Ek , T , K k ) according to Proposition 3.3. 

Step 2: Construct (e.g. bisection) an approximation of the two best local incircies and 
circumcircles of T using the centre Xk. Let ë i , F3 be common outer unit normals of 
the locally inscribed circles and T and let ë2 , e4 be the common outer unit normals of 
the locally circumcircles and T at common supporting points. Choose F 1 , ë'2 , e3 , e4 such 
that they are in a circular order. Set E -  -' = { ii,2,ë3,4}. 

If the Hausdorff distance between the two incircles and the Hausdorff distance 
between the two circumcircles is smaller than e 

then Stop, approximate solution with desired accuracy is found by K  

else /c = k + 1, go to Step 1. 

Remark 6. The four point exchange (Algorithm 2) is equivalent to the local re-
duction method (see, e.g., 16: Chapter 5.4]) which is superlinearly convergent for the 
Chebyshev approximation. However, the construction is only possible, whenever the 
centre Xk is sufficiently close to the centre of the circle of best Hausdorif approxima-
tion. As long as this construction is impossible one can start or continue with Algorithm 
1 since one (locally) incircle and one (locally) circumcircle is ensured for any Xk E T. 

The simple characterization of the Hausdorif nearest circle for polygons obtained 
in Theorem 4.2 raises an interesting question: Do the considered algorithms allow in 
the case of a polygon the exact construction of the Hausdorif nearest circle after finite 
number of steps regardless of which initial directions are chosen? Unfortunately, the 
answer is not sure in the case of Algorithm 1. This question is a motivation to look 
for modifications giving affirmative answer. The next Algorithm 3 is a suggestion in 
this direction. It corresponds to a modified two point exchange Remez algorithm. In 
the case of a polygon the optimal solution is obtained after a finite number of steps. A 
peculiarity . of this algorithm is that on each step we deal with some midline or some 
bisectrix, which underlines the importance of these concepts for the considered problem 
and justifies the special attention that we pay to the polygonal case.
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Definition 5.1. We say that the points V1 , E2 , V3 and E4 of the boundary of a 
convex set follow in a circular order if there are supporting lines through these points 
whose normals follow in a circular order. 

midline	 bisectrix 

Figure 5.2: An example based on Algorithm 3 

Algorithm 3 

Initialization: Choose on the boundary of T the four points E, V21 , E3', 1/4' in a 
circular order and accuracy e > 0, where E l, and E l possess a unique supporting line 
11 and 1 with the outer unit normals	and e. If T is a polygon, then E and ' E31 are

elements of the relative interior of edges and V2', V4' are vertices. 

Iteration: 

Step 1: Construct the centre Xk of the circle Kv as the intersection point of the 
besectrix b c generated by the support lines 1 and l through E, E and the midline m13
with respect to P := V and P := V. Denote the orthogonal projection of Xk to l 
by P (i = 1,3) and set pIC	 (IIX IC PII + II X ' P1II) and h c := (IIXICPII -11X 'PII). 

Step 2: Construct the incircle and circumcircle of T using the centre Xk. Let rk 
and R' be the radius of the constructed incircle and circumcircle. Set H k := max(Rk - 

k' P k - = h(K',T). The incircle defines at least one supporting point E where 
T and the incircle has a common unique supporting line P. The circumcircle defines
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at least one supporting point (vertex in the case of a polygon) V where T and the 
circumcircle has a common supporting line 1. 

If (IIX lc PII - IIX k P II)+ e > H  (i.e. each of the incircie and circumcircle supports 
T in at least two points with an accuracy e) 

then Stop, approximate solution with desired accuracy is found. 
If P

k - > R - 
then Exchange E (and the associated 1) with the nearest (with respect to positive 

or negative circular order) E (and the associated l) (j 1,3) which can be reached 
on the circumference without meeting V,' (i = 2,4). The other points remain the same. 

else Exchange V with the nearest (with respect to positive or negative circular 
order) 11/ (j = 2, 1) which can be reached on the circumference without meeting 
E,k (i = 1, 3). The other points and supporting lines remain the same. Thus, the new 
collection (E', l+ 1 ) , V2k ,(E' lk+1) Vk41 is determined. 
Step 3: k := k + 1, go to Step 1. 

A
{	

B C D E F I ^^G] 

x 3915 4095 3090 2430 1260 675 810 

y 4005 2745 450 405 810 1890 3105 

Table 5.1: Coordinates of vertices 
Example 5.2 Following Algorithm 3 the Hausdorif nearest circle for the polygon 

ABCDEFG (Figure 5.2) is obtained using the program xfig running under unix. 
Table 5.1 gives the coordinates of the vertices in xfig-internal units (1 unit = 0.000875 

in). As usually in computer drawing programs x coordinates increase to the right and 
y coordinates increase to downwards. We start with points V1' = F, E E e, 1/31 = 
E E b (for the construction the exact E-points are not important, important are only 
the sides to which they belong). The exact solution is obtained after four steps. The 
results of the calculations are given on Table 5.2. iii I ii[ih I d±i 

I P e D b 1645 1581 2446 77 1041 2385 2108 

2 .4 c D b 1957 924 2532 205 1033 2303 2565 

.I IA
C b 1687 1275 2099 4^2 412 272

Table 5.2: Iterations according to Algorithm 3 
The first columns show how do the points V1 , E2 , V3 and E4 change. The p-column 
and X-column give the radius and the centre of Kk, in the last row the radius and 
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the centre of the Hausdorif nearest circle stands. The r-column and R-column give the 
radii r  and Rk. The H-column gives the Hausdorif distance H c = h(Kk,T) according 
to formula (5.2) and the h-column gives the above defined values h' which are some 
analog to the 5k used as lower bounds in the Remez algorithm. Turn attention that 
the values h  increase and the values of Hk decrease. Their common value in the last 
row is the Hausdorif distance of the polygon to the nearest circle. Figure 5.2 represents 
the circles obtained by the successive approximations and also some of the intermediate 
constructions, say the needed bisectrices (dashed lines) and midlines (solid lines) on 
each step. 

Lemma 5.3. The sequence (h')k EN is strictly increasing. The sequence (Hk)kEN 
is strictly decreasing and h c < Hk for all k E N. 

Proof. We show here only the increasing property of hc. The decrease of Hk 
follows similarly. From the construction in Algorithm 3 the inequality h' < H  for all 
k E N is obvious. We have to show the increase of hk only in the case of exchange 
of a vertex. In the other case we consider the intersection T of T with the inner 
halfspaces of l (j = 1,3). Because of rk <	< ,k <

	< Rk the 
point E* belongs to T. Algorithm 3 for T coincides in this case with Algorithm 1 
for T. Hence by Remark 2 we have the desired inequality hk < h. In the case 
of exchange of a vertex the inequality follows from well-known similarity properties 
of circles spanning the cone generated by l = 11. Their centers XC and X' lie 
on the bisectrix b' = b'' of l (j = 1,3) defined by the cut with the midlines of 
Vj' (j = 2,4) and 0j 1 ( . 24) We consider the arcs AIV and A' defined by the 
smallest connected subset of the intersections of the circumferences of K  and K'+', 
respectively, with the cone containing T and generated by l (j = 1, 2). We consider 
the segment connecting X' 1 with the vertex Vj ' = W. The cuts of the arcs Ac 
and A' 1 with this segment are called UC and U'. Let W' be the cut of Ac with 
the segment [X k , Vk]. The arcs has only one cut in the quadrilateral 
Because the segment line through X'' and Vj separates the segments [X' l , XC] and 
[PJ ', P] either for j = 1 or for j = 3, the points U' and Uk lie on [X k + 1 , 1/k] in 
the same order (linear order on the ray [XI,Vjc)) as X 1 and X' on the bisectrix 
(linear order on the ray [Xk+i,Xk)). The angle Xl+XIVk is obtuse. It follows 
h k + l = IIUVk4 II > IIu k vII =	> iiw k vii = hkl 

The monotonicity of h  and H  cannot be concluded from Algorithm 1 and the 
property of the 6k and Hk noticed in Remark 2 since generally it cannot be associated 
to the "vertices" Vk the direction XV. as a unit outer normal of T. 

Lemma 5.4. Let int(T) 36 0. Let (E 1 ,V2 ,E3 ,V4 ) and (E1 , V2 , E3 , 74 ) according to 
Step 1 in Algorithm 3 be given as well as h, H, X, p and h, H, X, 5 constructed according 
to Step 1 and Step 2. Then for any e > 0 there is a constant 8(e,E 1 ,V2 ,E3 ,V4 ) > 0 
such that 

	

II(E1 , V2 , E3 , V4 ) - (E 1 , V2 , E3 ,	<6(e) =' II(h, H, X, p) - ( Ii, H, X, )II <
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Proof. We have to consider disturbed linear equalities and system of two regular 
linear equalities as well as the projection operator. Because of the uniqueness of the 
l (j = 1, 2), the compactness of T and int(T) 54 0 we get by standard stability results 
continuous dependence of (h,H,X,p) from (E1,V2,E3,V4)I 

Proposition 5.5. The sequence (pk ,X k ,E,V,E,V,h k ,H k )k EN generated by 
Algorithm 3 converges to with H h where K(X,) is the 
Hausdorff nearest circle to T. The distance H = h is at least attained in the points 
E1 ,V2 ,E3 ,V4 E T. Algorithm 3 is finite for polygons. 

Proof. Lemma 5.3 yields limt.,,,, h k = h < H = limk_.00 H k . Because of the 
compactness of T we find a subsequence (ku ) of N such that 

Jim (p,X'" El ' Vk E' Vk) =	 .,E1 , V2 , E3 , V4). n -oo '1'2'3' 

Assume K(X, 5) is not the Hausdorif nearest circle. Then h H and Algorithm 3 can 
be started in (, X, 21 , %, E3 , V4 ) again. Let h' > h +e, e > 0 fixed the next iteration 
of h. Lemma 5.4 implies for some k > ri(e,Ei ,V2 ,E3 ,V4 ) that 

Hence 11h k+ 1
 -	< . From h > h' > h  we get the contradiction c	- h 

h 1 + S - h < . Thus, K(,o) is the Hausdorif nearest circle. Because of its 
uniqueness the above sequences cannot have more than one accumulation point. The 
remaining follows from the geometric optimality conditions. For polygons Algorithm 3 
allows only finite constellations of points (P1 , P2 , P3 , F4 ). Since h  (k E N) are strictly 
increasing, the algorithm stops after a finite number of steps I 

Remark T. In the proof of finiteness the possibility of an exact construction is 
assumed. If we can do the geometric construction within an certain accuracy, then the 
algorithm can stop earlier if the polygon is roughly spoken nearly smooth. 

6. Application 

As a geometrical application of the Remez algorithm we derive the following estimations. 

Proposition 6.1. Let T be a convex compact set in the plane, whose diameter has 
length a and whose width in a direction perpendicular to the diameter is b. Then for 
the Hausdorff nearest circle K = K(X, p) it holds 

- b) :^ h(T, K)	/a2 -+ b2 - (a + b)	 (6.1) 

a+b_,Ja2+b2	Va2+b2_(a_b).	 (6.2) 

The equality holds only if T is a segment. Estimation (6.1) for the Hausdorff distance 
h(T, K) gives in particular

h(T,K) 5 diaxnT.	 (6.3)
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Proof. Choose the directions ê 1 , e 3 parallel to the diameter of T and ë 2 , e4 per-
pendicular to it (see Figure 6.1).

1e 

'^. I 

Figure 6.1: Estimation of the Hausdorff distance H(K,T) 
The circle K' K(X' , p') has a centre X' at the centre of the rectangular, whose sides 
lie at the support lines of  in directions i (i = 1,2,3,4). The radius of this circle is 
P' = (a + b). We have by Remark 2 

(a — b) = 61 h(T,K) H'	v'a2 +b2 —'(a+b).


Let h = h(T, K). The inclusion K C T + hB gives 2p b + 2h, whence 

Similarly, the inclusion T C K + hB gives a 2p + 2h, whence 

p> a -h > a -	a2 + b2 + (a + b) = a + - Va2	+ V. 

Consider the function 

(a,b)=/a2+b2_(a+b)	(a>O,O<b<a). 

Fix a. An easy calculation shows that (a, b) decreases from a to I a(v' - 1) when b 
varies from 0 to I aO and increases from a(/ -1) to	- 1) when b varies from 

to a. Therefore

h(T,K) max (a, a) = a 

which shows (6.3) 1
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There is a result of Lessak (12] stating that for each T E T there exists an ellipse K, 
such that h(T, K) < 1 diamT. We see from (6.3) that this result remains true, when 
circles instead of ellipses are taken, in fact we obtained the more precise estimation 
(6.1). Since the approximation of convex bodies by circles is a particular case of the 
approximation by ellipses therefore our estimation is better than the cited one. 
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