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Spectral Asymptotics for Variational Fractals 
G. Posta 

Abstract. In this paper a generalization of a classic result of H. Weyl concerning the asymp-
totics of the spectrum of the Laplace operator is proved for variational fractals. Physically 
we are studying the density of states for the diffusion trough a fractal media. A variational 
fractal is a couple (K,E) where K is a self-similar fractal and £ is an energy form with some 
similarity properties connected with those of K. In this class we can find some of the most 
widely studied families of fractals as nested fractals, p.c.f. fractals, the Sierpinski carpet etc., 
as well as some regular self-similar Euclidean domains. We will see that if r(x) is the number 
of eigenvalues associated with ( smaller than x, then r(x) -. x" 2 , where ii is the intrinsic 
dimension of (K,e). 
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1. Introduction 
Let ci be a bounded domain in R'1 with smooth boundary Oft Consider the following 
classic eigenvalues problem:

(— Lu=Au	on  
u=O	onacl	

(1.1) 

where A is the usual Laplace operator in R". It is well known that the eigenvalues, i.e. 
the real numbers A such that problem (1.1) has a non-trivial solution, are a positive 
infinite discrete set, and have finite multiplicity. 

A question that naturally occurs in the study of some physical phenomena, such as 
waves or diffusions problems is how the sequence of the eigenvalues goes to infinity. 

An answer to this question has been given by H. Weyl in [25]. Define the density 
of states r°(x) as the number, with multiplicity, of eigenvalues of problem (1.1) smaller 
than x. Then Weyl's celebrated formula states that 

B I cl I x + o(x 	 (1.2) r°(x) - (2ir)" 

as x - +00. Here B,, is the measure of the unit ball in R and 1Q1 is the measure of ci. 
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In this paper a similar result is proved for a large class of fractal sets, the class of 
variational fractals. The main difficulty in considering the analogue of problem (1.1) on 
a fractal, is the. definition of the Laplace operator on the fractal. Because non-trivial 
fractals are typically not differentiable structures, the question is what is the Laplace 
operator on a fractal? A probabilistic way to answer this question is to say that the 
Laplace operator is the generator of the Brownian motion on the fractal. However in 
this way we have to say what is the Brownian motion on a fractal. This approach to the 
problem has been carried out by several authors (see, for example, [3, 10, 141 where a 
Brownian motion is constructed and studied on the Sierpinski gasket. Later Lindstrom 
in [16] constructed a Brownian motion on a big class of fractal objects, the class of 
nested fractals. The procedure used by these authors is to obtain the Brownian motion 
as a renormalized limit of random walks. Other examples of construction of Brownian 
motions on different fractals are [2, 12]. So we know that it is possible to consider 
a "Laplace operator" on some fractals. The analogue of formula (1.2) should be the 
same formula with the Hausdorif dimension d1 instead of n and the Hausdorif measure 
instead of the Lebesgue measure. 

Unfortunately, this is wrong and it is wrong for a rather simple fact. The fact is 
that the Hausdorff dimension, which is a purely static object can not be the intrinsic 
dimension of the fractal. The notion of intrinsic dimension for an object is strictly linked 
to the notion of intrinsic metric on it, which is linked again to the existence of an energy 
(i.e. an intrinsic Laplace operator) on the object. This is true for Riemannian geometry, 
where the metric tensor and the Laplace-Beltrami operator are strictly correlated, and 
it holds also for the fractals [5, 20 - 221. 

The result we will prove in the present paper, namely Theorem 2.2, states that 

0<liminfr°(x)x	limsupr(x)x	<+,	(1.3) 
z—.+OO	 z—.+oo 

where u should be interpreted as the intrinsic dimension of the fractal structure. Because 
we use the correct intrinsic dimension of the fractal, our proof works also for some regular 
domains of R", as cubes, which are some trivial examples of variational fractals. 

Before ending the present section we have to do some remarks. The first is that in 
(1.3) we have lost the constants that appeared in (1.2). This is inevitable if we want a 
result which holds in general for variational fractals. In fact, it is proved, for example, 
that no equality holds in (1.3) in the case of the Sierpinski gasket [9]. 

Second, similar theorems have been proved by other authors for different classes of 
fractals. We refer particularly to [7, 13]. We discuss more extensively the relation of 
our result with other results in Section 3. However, we want to stress some facts about 
our result. 

Theorem covers partially and sometimes completely, analog theorems existing in 
the literature. We postpone to Section 3 the discussion on the relationship between 
the present paper and similar earlier papers. Furthermore, where for other authors the 
exponent v in (1.3) is the spectral dimension of the fractal, which means a number for 
which (1.3) holds, we have the geometric interpretation of v as intrinsic dimension of 
the fractal.
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2. Notation and results 

In this section we will give the basic notation and state our main result. 

2.1 Notation. We recall some notations from [20] about homogeneous fractal spaces 

2.1.1 Homogeneous spaces. A homogeneous space is a pair (K,d), where K is a 
topological space and d is a pseudo-distance on K, such that the following assumption 
are satisfied: 

(i) The pseudo-balls B(x, r) form a basis of open neighborhoods of K. 

(ii) There exists two positive constants ii and c, such that for every r > 0 and 
E E (0,1), the ball B(x,r) contains at most cc —' points whose mutual distance is 
greater than Er. 

We recall that, by definition, a pseudo-distance satisfies the assumptions of a distance, 
with possibly a multiplicative constant CT ^! 1 in the triangle inequality. A sufficient 
condition to satisfy (ii) is the following: 

(ii)' There exists a Radon measure p on K and a positive constant co such that: 

0 < co p(B(x, R)) () < p(B(x, r)), 

for every x E K and 0 < r R. If the opposite inequality also holds for some positive 
constant c', then we say that v is the homogeneous dimension of (K, d). 

2.1.2 Energy forms. Let K be a separable Hausdorif topological space and p a Radon 
measure on it. A strongly local regular Dirichiet form (, V) with domain V c L 2 (K, p) 
will be called an energy form on K (cf. [8, 19]). It is well known [8: Corollary 1.3.11 
that it is possible to associate to every Dirichlet form (, V) a non-positive self-adjoint 
Markov generator C on L2 (K,p). The correspondence is determined by 

Dom(C) C D 
(u,v) = —(Cu,v)L(K,) (u E Dom(G), v E ..T) 

In this way when we speak about eigenvalues, eigenfunctions, resolvent of the form 
(c, V) we mean these objects for the associated Markov generator. For example, an 
eigenvalue of the form (, V) is a real number A for which there exists u E V, called the 
eigenfunciion associated with A, such that c(u, v) = A JK uv dp for every v e V. 

If the eigenvalues of the generator associated with (, V) have finite multiplicities 
and form a discrete set, then the following variational characterization of the eigenvalues 
holds:
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Theorem 2.1 (Mm-Max). Let (, D) be a Dirichlet form such that its esgenvalues 
have finite multiplicities and form a discrete set. Let 0 = Ao 15 A, 5 . :5 ... be the 
ordered sequence of its eigenvalues. Then 

"k =	max	min	91u] 

	

UI .... . v_lEL2(K,) 'i'k-1 lu112	
(2.1) 

fork 2 1. 
For the proof see [24: Theorem XIII.21. For further informations about Dirichiet 

forms we refer to [8, 191. 

2.1.3 Self-similar fractals. We introduce the notion of self-similar fractals in the sense 
of [11]. Let R" be the D-dimensional Euclidean space, D 2 1, lx - l the Euclidean 
distance and Be(X, r) the Euclidean ball centered at x E R D of radius r	0. Let 

= {t,.. . ,t} be N given maps b 1,: R'	RD such that: 
(i) There exists real numbers a 1 a2 ... 2 aN> 1 such that 

10i( X ) -'() I = aT'lx - y 

for every x, Y E R D and i= 1,... , N. 

(ii) There exists a non-empty bounded open set V C RD such that 

N 

and ,b(V) fl o(V) = 0 if i 36 j. 

Under these assumption we have [11: Section 5.3/Theorem (1)] 
(i) There exists a unique non-empty compact set K C R D , the invariant set of 'It, 

such that

K=Ub1(K). 

(ii) There exists a unique probability measure p on K, the invariant measure of 'I!, 
such that

p =	a'(b1)#(p)	 (2.2) 

where (b)#(p)(•)	p('(•)), and dj , the fractal dimension of K, is defined as the

unique solution of

df = 1.	 (2.3) 

It is possible to prove that d1 is the Hausdorif dimension of K, while it is the 
dj-Hausdorff measure on RD restricted to K and normalized.
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For arbitrary n-pies of indices ii,... ' in E {1,. . . , N) we define 

	

= tb, o/i, o ...	and	K11 .. . 1 = 

We call K, ...i_ an n-complex. The boundary of K [20] is defined as 

	

r = 	'(Ki n Ky). 

This is a closed subset of K, (KflK) = 0 for i 0 j, which yields iz([') = 0 (cf. [18, 20]). 
Notice that if we use (2.2) to calculate j4K1 ), we obtain u(K1) = —dj (i = 1 . , N) 
so that (2.2) can be rewritten as

	

=	p(Ki)(b)#(p).	 (24) 

An equivalent formulation of this formula is 

JK = 
which holds for every f E L'(K,). If we take I = gl K i for g E L'(K, 1z) and i = 
1,.. . , N, we obtain

IK	(K)i9d1 

which gives a "change of variables formula" for the measure It. 

2.1.4 Variational fractais. Suppose that together with the self-similar fractal K, the 
invariant set of a given family 'I' 01, t,bpj }and its invariant measure j, also an 
energy form (E,J) on K is given. We will further assume the following self-similar 
property for the energy: 

There exists a < 1 such that 

E[u] =	(K)E[u o	 (2.6) 

for every u E F. 

Then the pair (K, E) is called a variational fractal [20]. The scaling factors a 2 , N 
and a for length mass and eneigy are the basic "physical" constants for a variational 
fractal. 

2.1.5 Homogeneous fractal spaces... Given a variational fractal (K, E), define the 
pseudo-distance d(r, i,') = Ix — y 1 6 on K by requiring that & scales like the energy: 

N 

d2 (x,y) =
i=I
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for x,y E K. This determines 5 as the unique solution of 

E,u(Kj)Ia 21 = 1 

One of the fundamental results of [20] says that in these notation the pair (K, d) is a 
homogeneous space of homogeneous dimension ii = 8'd. The scaling factor of the 
energy is linked to the homogeneous dimension of the fractal by the identity 

v-2 
=YJ-.	 (2.7) 

The homogeneous dimension ii is the intrinsic dimension of the variational fractal, while 
d, defined above, is the intrinsic (pseudo-)metric on the fractal. These concepts have 
been introduced by U. Mosco in [20]. We refer to this paper and to [17, 211 for a 
complete explanation of these topics both from a mathematical and physical point of 
view. 

2.2 Main result. Let (K, 6) be a variational fractal, with energy form (6, F). Define 
F° as the closure in the norm /E[ .] + of F fl Co(K), where Co(K) is the 
space of continuous functions f on K such that Supp(f) n r = 0. 

We define the density of states r(x) with Neumann (or reflecting) boundary condi-
tions as the number of eigenvalues of (6, T), with their multiplicity, lesser than equal 
to X.

Conversely, we define the densities of states r°(x) with Dirichlet (or absorbent) 
boundary conditions as the number of eigenvalues of (6, F°), with their multiplicity, 
lesser than equal to x. 

With these definition the densities of states are increasing possibly infinite real 
functions. We will assume that the domain F of the form is compactely embedded in 
L2(K, ). This implies by [24:Theorem XIII.64] that the eigenvalues of (6, F) have finite 
multiplicities and form a discrete set, so that both the densities are finite functions. 

Now we are in a position to state our main result. 

Theorem 2.2. Let (K, E) be a variational fractal with energy form (E,F) and 
homogeneous dimension ii. Suppose F is cornpaciely embedded in L 2 (K, I) . Then there 
exist three strictly positive constants c 1 , c2 and i such that 

c 1 x"2 < r° (x) < r(x) < c2 x'12	 (2.8)


for every x 

This theorem, in some sense, generalizes the classic result of H. Weyl (1.2). However, 
as was pointed out at the end of Section 1 in Theorem 2.2, we have lost the constants 
that appeared in (1.2).
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3. Applications 

In this section we will give some example of variational fractals. 

3.1 Euclidean Domains. There is a large collections of regular domain in R') which 
are self-similar and variational fractals but are not fractals in a strict sense, i.e. their 
Euclidean dimension, Hausdorif dimension and intrinsic (homogeneous) dimension are 
the same. The simplest example of this class is the cube in R'. 

Let D > 1 and define Q = [oi]D c R'. Fix an integer a > 2, and define 
N a' (a1 = a for i = 1,. .. , N). Then Q is a self-similar fractal, in the sense of 
Subsection 2.1.3, if we think to Q as the union of N small cubes of size a 1 . Notice that 
in this case, by (2.3), we have d1 = D. Furthermore, Q becomes a variational fractal, 
in the sense of Subsection 2.1.4 , if we equip it with the energy 

E[U] = IQ Vu(x)I2dx 

defined for every u in the Sobolev space Hi(Qo). In this case a = D 1 , 5 = 1 and 
= D. Theorem 2.2 is contained in [6: Chapter VI.4]. 

Other regular domain which are variational fractals are for example tetrahedrons. 

3.2 Nested fractals. Nested fractals have been introduced from Lindstrom in [16]. 
These are self-similar fractals, in the sense of Subsection 2.1.3, with the following extra 
requirement, called nesting: 

. There exists a finite set F C K such that 

K1,, fl K 	= F,	fl F, 

for every (i 1 ,... , ii,) 0 ( j i ,.. . , 

In the family of the nested fractals we find the Sierpinski gasket, the Koch curve, 
the Lindstrom snowflake etc. (cf. [161). The nesting hypothesis implies that nested 
fractals are finitely ramified fractals, which roughly speaking means that it is possible 
to disconnect them by removing a finite number of points of the fractal. 

For nested fractals we have a	a > 1 for i = 1,... , N, so that, by using (2.3), 
log N d - f	togaS 

An energy form on a nested fractal is introduced by considering the Dirichiet form 
associated with the Markov generator associated with a standard diffusion on K (cf. 
[161). With this energy the fractal becomes a variational fractal, in the sense of Sub- 
section 2.1.4, with a < 0, b = 2 

di(1—a) and u = 2 <2. The intrinsic dimension ii is 
equal to the spectral dimension d, found by Fukushima in [7]. Our Theorem 2.2 is, in 
the case of nested fractals, equivalent to [7: Theorem 4.11. 

However, we have a clear geometric interpretation of the spectral dimension d3 as 
the intrinsic (homogeneous) dimension of the fractal. This fact was already pointed out 
in [5, 22].



424	G. Posta 

3.3 P.C.F. fractals. P.C.F. fractals have been introduced by J. Kigami in [12). They 
are described in an abstract way as quotient spaces of of the free semigroup on a finite 
alphabet. They have an extra requirement of finitely ramified type called post critical 
finiteness. We do not discuss here the P.C.F. hypothesis, for which we refer to [12, 13], 
neither we make any example, but we recall that the class of nested fractals is contained 
in the class of P.C.F. fractals as a particular case and that P.C.F. fractals are finitely 
ramified. 

A P.C.F. fractal K reduces to a self-similar fractals, in the sense of Subsection 2.1.3, 
if we assume the following: 

. K c RD. 

• The self-similar maps F. (cf. [13: Definition 1.1)) satisfy the requirements i) and ii) 
for the	given in Subsection 2.1.3. 

• The Bernoulli measure considered on it is the invariant measure It introduced in 
Subsection 2.1.3. 

Energy forms on P.C.F. fractals have been introduced by J. Kigami and M. L. Lapidus 
in [13] by means of regular harmonic structures. 

There is not a general proof of the existence of a regular harmonic structure for a 
P.C.F. fractal (neither there is a general construction for a P.C.F. fractal structure), 
but there are many examples of regular harmonic structures in several concrete cases 
[13]. If a regular harmonic structure exists on a P.C.F. fractal K, then it is possible to 
introduce an energy form on K by using it. 

The relevant fact is that the energy form associated to a regular harmonic structure 
is subject to a scaling law equivalent to (2.6) [13: Lemma 6.1 and (A.4)]. This reduces 
a P.C.F. fractal, with the restriction stated above, to a variational fractal, for which 
Theorem 2.2 holds. 

There could be more than one harmonic structure on a P.C.F. fractal, but if we 
consider the harmonic structure with the scaling law (2.6) (cf. [13: Equation (A.4)]) we 
obtain again Theorem 2.2. 

In fact [13: Lemma 6.1 and (A.4)] state that 

E[u] =	l/S([F] 

where ,u = p.(K1 ). This relation is equivalent to our (2.6) and yields S = -. Then 
spectral dimension is defined by [13: Equation (A.5)] as 

	

dS	
25 

= 

Recalling our definition (2.7) of a and that S = -, we obtain ii = d. So our intrinsic 
dimension u is the spectral dimension founded by J. Kigami and M. L. Lapidus [13:
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Theorem A.2].
[13] the present paper 
N N 
P. _______ 

P(00) r(°)(x) 
A/ri 

S —l/o 
I. 2.5

Table 1: Glossary 

Table 1 is a small glossary to compare terms used in the present paper with those 
used in 131.	 --

3.4 The Sierpinski carpet. The Brownian motion on the Sierpinski carpet and the 
spectral properties of its generator have been widely studied by several authors. See, 
for example, [2, 41 and references in these papers. Here we want to stress only that 
the Sierpinski carpet is a variational fractal, in the sense of Subsection 2.1.4 , and the 
hypothesis of Theorem 2.2 are fullfllled. 

Following the notation of Subsection 2.1.3 take D = 2, N = 8, a, = 3 for i = 1,.. , 8 
and define the similarity maps

(i=1,...,8) 

where
= (0, 0), x 2 = (0, X 3 X3 = (0,1), x 4 = ( , 1) 

=	 X6 = ( 1 ,), X = (1,0), x 8 = ( , 0). 

The associated invariant set K is the Sierpinski carpet. 
In order to give to K the structure of variational fractal we equip it with a energy 

form E satisfying (2.6); The existence of such a form has been proved S. Kusuoka and 
Z. X. Yin in [15: Section 8/Example 1]. The couple (K, E) becomes a variational fractal, 
and so Theorem 2.2 holds for the Sierpinski carpet. 

4. Proof of main result 

In this section we will prove our main result, Theorem 2.2. The proof we are going to 
give follows closely the classical proof of the original Weyl's Theorem given in (6). In 
particular, only intrinsic physics characteristics of the fractal, and their scaling laws, 
enter in the proof. As in the classical proof (cf. [6: Chapter VIA]), only the scaling 
properties of mass and energy are used to prove (2.8). 

For i	-1 ...... N define the Dirichlet forms (E,,.) as 

Li[u] = (K1 )'E[	 (4.1) 
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for every u E .T = {u € L2 (K,JL I K ) : uo, E ..T}. Notice that (K,,E1 ) for i = 1,..., N 
are variational fractals. With this notation (2.6) becomes 

E[U] 

= >Ei[uIK,1 

for every u € F. 

The following elementary result gives the scaling rates of the eigenvalues of the 
energy form in term of the intrinsic dimension of the fractal K. 

Lemma 4.1. A real number A is an eigenvalue for (E, .r(°)) if and only if A(K) 
is an eigenvalue for (i,, F°) for every i = 1,. . . , N. Furthermore, the multiplicity is 
preserved. 

Proof. We will prove the lemma only for the form (E, F), being the case 
identical. We start proving the "only if part". Let u E F be an eigenfunction of (E, F) 
associated with the eigenvalue A. For a fixed i = 1,. . . ,N define the surjective map 

	

F 3 v —* 1,, = v o O i I E F.	 (4.2)

For v € F, by definition (4.1) of the form (E,,), we obtain 

E 1 (ü,, i3,) = ,(K,)'e(u, o ti,, i, o u',) = L(K,)e(u, v). 
Now because tz is an eigenfunction of the form (, F), the previous equation yields 

E(ü,, ii,) = A(K)' 
'K 

uv du 

= A(K1 ) f . (i o	o 

= Ai(K)' 
'K, 

üi3d 

A(K)-2/L 
1K.

üi3d
 

where we used (2:5). Because the map (4.2) is surjective the previous relation implies 
that Ajt(K1 ) 2/ is an eigenvalue of (E,, F,) associated with ü,. This concludes the proof 
of the "only if part" of the lemma. 

In order to prove the "if part" let Ap(K,) 2/' be an eigenvalue.of the form (Es, Ti) 
associated with the eigenfunction u € F,. This means that 

o ?,b, v o t,b) = E,(u, v) 

= A,(K1)-2/v 
'K, 

uvdpIK 

= A(K1)I_21vJ(uo1)(vo1)d 

= A(Ki)af(uoi)(vo)d 

for every v e .. Because F1 9 V V 0 ?, E F is surjective the previous relation implies 
that A is an eigenvalue of (E,F) associated with u o i4',. This concludes the proof of the 
"if part" of the lemma. It is easy to check that that multiplicities are preserved I
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The next lemma is the key step in proving Theorem 2.2. It gives a recursive estimate 
of the densities of states. 

Lemma 4.2. Let x 0. Then 

r°(x(K)2 ) <r°(x) <r(x) <	r(x (Kj )2 1 V ) .	 (43) 

Before proving this result we will show how Theorem 2.2 follows from it. 

Proof of Theorem 2.2. We start by proving the last inequality in (2.8). Define 
Pi = 14K1 ) for i = 1,... ,N. We can assume that 

0 </Li1L2:5.../tN<1. 

Define x 0 = 1 and x 1 = x0p,	 > xo. Because r(x) is bounded on finite intervals, 
there exists c > 0 such that

r(x) < cx 2	 (4.4) 

for every 'x E [xO ,x i ]. Now define x 2 = x i 2L > x1. Then for every x E [XI,Z2] we 
have 2/v	 2/v 

X0 XO (-)
	

ç Xj	
(uut) 

for every i=1,...,N,i.e. xp' E[xo,x i ] for every i=1,...,N. Lemma 4.2 and (4.4) 
yields

r(x) <	r(xu) <cx12 >j	= cX' /2	 (4.5) 

for every x E [x1,x2].
2/v Now we proceed inductively defining x, 1 . i = X nI2

— 
N , for every integer n > 2. 

Suppose that
r(x) < cxl2	 (4.6) 

for every x E (xi, x]. It is elementary to check that if x E [X I, X fl+i], then x ji ' "' e 
[z 1 , xj. Lemma 4.2 and the inductive hypothesis (4.6) imply that (4.5) holds for every 
x E [x,x+i1 . Obviously, limn_+[x i , xn] = Exi,+), this means that r(x) 
for every x	x1. 

The proof of the first inequality in (2.8) is identical, while the proof of the second 
one is contained in Lemma 4.2.1 

Proof of Lemma 4.2. We start proving the last inequality in (4.3). Define the 
Dirichiet form (E, T) as 

-	 fr={fEL2(K,iu): fI K E Fi for all i1,...,N} 

={1EL2(K,Iz): flKi o 1 EF for all z=1,...,N}
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and

	

[uj =	iz(K1YE[u o1]	>11[uIK]. 

It is clear that (, fr) is an extension of (E, F). This form represents the fractal media 
K where the subdomains K1 ,. .. , Kjv have been artificially separated. 

We claim that the totality of eigenvalues and eigenfunctions of the form (E, F)

consists of the eigenvalues and eigenfunctions of the forms (E,, F1 ), for i = 1,. . . , N,

where each eigenfunction u E F1 is extended to the whole K defining u(x) = 0 for x K1

(this fact is physically evident and reflects the fact that several separated vibrating 

systems performs vibrations without interacting with each other, cf. [6: Chapter VIA]). 


In order to prove mathematically this statement consider an eigenfunction u of

(E,F) associated to the eigenvalue A. Then we can define il E F by u(x) = u(x) if

x e K1 and u(x) = 0 if x K. It is clear that such a function belong to F, furthermore 

(u, v) = E1 (u, V I K ) = A 
fKi 

UV I K  du = A 
fK 

üv dp 

for every v E F. This means that every cigenfunction of (E1 , F1 ) for i = 1,. . . , N gives 
an eigenfunction of (E, F), and it is clear that the multiplicity is preserved. 

Conversely, if u is an eigenfunction of (E, F) associated with the eigenvalue A, then 
U UlK. It easy to check that ulK for every i = 1,... ,N is an eigenfunctions 
of (E, .F) associated to A which vanish outside K1 . This means that we may consider 
the totality of the eigenfunctions of (E, F) as constituted of functions supported in only 
one K1 for i=1,...,N.	 - 

It is clear that if u is an eigenfunction of (E, F) associated to A and supported in 
K1 , then

= (u,) = A  uidp = AL uIKvdJz, 
K	 , 

i.e. UlKi is an eigenfunction of (El , F1 ) associated with the same eigenvalue. 
Define the density of the states (x) of (E, F) in the obvious way (cf. beginning of 

Subsection 2.2). Then the property we have proved can be summarized in 

(x) = > rj(x ) .	 (4.7) 

Now, because (E, F) is an extension of 

[u]	 .	E[u] 

	

maxmm	<	max	mm 
Vt .... . vk.l EL 2 (K)	' - '	'-	hu1 2 -	,...,vk_,EL2(K) °-' hlhl2 

'EY 

thus by the Mm-Max principle, Theorem 2.1 we obtain r(x)	(x). This relation

together with (4.7) yields

r(x)



Spectral Asymptotics for Variational Fractals	429 

To complete the proof of the last inequality in (4.3) it suffices to notice that by Lemma 
4.1 it follows that r 1 (x) = r(x,(K*)2/L). The second inequality in (4.3) is an immediate 
consequence of the Mm-Max principle, Theorem 2.1 , because 1° C F. The first 
inequality in (4.3) can be proved in the same manner of the last one. Define the 
Dirichlet form (e,F°) where 

frO ={fEL2(K/) : fI EF for all i=l,...,N }Ki


=	E L2 (K,) : 11 K 0 O E F0 . for all t. = 

and notice that F° C F. The proof is identical to that of the last inequality in (4.3), 
replacing with F°. This repetition is omitted I 
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