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Blow-Up  in Exterior Domains: 
Existence and Star-Shapedness 

E. Francini and A. Greco 

Abstract. For some nonlinear elliptic equations in divergence form, we consider the solutions, 
defined in the exterior of a- contractible bounded domain g, which become infinite at the 
boundary. We prove the existence of such solutions and study the shape of their level sets 
when Q is star-shaped. 
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1. Introduction 
This paper deals with solutions of the elliptic equation 

div (g (I Vu l) Vu ) = 1(u) k (I Vu I)	 (1.1) 

defined in a domain ci C R h', N > 2, satisfying the following boundary condition: 

urn u(z) = + 00.	 (1.2) 
X an 

Such solutions are called "explosive solutions", or "blow-up solutions", or even "large 
solutions". An existence result for the special case Au = 1(u) was obtained by Keller 
[11] and Osserman [18]. The behaviour of large solutions near aS2 was then studied by 
Bandle and Marcus [3], Véron [ 19], Lazer and McKenna [13], to which we also refer 
for further historical details. The research in this field is still blowing up in different 
directions, such as the extension of known results to more general equations, as well as 
to non-smooth domains. 

In a recent paper [2] the problem of existence, uniqueness, asymptotic behaviour 
and convexity of solutions to problem (1.1)- (1.2) inabounded domain !Q c RN, N > 1, 
has been considered. In the case N = 1, existence of such solutions may be obtained 
directly by integration. In the case N > 1, an existence result was achieved under 
certain monotonicity assumptions on the function k and in domains whose boundary 
has positive mean curvature. 
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Under the following set of hypotheses: 

	

fEC'((to,+oo),R), f(t-)=o, f(+oo)=+oo, f'^O, f'(i)< -4-oo	(1.3) 

	

g E C2([O,+oo),R), G(t) := (g(t)t)' > 0 for alit > 0	(1.4) 

k E C'([0,+oo),R),	 (1.5)


we obtain two main results: 

(1) We prove existence in smooth bounded domains, as well as in exterior domains, 
under natural assumptions. 

(2) We prove that certain solutions in an exterior star-shaped domain have star-shaped 
level sets.	 - 

(1) We consider g and k asymptotically of power type: more precisely, we assume 
that there exist a r > -1 and a q r+2 such that G(t) ' t T and k(t) jq as t - +00, 
i.e., for t larger than a suitable t 1 the following relations hold: 

I Ci	<C2 

1 ci<ç<c2	
(1.6) 

where C, and C2 are positive constants. Recall that g and G are the eigenvaiues of the 
characteristic matrix associated to equation (1.1). By the definition of G, assumption 
G(t) '-' t , r > -1, implies g(t) '-' t T and g'(t) t'. This and the strict positivity of 
g(t) and G(t) near t = 0 imply that equation (1.1) is uniformly elliptic with respect to 
any solution. Condition q r +2 may be regarded as natural for existence of classical 
solutions. 

Let F(i) := ft. f and H(t) := f G (I s I) s/ k (Is I) d.s. Note that if (1.6) holds, then 
H is unbounded. By assuming (1.3) - (1.6) we show that condition 

I

+00 1. 
H-' (F(t)) dt 

< +00 (1.7) 

is necessary and sufficient in order to have existence of solutions exploding at the bound-
ary. Condition (1.7) appeared in this form in [21, (C-i), and reduces to (2) of [11] in the 
special case g = k 1. Following [21, we refer to (1.7) as to the generalized Keller con-
dition. We shall remark that (1.7) follows from (1.3) and (1.6) in the case q = r+2. We 
point out that also the positivity of k(0) is necessary for existence if Q is bounded, and 
that f must be unbounded in order to solve the problem in arbitrarily small domains 
(see Subsection 2.4). 

(2) Additional assumptions are usually required to get qualitative properties of 
solutions of elliptic equations. As for star-shapedness, we distinguish two cases. In the 
case N = 2 we show that if t 2 G(t) / k(t) is non-decreasing, then the least solution in 
the exterior of a star-shaped domain has star-shaped level sets. The result also applies 
to classical solutions of non-uniformly elliptic equations, including the minimal surface 
equation.	 -
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In the semilinear case (G 1) star-shapedness follows for every N 2 2 and for every 
solution, not only the least one. Note that uniqueness does not follow trivially by the 
maximum principle since u is infinite at the boundary. 

It is remarkable that if G(i) .-.. t T , T > —1, and k(t) i, then the monotonicity of 
2 G(t) / k(i) implies q r + 2. This and (1.7) imply existence. 

2. Existence 

2.1 Method and main results. In the case N = 1 an exhaustive study of existence 
may be carried out by integration. To prove the existence of an explosive solution for 
N 2 2, instead, one usually starts with a solution Urn taking a constant (and finite) 
value rn at the boundary, and then one lets m tend to +00. By the comparison principle, 
U rn is increasing in m and therefore it has a limit u. This u is candidate to solve the 
problem. 

In order that this procedure works, one has to perform the following three steps: 
i) Prove the existence of a solution Urn satisfying Urn lou	m. 

ii) Prove that the sequence {Um} is locally bounded in Q. 
iii) Find an interior bound for the gradient VUrn that forces u to be still a solution. 

The main contribution of this section concerns the second step. The first and the 
last ones follow by classical results. After [3) and [19], several attempts have been done 
to extend results to equations with non-linearities depending on the gradient of the 
solution. In [2) equations of the form (1.1) are considered, and some special monotonicity 
assumptions on k are made in order to prove existence in domains whose boundary has 
positive mean curvature. 

The present approach differs from the previous ones since we do not try to estimate 
the first-order term in equation (2. 1), namely, the term (N - 1)g( u 'l) u '/r , by means 
of the quantity 1(u) k (I u 'I) . We prefer to argue by contradiction when proving the 
existence of radially symmetric explosive solutions. This method has the advantage to 
extend the existence result known for Au = 1(u) to uniformly elliptic equations of the 
form (1.1), at least in the case C and k are of power growth, without monotonicity 
assumptions on k. 

A contradiction argument was also used for equations of prescribed mean curvature 
in [8]. In that case, it turns out that the negligible term in (2.1) is the one of the second 
order. 

Once we have proved the existence of radially symmetric explosive solutions in 
spheres of arbitrarily small radius we use them, as usual, to get an interior bound for 
Urn via the comparison principle. In doing this we suppose ci smooth; see [16] for 
existence in fractal domains. 

We also show that every solution in an exterior domain approaches to as lxi tends 
to +00. This observation was made in [3] for the equation ,Au = 1(u). 

Finally, we prove the necessity of some conditions in order that an explosive solution 
exists:. 1) - assumption (1.7) is necessary; 2) the assumption that k(0) > 0 is necessary 
if ci is bounded; 3) the function f must be unbounded if we want ci to be arbitrarily 
small.
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2.2 Existence in small spheres. We present an existence theorem for problem (1.1) 
- (1.2) in the sphere. To obtain the result, we look for a radially symmetric solution 
u = u (I x I) and therefore we are led to-an ordinary differential equation. It turns out 
that if the radius of the sphere is sufficiently small, then a solution exists. Later on 
we shall use the explosive solutions in small spheres compactly contained in a general 
domain Q, and the comparison principle, to bound from above the solutions of equation 
(1.1) defined in all of Q and continuous up to O?. 

Theorem 2.1. Assume (1.3) - (1.7). There exists a radially symmetric explosive 
solution of problem (1.1) - (1.2) in every sphere of sufficiently small radius. 

Proof. First we prove that the solution u(r) of the initial-value problem 

G (I u 'I) u" +	g ( l u ' D u ' = f(u)k(Iu'I) 
U(0) = u 0 > t 0	 (2.1) 

u'(0) = 0 

becomes infinite at a certain (finite) R, then we prove that R tends to zero as u 0 - +00. 
From the equality Ng(0)u"(0) = f(uo)k(0) and since g(0),f(uo),k(0) >0 we have 

u"(0) > 0. It is readily seen that u'(r), u"(r) > 0 for all r > 0. Indeed, if u M vanishes at 
a certain T for k = 1 or k = 2, then the equation implies u(k4l)(F) > 0, a contradiction. 

Classical gradient estimates, which hold by virtue of the structure conditions (1.6), 
prevent u' from becoming infinite at a finite R if u(R) is also finite (see, for instance, 
Theorem 14.1 of [6] and compare (1.6) with (14.9) there; alternatively, a direct proof 
may be obtained by contradiction). Hence we have only to exclude the case that u is 
entire, i.e., the case that u(r) exists for all r E IR. We shall make use of the following 
equality:

r 
H(u'(r)) - H(u'(ri)) + f 

N -1 g(ju'I) 
(uI)2 ds = F(u(r)) - F(u(ri )),	(2.2) 

s	k(Iu'I) 

which is obtained by multiplying the equation by u'/k(Iu'I) and then integrating from 
an r 1 to r. 

We proceed by contradiction. Assume that there exists an entire solution of (2.1). 
In this case, it is easy to check that u - +oo and u' - +00 as r - +0°. The core of 
the proof is based on the fact that conditions (1.6) lead to the following estimates: 

I t 2 if  < r+2 
{ H(i) 1 log 	if q = r + 2	 (2.3) 

g(t)t2/k(t)	jr-q+2 

The last one implies that 

I l g(u')(u')2	
{ jr i S (uy-+2 ds < C (u(r))T_2 log rif q < r + 2 

ds-.-	r1 
.s	k(u')	logr	 ifq=r+2. 'j•



+00	 +00 I	di 

(F(i + u(r2 )) - F(u(ri )))	= 1 
u(r2)

di 

(F(t) - F(u(ri ))) __Lç. > 
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By substituting these estimates into (2.2) we find, for large r, 

F(u) 
< {C(uIY_+2lor if q < r+2


	

Clog(u'r)	if q=r+2, 

which in turn imply 
+00	u'dr	 +00 

J	> f	dr 

	

J	(1ogr)T =+oo 
ifq<r+2, 

(F(u(r))) 

(+00 u'drf+O0:dr 
e F(u(r)) J	>J	—+OO ifq=r+2. 

Since all integrals in the left-hand side of the above inequalities are finite by (1.7) (see 
also Remark 2.2) we have a contradiction. This shows that problem (2.1) cannot have 
an entire solution, hence u(r) - +00 as r approaches a finite R. 

Now we prove that .1? = R(uo) tends to 0 as u 0 tends to +00. 

1) By uniqueness, u±s strictly increasing with respect to uo, hence R is non-
increasing. Suppose that R:= lim R(uo) > 0. 

2) Observe that u' is non-decreasing in uo (hint: the function v(x) := u (I x I) + C is 
a supersolution of (1.1) for every positive C). 

3) Observe, further, that W(r) becomes infinite at each r > 0 as u0 —i +00: indeed, 
if W(r) <M, since u - +00 and since f(+oo) = + 00 the equation implies u" - + 00 
uniformly in the interval [r/2, t-}, a contradiction. 

4) Choose 0 <r j <r2 <fl.' Assume, for simplicity, q <r + 2. Since u' - +00 as 
uo - +00, we deduce by (1.6) and (2.2) that F(u(r)) - F(u(r i )) < C(uI(r))T_+2 for 
r > rj and large uo. This implies that 

where the integral is finite by (1.7). By 2) and 3) we see that u(T2).-u(rI) = f, 2 u' dr 
+00 as Uo - +00. By the Monotone Convergence Theorem and the convexity of F, 
this implies that the above integral vanishes as uo - +00. We reach a contradiction 
that proves that R must be zero. The conclusion is similar in the case q = r + 2 I 

Remark 2.2. If q = r+2 in (1.6), then we see from (2.3) that cElL <H(t) < e 
for I large. Condition (1.7) then follows from (1.3) by observing that F(u) > a u with 
a positive a. 

2.3 Existence in general domains. The upper bound provided by Theorem 2.1 
allows us to prove the existence of a solution to (1.1) - (1.2) when ci is a bounded 
domain or the exterior of a contractible bounded domain. We give details for the last 
case. The following result is classical:
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Lemma 2.3. Assume (1.3) - (1.6). Let 9 C RN be a contractible bounded C2' 
domain, and let R be so large that 9 CC B(O, R). Define ciR = B(O, R) \ 9. For every 
in > to there exists a (unique) solution Uft E C 2 °(cIR) of equation (1.1) satisfying 
to <R <in in QR , u	m on oc, uR(X ) to for lxi = R. 

For reader's convenience we recall the structure of the proof: the result follows 
from the Leray-Schauder fixed point theorem after an a priori estimate of u, which 
follows directly from the maximum principle, and an a priori estimate of Vu, which 
can be obtained via barrier functions by virtue of the assumptions G(t) t T and 
k(t) = 0(t' 2 ), r > —1 (see [6: Theorems 14.1 and 15.11) 

Note that since the equation is invariant under rotations, and by uniqueness, if g is 
a ball centered at the origin, then the corresponding u 1 is radially symmetric. 

Now let R -^ +00. By the comparison principle, UR is increasing in R and bounded 
from above by m. This and the structure conditions (1.6) provide a gradient bound in 
compact sets [14: Chapter IV, Théorème 3.11, which in turn implies a Holder estimate 
for the gradient. Finally, the Schauder estimate and Arzelà's theorem guarantee the 
existence of a sequence uR converging to a solution urn of (1.1) in ci, uniformly on 
compact sets together with its first and second derivatives: 

Lemma 2.4 Assume (1.3) - (1.6), let 9 be as above and define ci = R' \ g. 
For every in > to there exists a solution Urn e C2 (l) of equation (1.1) satisfying 
to <urn <in in ci, umiOc E in. 

The last step consists in letting in -4 +00. By using the solutions in small spheres 
compactly contained in ci, which exist by Theorem 2.1, as an upper bound, we obtain 
a solution to (1.1) satisfying (1.2). The procedure to prove convergence is the same as 
before: 

Theorem 2.5. Let ci be a (the exterior of a contractible) bounded C 2 ' domain. If 
(1.3) - (1.7) hold, then there exists a solution u E C2 (ci), u > to, of problem (1.1) - 
(1.2). In the case ci is an exterior domain, every solution to the same problem satisfies 
u(x) - t0 as lxi -4 +00. 

To prove the second claim of the theorem we argue as follows. Assume that there 
exists such a solution u. For every p> 0 and for sufficiently large R there exists a radially 
symmetric solution yR in the annulus B(0, R) \ B(0, p + 1/R) satisfying vn(p + 1/R) = 
VR(R) = +00. As R - +00, vj decreases and is bounded from below by the solution 
v in the exterior of B(0, p) whose existence follows by the first claim. Hence yR tends 
to a solution of the same equation in the exterior of B(0, p) exploding at p, which we 
shall denote by U (since both v and U are infinite at p, we may not conclude trivially 
that v = U). 

Since U is radial and k(0) > 0, by the same argument as in the proof of Theorem 2.1 
we can conclude that 15(r) is convex in r. Moreover, 15(r) must be decreasing for r close 
to p. If there were an r0 at which 15'(ro) = 0, then U would become infinite at a certain 
finite radius (see the proof of Theorem 2.1) but this is not possible since U is defined in 
the whole exterior of B(0, p). Hence W(r) < 0 for all r > p, and passing to the limit in 
the equation in (2.1) one can easily see that 15(r) -4 to as r -4 +00. 

If we choose p so large that Oci C B(0, p), then we have u yR for every R, hence 
u U. The second claim follows and the proof is complete U
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2.4 Necessary conditions. In this subsection we point out that some of the hypotheses 
of this paper are necessary for the existence of an explosive solution. Namely, we deal 
with the positivity of k(0), the generalized Keller condition (1.7), and the unboundedness 
of the function f in the equation. 

Proposition 2.6. Assume (1.4) and let f(u) k(i) be locally Lipschitz continuous 
in [to, +oc) x [0, +oo) and non-decreasing with respect to u. If there exists a solution 
u> to of problem (1.1) - (1.2) in a bounded domain ci, then k(0) >0. 

Proof. If we had k(0) = 0, then every constant larger than to would be a solution 
of (1.1); in particular, choosing a constant C > minu we contradict uniqueness in the 
set {x E ci Iu(x) <C)U 

Theorem 2.7. Assume (1.3) - (1.6). Hypothesis (1.7) is necessary for the existence 
of a solution to problem (1.1) - (1.2). 

Proof. Assume there exists such a solution, say v, in Q. Let us first consider ci 
bounded. Suppose, without loss of generality, that 0 E Q. Choose u 0 > v(0). We claim 
that the solution u of (2.1) is explosive at an R < +00. As mentioned before, by (1.6) it 
suffices to exclude the case that u is entire. If this were the case, since v is infinite at ôci 
and since u(IxI) would be finite there, by comparison we would have v(0) ^! u(0) = uo, 
a contradiction. By (2.2) with r 1 = 0 we have H(u') <F(u), hence u'/H'(F(u)) < 1. 
By integration from 0 to R we find f, 	1/H 1 (F(t)) < R. Thus (1.7) is satisfied. 

Consider now a contractible bounded domain 9 containing the origin and let ci = 
RN \ U. By Remark 2.2 we may assume that q < r + 2. Let R be the largest positive 
number such that B(0, R) C c. If there exists an explosive solution v in ci, then we may 
use this v as an upper bound for the solution urn in the exterior of B(0, R) constructed 
in Subsection 2.3. Letting m - +00 we obtain an explosive solution u = u(r) satisfying 
the equation in (2.1) and such that u(R+) = +00. We observe now that the integral 
in (2.2) is a o(H(u)) as r 1 -+ R. This follows from the estimates (2.3) and the well-
known property of an integral function to be an infinite of lower order with respect to 
the function under the sign of integral (see [13: Lemma 2.1] for a proof). Hence, (2.2) 
implies that H(u'(r i )) - F(u(r i )) as r 1 - R+ . Taking into account estimate (2.3), 
inequality (1.7) follows I 

Proposition 2.8. Let f E C'((to,+oo),R), 1' ^! 0, and assume (1.4) - (1.6). If, 
for arbitrarily small R, there exists a solution of problem (2.1) in the interval [0,R) 
satisfying u(R) = +00, then f(+oo) = +00. 

Proof. Taking r 1 = 0 in (2.2) we get H(u') < F(u) - F(uo). By (1.4) - (1.6) the 
function H is increasing and unbounded, hence we obtain 

1

+00	dt
R. 

H'(F(t+uo)—F(uo)) 
By the mean value theorem we have F(t + uo) - F(uo) = t f(t). If we assume, contrary 
to the claim, that f M, then we find 

hence R cannot be arbitrarily small I
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3. Star-shapedness 

We investigate the star-shapedness of the level sets of large solutions in exterior domains. 
For simplicity, we say that a domain 9 is star-shaped when it is star-shaped with respect 
to the origin, i.e., Ax E g for all x E g and all A E [0, 11. In the sequel we denote by Q 
a star-shaped bounded domain in R", and we let Q = R' \ . 

Star-shapedness of level sets, together with convexity, was considered by Diaz and 
Kawohl [4] and by Acker [1) for solutions of some elliptic equations in a bounded star-
shaped ring with finite Dirichlet data. Longinetti [15] proved a maximum principle for 
star-shapedness for solutions of Poisson equation by considering the angle between the 
level surfaces and the radial direction. This result was generalized by the first author - 
[5].

Additional assumptions and suitable estimates of the boundary behaviour are usu-
ally required to get uniqueness of large solutions and their qualitative properties such as 
radial symmetry [17] and convexity in a convex domain [9]. If N = 1, star-shapedness 
follows trivially from u" > 0. In the case N = 2 we show that if t 2 G(t) / lc(t) is 
non-decreasing, then the least solution in the exterior of a star-shaped domain has star-
shaped level sets. In the semilinear case (C 1) the result holds for every N > 2 and 
for every solution, not only the least one. 

It is remarkable that if C(t) t T , T > — 1, and k(t) - t, then the monotonicity of 
j 2 G(i) / k(t) implies q 5 r + 2. This and (1.7) imply existence. 

3.1 Two-dimensional case. The proof of the next theorem is based on the con-
struction of a suitable differential equation in a three-dimensional domain. The idea of 
searching auxiliary equations in a domain of dimension larger than Q was successfully 
used by Korevaar [12] and by Porru and the second author [10] to obtain convexity 
results. Of course, difficulty arises since one has to define a new elliptic operator Q able 
to provide the desired result via the maximum principle. 

Theorem 3.1. Assume (1.4), N = 2, and let f(p,u,t) be of class C' in R+ x.R x 
[0, +00) and satisfying 1, 1,, f > 0, 

f(p,u,t) 
t 2 G(i)	

non-increasing in t for p> 0, u > to, t > 0.	(3.1) 

If urn is a solution of div(g(VuI)Vu) = f(I x I, u ,I Vu I) in the exterior domain Q sat-
isfying Urn > to in ci, Um8O m> to, um(x) - to as IxI -' +oo, then for every c E R 
the set U { x I um(x) > c } is star-shaped. 

Proof. We introduce polar coordinates (p, 9) such that x = p cos 9, y = p sin 9. 
The characteristic matrix of the operator Qu = div (g(IVu) Vu) with respect to the 
polar coordinates is the following: 

/ g+ j g'u	jjg'tLpu9 ) 

I	ii	2 ]J9' rUpU9	g+g	u9


The first-order part of Q is given by g Up/P - g' u,, 4/( p3 Vu I).
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Let S := {(p1, p2, 9) I (pi3O),(p,O) € Q, P' < P2) C R3 , and denote by Q the 
quasilinear operator in C2 (S) having the following characteristic matrix: 

(g'(q,)v , ,\ p2 
pq, 

(g'(q2 )u2 v9 '\	p2 
"	pq2 

- g ' (q,) v 2 
qi G(q,

g'(q2) v2 
- q

) (g(qi) + ''"'" p2 

0 

( g'01) V1 v• 
pq	)J

(g(q2) + g(q	p2 

) 

(

9(2)v2 V


__p2 q2 ) 

where q1 = ./v? + v + v/pTj and v = av/op, i = 1, 2, v being a generic element of 
C2 (S). Furthermore, let the first-order part of Q be as follows: 

Pi g(qi) 
V1	 V2 

P2 9(q2)	g'(qi)	
V 1 V 

2 —	g'(q2)	
V2 V9. 

G(qi )	G(q2)	piqiG(qi)	p2q2G(q2) 

Define J(p1, p2, G) : um(Pi 3 O) and !(p1,p2,9) := Urn(P2,O). Since v2 = L i = 0, we 
have q i (U) = Vu(p i ,8)I and q2M = IVu(p2,9)I. With this in mind, and taking into 
account that '4/p2 = lVuI 2 — '4, i t is easy to check that Q is elliptic with respect to 
both U and v. By the equation for u and by the assumptions on f one verifies that 

QU < 
2 f(i54(U)) f(,M,'(M)) and	Q^ö2 -	G(4(U)) 

where 2 3 = Pi + p2 and 4(v) = /i + -v22 +  v/p. Let us give details for the first case. 
We have

Qu(pi,8)	2 f (PI ,u,VuI) QU(pi,p2,9)=p 
G (I Vu I)	G(IVuI) 

If u = 0, then 4 = lVuI and, since f,f,, 0, we are done. If, instead, ug 54 0, by (3.1) 
we have

pf(,u,IVuI) -	IVuI 2	f(,u,IVuI) 
<	42	f(,5,U,4) 

t4G(IVuI) - Vu 1 2 —'4 IVuI 2 G (IVuI) — 
42 —'4 42 G(4) 

because the function 42/(4' — '4) is decreasing in 4 and 4 < IVI. Since 42 —	= 
/32 we conclude that QU ^ ,52f(,,U,4(U))/G(4(U)). The inequality for v is obtained 

similarly. Since U ^ on ÔS, and since both U and approach to as P1, P2 — +00, by 
the comparison principle we conclude that U > v in S. The claim follows I 

Remarks. 1) Of course, the result continues to hold if ci is a star-shaped ring, i.e., 
ci = o \i where 91 CC go are star-shaped bounded domains, provided Urn > to in ci, 
Urn m on oc1 and Urn t 0 on ago. 

2) Since we do not require uniform ellipticity as IVul -+ +oo nor strict positivity of 
f, the result is also applicable to the minimal surface equation, i.e., to the case when 
g(t) = (1 + t2)/2 and f 0. 

3) If ci is a star-shaped ring of class C2,a, a solution u of the minimal surface 
equation satisfying u m on oc1 and u to on a

g
o exists provided I'm — t o I is small 

enough [7].
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Star-shapedness is preserved when in - +00. Hence, by comparing the theorem 
with the construction of an explosive solution developed in Section 2 we arrive at 

Corollary 3.2. Let the exterior domain ci be of class C20 and assume (1.3) 
(1.7), N = 2,

2G() non-increasing in t for t R. 

Denote by urn the solution of equation (1.1) in Il satisfying urn lafl m > to, Um(X) 
t 0 as lxi -i +00. If we let u(x) := limrn_+urn (x), then we obtain a solution (the least 
one) of problem (1.1) - (1.2) such that for every c E IR the set U { x I u(x) > c } is 
star-shaped. 

3.2 Semilinear case. We show that every explosive solution of the equation Au = 
f(u) k(iVui) in the exterior of an N-dimensional star-shaped domain has star-shaped 
level sets, provided k(t)/t 2 is non-increasing for t > 0. The result follows by showing 
that the function u(Ax) is a supersolution of the same equation. The method is derived 
from [4] and makes use of the fact that any of such solutions approaches to at infinity 
(Theorem 2.5). We present the result in a more general form: 

Theorem 3.3. Let ci be as before and  > 2. Assume that f:cix(to,+oo)xR" 
R is of class C' and satisfies xoVf(x,u,p) ^! 0, f,(x,u,p) >0, 

A 2 f(x,u,p)<f(x,u,Ap) for all xEci, u> to, pERN, AE(O,1).	(3.2) 

If u is a solution of
= f(x,u,Vu) in ci	 (3.3) 

satisfying (1.2) and such that limii_.+u(x) = to, then for every c E R the set g  { x I u(x) > c } is star-shaped. 

Proof. Following [4], define u,\ (x) := u(Ax) in	= { x I Ax E ci } for a A € (0, 1).

Since x 0 Vf(x,u,p) > 0 we have: 

A 2 Au(Ax) = A2 f(Ax, utx), Vu(Ax)) <A2 f(x, u(Ax), Vu(Ax)) 

This and (3.2) imply

< f (x, u(Ax), A Vu(Ax)) = f(x,uA(x),VuA(x)), 

hence u A is a supersolution of (3.3). Furthermore we have u, \ (x) -4 +oo as x -* 
and u,\(x) -* t 0 as ixI - +00, hence by the comparison principle we deduce that uj ^! U 
in ci. Since A is arbitrary the claim follows U
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