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Abstract. We show embedding theorems of Sobolev type for Sobolev-Besicovitch spaces 
of almost periodic functions for any q > 1 and, consequently, for spaces W'9 , with q E (1, 21. 
The fundamental tool for the proof of the main theorem is the Hausdorff-Young theorem for 
almost periodic functions. 
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1. Introduction 

The theory of Sobolev-Besicovitch spaces W,' 9 (R 3 ) and H(R 3 ) of almost periodic ap 

functions, already introduced by Pankov [11] for the case q = 2 and by Avantaggiati [5, 6] 
for any q ^! 1, has been recently approached in the one-dimensional case by Avantaggiati, 
Bruno and lannacci [3], with the aim of solving partial differential equations with almost 
periodic coefficients. In [3] the authors prove also some preliminary regularity results 
for B 9-functions, and for as much as we know this is the only result obtained regarding 
this subject. 

The main goal of this work is to find embedding theorems for Sobolev-Besicovitch 
spaces of such type. The W, 7 spaces, whose elements have countable spectrum, are 
wide spaces (they are not separable); so we restrict ourselves to study suitable subspaces 
where we fix the structure of the spectrum A, i.e. we suppose that it has only one limit 
point, the point at infinity, and the frequencies satisfy the fundamental relation 

00

for all y>/3>O L_s IAiIY 
j= I 

where 0 is a suitable exponent that plays a fundamental role in the regularity of the 
embeddings. These subspaces are separable. In such spaces, the embeddings are refined 
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through Sobolev-type theorems, that coincide with the classical ones if we consider 
periodic functions, being in this case 0 equal to the dimension of the space where they 
are defined. 

While for any q E [1,2] the embedding theorems are proved (see also [9]), we have 
not found, at the moment, a way to extend our results for q > 2. Therefore, using 
the Hausdorff-Young theorem for B-functions, we first prove embedding properties ap 
between W,,q and H m,q spaces. Let us note that such embeddings are natural for their 
similarity to the analogous ones between classical W, , q and m,q spaces. Then, we 
prove the embedding theorems for the	spaces, for any q > 1. In this way, the ap 
corresponding theorems for the W,,q spaces (q e (1,2]) become a corollary, being in 
this case

jjm,q 

The Hausdorff-Young theorem again plays a central and fundamental role in the proof 
of the theorems. When q ^: 2, we believe that there are good possibilities for finding 
contiguity properties for these spaces, therefore extending our results to any q > 1. 

In Section 2 we recall the definition of the spaces B q and their main properties (in ap 
particular, the Hausdorff-Young theorem). In Section 3 we introduce the spaces, 
defining strong derivatives of B-functions, and we study the spaces H' and theirap 
basic properties. In Section 4 we explore the relations between	and H m,q spaces,

showing the importance of the latter. In Section 5 we prove Sobolev embedding theorems 
for the spaces for all q > 1 (and, consequently, for when q e (1,2)). Finally, 
in Section 6 we underline the crucial role played by the parameter /9, studying the case 
in which A is an additive semigroup with a finite number n of generators. In this case 
we find that 9 = n. 

2. Notations and definitions 

For any s e N, let P(R 3 ) denote the complex vector space of all trigonometric poly-
nomials of s variables, that is P E P(R 5 ) if and only if there exist c 1 , . . . , c, E C and 
),...,A''ER such that

P(x) =	ce'	(x e R3 )	 (2.1) 

where	,Aw
 are distinct and w is finite. If every c (j =	. . ,w) is different from


zero, the set 

is called the spectrum of P and the map 

	

a(A; P)	
lim--- f. P(x)edx =: jIP(x)e'dx 

T-.00jQTI QT 

f c, if A Aj for some  

0 if\a(P)
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is called the Bohr transform of P, where QT = [—T,T] 3 and JQTJ = (2T) 8 . For any 
fixed q E [1,00) we shall denote by B(R 3 ) the completion of 2(R3 ) with respect to the 
norm defined by IIPII q = (fP(x)dx) for all P E 2(R 3 ). An element I E B(R 3 ) is 
defined by a sequence of trigonometric polynomials ( Pfl ) TIE N such that 

I 

f = limP,, in B(R 3 )	and IIfII := 
Ylf(X )l q

d-) = limIPnIIq. 

Recall that the space B(R') := C(R) of all uniformly almost periodic functions is ap 
the completion of 2(R 3 ) with respect to the L00-norm 

I P II00 = sup IP(x)I	(P € 2(R3 )).	 (2.2) 
z 

For these spaces we have the following chain of continuous embeddings, for any q , q > 1 
such that q <q2 < +00: 

C' (R') = B(R 3 ) — B,(R') '— B(R') '—i B(R)	(2.3)ap 

being 1111100 ^! IIfIIq ^! IIfII, ^! 11f1j, where 1111100 := SUp€. f(x)I. For any f E 
B(R 3 ) we call the map 

A — a(A;f) : = if (x)e' X dx = lirna(A;P,,) 

(where the sequence of trigonometric polynomials (PT,)OEN converges to f in B(R')) 
the Bohr transform of f. 

Definition 2.1. We will call spectrum of the function f € B(R3 ) the subset of 
R3 defined by

a(f) = {A € R3 1 a ( A ;f) 0 o}. (2.4) 
Hence, in particular, when f is the polynomial P given by (2.1), we have a(P) = 
{A',... 

For the reader's convenience, we report some properties of the spectrum (see [31). 
For any f E B(R3 ) one has: 

lim a(A; 1) = 0 
IAH+oo 
a(f) is at most a countable set. 

a(f) = 0 a(A; f) = 0 for all A € R3 f = 0 € B(R). (2.7) 

We call the elements of a(f) Fourier exponents of Jr . Therefore, with each function 
f € B p(R3 ) we associate formally the Bohr-Fourier series 

I	a(A; f)e2.	 (2.8) 
AEa(f)

(2.5) 

(2.6) 

As well known, if the series (2.8) is absolutely ci-convergent with respect to a summation 
method ci, then it is unconditionally convergent.
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Remark 2.1. Let I E B(R). If its Bohr-Fourier series is absolutely convergent, 
then it is unconditionally uniformly convergent to an uniformly almost periodic function 
[2: p. 14]. Setting

f'(x) =	a(.\;f)e'	(x E R3) 
AE-U) 

it results that a( \ ; f) = a; .1*) for all \ E R° and, from (2.7), 11 f - f Iii = 0. 
Let us recall the Hausdorff-Young theorem for B.9P spaces, which we will use in the 

proof of the embedding theorems (for the proof, see [3, 4, 7]). 

Theorem 2.1 (Hausdorff-Young). Let f E B(R-). Then one has 

/
Ia(A;f)I9')	Jjfjj q	if q E (1,2]	 (2.9) 

AEo(f)
f 

	

11119	Ia(A;f)V)	if q E [2,+c,o)	 (2.10) 

AE-7(f) 

where q' = -2-j-, and the series occurring in (2.10) may be divergent. 

3. Sobolev-Besicovitch spaces W"9 (Rs ) and H'9(R3) 

For any multi-index a = (a i ,... , a 3 ) E N and x ,E IR' we set 

al = a 1 + . . . + a3 

(x)° = x" . . . 

- 1s 

Let us besides define the sets

(setting	= 1 if x = a3 = 0) 

(where 0,1	af) 

Jm{aE No' :lalm}	(mEN0).


The spaces C(1R') are naturally defined as the spaces whose elements f are such ap 

that &'f E Co (R) for all a E Jk equipped with the usual norm, and C(R5) =ap 
-	k	a flk=o C0(R ). For any q E [1, +00] and m E No we set 

II P llw"',°° =	i	IIocPIl00 
kI:5m

\	
(P E P(R')).	(3.1) 

IIPIlwm.' = 
/

II O°P II)	(q E [1, +00)) 
I^m 

Let us observe that, fixed q, (3.1) defines a norm on P(R 3 ) and we have J jPjjwo,, = llPIIq.
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Definition 3.1. For any fixed q E (1, +oo] we shall denote by W' Q (R') the com-
pletion of 1'(R) with respect to the norm Ilw"e defined by (3.1). These spaces are 
called Sobolev-Besicovitch spaces of order m and of type B. 

Hence, we can define the norm on the space W' in the following way: 

Ill Ilw.' 
= 
(iaii) .	(3.2) 

IaI<m 

Clearly, W(R3) B p (R8 ) for all m 0 and all q ^! 1. According to Definition 3.1, 
an element I of W(R-) is defined by means of a sequence (Pn)nEN of trigonometric 
polynomials convergent to f e B(R3) and such that, for any multiindex a with 
al !^ m, (ôa Pfl ) flEN is a Cauchy sequence in B(IR3). Since the space B(R3 ) is 

complete, we can set
f0 = lirn &P	 (3.3) 

and we will call f0 the strong a-derivative of f, setting ô'f = f0 . Observe that for any 
E C(R3 ) we get, integrating by parts, 

j(0"Pn (x))W(x)dx = (-1) 
fP

n (x)O' W (x) dx. 

Let us assume I E W'9 (R8 ) and a E Jm . The Bohr-Fourier coefficients of f and 
f are related by the formula 

a(A;f0 ) = iIaI(A)Oa(Af)	(A E o(f)).	 (3.4) 

It follows that f has the same Bohr-Fourier exponents of f, except for A = 0, if it 
appears among the Bohr-Fourier exponents of f. Therefore, by (2.8) we have 

f0 (x)	i10I(A)0a(A;f)ei1.	 (3.5) 
AEc(f) 

Observe that, when fc, represents the ordinary derivative of 1, its Bohr-Fourier series 
coincides with (3.5). 

Definition 3.2. For any fixed q > 1 and m 0 we shall denote by H(Rs) theap
 subspace of B(R) obtained as the completion of P(R3 ) with respect to the norm 

defined by
(1 + IAI2)Ia(A;P)V 

AEa(P) 

where q' = -2--. We will call H"(R5 ) Sobolev-Besicovitch spaces of type H.ap 

For any f E H Th .(RJ ) let us introduce the norm 

If IIH,q=  

(AEa(f ) 

(1+ lAI2)Ia(A;f)l).	 (3.6) 
 f



448	R. lannacci et. al. 

Clearly, for any rn > 0 and q 2 2 we have H(R3) -B,(R') with Continuous 
embedding. For any a such that Jai 1 m it is possible to show, using the Hausdorif-
Young theorem, that if f Ethen the sequence of polynomials ap 

Ô°Q =	a(A;f)i10I(A)aez 

AE o( P.,) 

(where (PR)nEN is a sequence of polynomials converging to I in B) converges in 
Bqp (q 2 2), and therefore we are able to define, for any I E the strongap

 derivatives oai as
= 1imQ,	in 

It is easy to show the following properties for the H" spaces, which will be used in ap 

what follows. 
Proposition 3.1. Let q 2 2 and Jai = k	m. If f E H(Ra), then 0°f E 

ap Hm— k , q (R3). 

Proposition 3.2. Let q 2 2 and Jai = k. If f € H.(R3 ) and 0°f € H(Rs), 
then f € ap 

4. Embeddings between	and W spaces 
Let us prove the following 

Theorem 4.1. Let m E N be arbitrary. Then: 

(i) For all q E (1, 2], we have W(lR$) '-4 
(ii) For all q 2 2, we have H9(Rs) 

Proof. (i) Let f € W, (Ri) . If m = 0, the thesis follows from the Hausdorif-
Young theorem. Now, let m 2 1. Since jtq' 2 1, we have

Tn If lIm.q 
kCE-M

> (1 + IAIm)la(A;flt) 
^ k> ( > I A I ' I a( A;f)I9') 

 "O AEa(f) 

where /c = 2q'-1• On the other hand, since I10°fIIg < +, by the Hausdorff-Young 
theorem we have, for all ii = 1.... , rn, 

((f) 

	

lI0fii q)	^	I10°fii 
>	ia(;f)V (

	

l(A)I). 

AEo 

Besides, we have, for a suitable C e R+ 1) 

mf. qT 

Ill 11 W— 2 C E 	
Ia(A,f)lIAVL) .	 (4.1) 

v=0 AEa(f) 

' Estimate (4.1) follows from the fact that there exist xo,xI E R+ such that, for all A E 
1R and zi E N0 , xoI A I 2	 l(A)I2 :5 xiIAI2. Then, in this case, we have C = 

where Pm = p(s,m) is the number of vectors a such that Ico = M.
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Therefore, there exists K E R such that If IIH-, ' < KIIfIjwm,q.


(ii) From the Hausdorff-Young theorem it follows that 

IIfIIq 
5( AEo(f) 

hence, since, by Proposition 3.1, ô''f E Bq for all a E Jm, 

11A W—,	
CE-M

I	IIa(;f)I9

XEJm  

Since I(A)I'	(1 + JA 12)!1q' we have 

/ 
IfWm.q <

	

	 (1 +	 =IIfIIH,' 
EJm AEu(f) 

where j5=	p(s, i)I 
From Theorem 4.1 we obtain the relation H 2 = W' 2 (m E N) which is also a 

trivial consequence of the Parseval equality. 

5. Embedding theorems for H'? spaces 

We are going to establish sufficient conditions in order to guarantee some embedding 
results. Let us fix a set A C IR' \ { O} satisfying the following properties: 

a) card A= card N. 
b) A is ordered with respect to the absolute value: A = {A" : n E N) with 

1A 1 1 < IA .' I for i < j. 
c) A has a unique limit point and this is the point at infinity. 
d) There exists 9> 0 such that

	

<+00	(7 > 19) .	 ( 5.1) 
AEA 

We shall consider almost periodic functions such that a(f) c A. Let us note that 
A C IR' \ {0} means that, for the sake of simplicity and without loss of generality, we 
consider almost periodic functions with asymptotic mean equal to zero. Observe that 
these classes of almost periodic functions include the periodic functions and the quasi-
periodic ones that are obtained as finite sums of periodic functions, whose generators 
are rationally independent. In fact, in this case we have 19 = s, since the series (5.1) 
has the same behaviour of the multiple generalized harmonic series kCZ' jfr- where
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Let us denote by Cj(R) the space of those uniformly almost periodic functions 
that are Hölderian too, i.e. 

	

C(R3 ) = {i E C(R) :	
11(x) - f(v)I	

} 
ap	 sup 

z^y xyP <+00 

equipped with the usual norm. Finally, let us set 

B(A) = {f E B(R3) a(f) C A} 

and, analogously, W(A), H(A) and CjL(A). Observe that these spaces are sep- 
arable. 

We have the following embedding results. 

Theorem 5.1. Suppose that A C R3 \ {O}, with card A = card N, satisfies (5.1). 
Then:

(i) If mq <j3 and either a) q ^! 2 or b) 1 <q <2 and /3 < 2 q , we have


	

H' 9 (A) '—i B,,(A)	for all r E [q  

(ii) If mq /3, we have H'(A) '- B,,(A) for all r E [q, +oo). 

(iii) If mq > /3, we have H'(A) '- CP(A). 

(iv) If mq> /3	1)q, we have H(A) '-* C(A) for all it E (O,m - 

Proof. (i) Let us consider, first of all, the case q ^! 2. By the Holder inequality, we 
get

n+p 

j=n+i

I-) <(n+p	

r/ 

\ 

n+P 

-	(Ia(Ai;f)IH	 (5.2) Im))	( 
j=n-f 1	 = +l 

<(n+p 
-	a(A;f)I'(1 + IA3I2)')	( 

jn+1	 \j=n+1 II'J 

for all p E N. From convergence of (3.6) and of (5.1), we can say that the first term in 
(5.2) is a Cauchy series and, consequently, is convergent, provided	> /3, that is 

/3q
(5.3) 

f3—mq 

In this case, being r > 2, from the Hausdorff-Young theorem it follows that 1 1f1jr 
rnzi -' 

Cf H m.q where C = [>j=1 IA'I r-q] rq ,i.e. the thesis.



Embedding Theorems for Sobolev-Besicovitch Spaces	451 

Let now q < 2. We may consider r 2. Hence, we must have 6 Pq > 2, that is 

2—q (5.4) 

Condition (5.4) is then sufficient to guarantee the proof when q E (1, 2). Indeed, we 
have

B  ap	B,, '- ap 
with 1 <q <2 < r. 

(ii) When q > 2, we have

Y-7--; 

	

n+p	 / n+p	 ,.,
1	(iT) 

la( -\j;, 	< (	
- (	rn)') 

	

jn+1	 \j=n+i	 jn+1 II 

The thesis follows whenever	> 6, that is r > q. Let us, again, consider 1 < q < 2

and r 2. The thesis follows immediately from (5.5). 

(iii) We have

)	

n+p	1 fl+p	 fl+ /	J'	 q 

	

E Ia(A;f)I	(	 (	IAilmq) 
jn+1 

From (3.6) and the hypothesis mq >,3, it follows that

(00	1 1a(; f)1 <LIIfII H rn.q	where L=	Aim) 

I 

j=1 

Note that f E B(R3 ) and hence f E B(R). Being the Bohr-Fourier series of f 
absolutely convergent, then it converges unconditionally uniformly to a function f* E 

	

CO (R"), such that 111*11 00	I(A";f)I and 111* - Ill ' = 0. Therefore, we claim ap 
that f E

(iv) We have (see, for example, [3)) 

	

00	 00 

[AM < E I a( .X ;f)I2'	I.X'I = 2Ia(.)';f)IIA'I'. 

	

j=1	 j=1 

By the Holder inequality, we have
I	 1. 

	

n+p	 / n+p	 T(,n+pl
 1 

	

la('; 1)1 I' I	( E J a(AQ)j q'jAjj !nq ' Aii(m)q) 

	

j Tt+I	 'j=n+1 

By (3.6) and (5.1), the thesis will follow whenever y < m - I

(5.5)
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Remark 5.1. Observe that, proving statement (iii) of Theorem 5.1, we have proved 
something more, i.e. that, if mq > /3, then > Ia(A'; 1)1 < +00. This is a generaliza-
tion of a result given by Stein and Weiss [13: P. 249] in the context of periodic functions 
of the class C tm in the case q = 2. 

Remark 5.2. The proof of Theorem 5.1 shows the fundamental importance of 
hypothesis (5.1) to obtain better embeddings than those ones that we would have inde-
pendently from the structure of the spectrum. 

From Proposition 3.1 and Theorem 5.1 we easily get 

Corollary 5.1. If mq > ,3 and q ^! 2, then H8(A) - C, (A) for all n E N. 

Remark 5.3. In condition (5.1) the unboundedness of A, as well as the existence of 
a unique accumulation point at infinity, plays a decisive role for the embeddings stated 
in Theorem 5.1. In fact, it is easy to prove that, for all r > 0 and q > 1, H(A) = ap 
H(A) := flm>o H' q (A) whenever A is a bounded subset of R 3 . Nevertheless, inap

 this case Ho(A) is not embedded even in Ca°,,. Indeed, there arc elements of H(A) 
ap 

that are not continuous. Consider, for example, the function having the Bohr-Fourier 
series 

with 77 E (, 1], )'!c Z-linearly independent and such that I A k I	M for all k E N. We

have

11f11 2 	<+00.


Hence f E Hap' 
2 (A) and, therefore, f E H— ,2 (A). Now if we suppose I E Ca°p (A), ap 

k we should have >k.-i a(A ;f) < +00 (cp. [10: p. 19]), while the series	is 
divergent, being 77 E (, 1]. 

From Theorems 4.1 and 5.1 we have immediately 

Corollary 5.2. Suppo'se that A c 1R3 \ {0}, with card A = card N, satisfies property 
(5. 1), and let q E (1, 2]. Then: 

(i) If rnq < /3 <9, we have W(A) '- B,,(A) for all r E [q,
Mq 

(ii) If rnq = /3, we have W(A) '—p B 9 (A) for all r q. 

(iii) If mq > /3, we have W(A) '- C°,(A). 

(iv) If mq> 0 > (m - 1)q, we have W; n, q p (A) - C°(A) for all p E (0,m - 

Remark 5.4. Theorem 5.1 and Corollary 5.2/(iv) give embedding also in the case 
A Z; for example, if A = (n(i + Ti))nEz' then /3 is equal to s and Theorem 
5.1/(iv) holds true, claiming moreover that the Bohr-Fourier series is unconditionally 
uniformly convergent. Observe that in the periodic case the embedding holds also with 
p = m - . For almost periodic functions this is an open problem.



Embedding Theorems for Sobolev-Besicovitch Spaces	453 

Remark 5.5. In the periodic case, when A = Z, property (5.1) holds with /9 
s and Corollary 5.2 becomes one of the famous Sobolev embedding theorems in the 
particular case q E [1,2] (see [1: Theorem 5.4]). When q > 2, we have, at the moment, 
the embeddings that follow from '- We expect, anyway, to find better 
embeddings, being for q > 2 the spaces W" more regular than W' 2 . It is our opinion 
that these embeddings can be improved via "contiguity" properties between the spaces 
of type W and H. 

Remark 5.6. Given Bq and fixed n-i, let us consider two spectra A 1 and A 2 . We ap 
can say that if A 1 is thicker thanA 2 , it is necessary an exponent 6 greater than )32 to 
obtain the convergence of the series (5.1). But, since < if 131 > /92, the 
thicker is A, the less regular is the embedding of the space H'(A). 

Let us recall now that a trigonometric series is said to be lacunary if it has the form 

c,e" 

where the natural numbers n k satisfy the inequality	> p > 1 for all k E N. We

want to extend this notion to Bohr-Fourier series, when s = 1. 

Definition 5.1. Given a series >j' CA, e
iV with Aj, A'l 15 l 2 l < ..., and x E R, 

we will say that it is lacunary if there exists p> 1 such that 1' ^ p for all j E N. 1AJT
Let us prove the following 

Proposition 5.1. If  E H(A) with A C R\{0} for some m >0, q >1 and its 
Bohr-Fourier series is lacunarj, then f E C°(A). Moreover, if q ^ 2, then f e C(A)ap

 for any r <n-i. 

Proof. For every lacunary series, property (5.1) holds for any -y > 0; hence 3 = 0 
and we get f E C(A). By Proposition 3.1, if f E Hm(A) with q ^! 2, then E 
Hm_ kI9(A) for any a such that jal m. Besides, we have cr(ô'f) c a(f) and so the 
Bohr-Fourier series of ôf is lacunary, too. It follows that for any a such that Jal <m 
we have i9f E C(A), i.e. the thesis I 

6. /3 as the "dimension" of an additive semigroup 
In the previous section we remarked that, in the periodic case and for a particular class 
of quasi-periodic functions, /3 is equal to the dimension s of the space where they are 
defined. This is not true for general almost periodic functions, even for the simplest 
quasi-periodic case. Here we shall consider the class of quasi-periodic functions whose 
spectrum A* is an additive semigroup, generated by a finite number of Z-linearly inde-
pendent frequencies belonging to a convex semicone of IR'. For this class, we shall prove 
that /3 is equal to the number of generators of the semigroup; moreover that, whenever 
2m > /3, the spaces W,2(A*) become Banach algebras, generalizing a classical result 
on Sobolev spaces (see [1: p. 115]).



454	R. lannacci et. al. 

Lemma 6.1. Let 

where ),. . . , A E IR' are Z-linearly independent and such that 

,A} n {O}	0.	 (6.1) 

Then one has
1 1 <+00 ify>13 

if y<fl. 

Proof. Let us consider the set 

= {{r i	+ ... + r$	: r 2 + ... + r	i}. 

Then F c	 A'61. If we set K = inf {IyI y 	*}, condition (6.1) implies

that K. > 0. Setting I nj = \/n + ... + n2 we have, for any A E A*, 

	

Al = InjA +... + nA =	
fl1 

n i —A
i + ... + —AI ^ K*lni. I *	II *	

ni 

On the other hand,
1	 1' 

$	121$	12 

	

A l <n II A l+ ... + n$l A I :5(n I I	I A I I	=C*InI. 
1 j=1	j L .,=	i 

Therefore " 1	- / \ 1 - 
<_ < I - I —, inl - IAI T - \KJ Ini 

i.e. the thesis U 

Remark 6.1. Let us observe that, being A an additive semigroup, it is easy to 
see that, if F, Q E P(A), then PQ E P(A). 

Proposition 6.1. If 2m >,8, then there exists a constant K depending on m and 
/3 such that, for any P, Q E P(A), the product PQ satisfies 

li PQIlw ,2	K'iIPIlwrn,2ilQiIw,2. 

	

Proof. It is sufficient to show that, for any multi-index a with	m, we have 

fla*(P(x)Q(x))I'dx K0 P Wm,2 1Q11 wm , 2.	 (6.2) 

By the Leibniz rule we obtain 

Oa(P(x)Q(x)) = > (71) tl:5a
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Therefore it is sufficient to show that for any multi-index	a with jal <m we have 

JK,a	llQllwm.2. 

To this end, we shall divide the proof in two steps. 
Step (i): By the embedding theorems, for any 77 such that J i7 lm there exists a 

constant K(q) = K(,7, m,,8) such that for any RE P(A*) we get 

<K(ij)Rfl ym,2	 (6.3) 

provided 2(m - l'iI) < 6, where r € [2, fi	When 2(m - II) = 0, inequality

(6.3) holds with r E [2, +oo). If it happens that 2(m - 1 77 1) > /3, we have 

poR(x)	K ( ti)II R IIw rn,	 (6.4) 

a.e. in 1R8. 
Step (ii): Let I be the largest integer such that 2(m - 1) > 3. Since 2m > /3, we 

have 1 > 0. Now, we have three cases. 
A) If jr7l	1, then 2(m - ljI) > 8 and therefore, by (6.4), we have 

1ja,, p(X)a,-,, Q(X)j2dx < [K(,)] 2 IIPlIwm. 2 I15°QI12 

!^ [K(71)]2 II P II	1Q11 Wm,2. 

B) If Ia - iI	1, still by (6.4) we get 

1jj9"p(X),9,- " Q(X)j2dx <[K(a - '7)l 2 II P IIwm 2 1Q11 wm,2. 

C) If lil > land la - uI >1, then lil ^: 1+1 and la - ui ^: 1+1; hence /3> 2(m-1771) 
and /3 ^: 2(m - a - ui) . Moreover, 

/3-2(m-Iu71)/3-2(m-la-u71) =2_2(2mIal)	2m 
/3 

Hence there exist r, r' > 1 with 3 + r = 1 such that 

/3	 /3 
1<r< /32(11)	and 

Thus by the Holder inequality and (6.3) we get 

fla,,p(X )a,- " Q( X ) 12dx	
(1ja

,,p(X ) j 2r
dx) 

(fla"- , Q ( X ) 12
r' dx) 

< [K(uj)][K(a - 

The thesis follows immediately U
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Theorem 6.1. If 2m > 13 , then there exists a constant K depending on in and /3 
such that for any u, v E W 2 (A*) we have that uv E W 2 (A*) and 

I tt'IIrn,2 5 K*IIuIIwm.2I1vIIwrn,z. 

In particular, W'2 (A) is a commutative Banach algebra with respect to pointwise 
multiplication and the equivalent norm	IIw' = K II IIw.,2. 

Proof. Being u, v E W, 2 (A*) , there exist sequences (Ufl)flEN and (vfl)nEN in P(A) 
converging to u and v in W'2 , respectively. By Proposition 6.1 and Remark 6.1 we 
have that (UnVn)nEN is a Cauchy sequence in W' 2 (A) and therefore it converges to 
an element of the space. Being 2m > /3, by the embedding theorems u and v may be 
assumed continuous and we have 

II u v1	— UV2 5 II u n(vn — v )112 + II v (u n - u)112 

:5 II u nhIoII vn — V	+ INIIoIkz n — UII2 

—*0 

when n —* oo, and therefore uv —* uv in	Defining, for any multi-index a with 
m,

ô(UV) = limô°(uv) 

in Ba2 p , we have that this limit exists, being (UV) convergent in W,'2 . Finally, we 
have

IUVIIWm.2 = limfluvwrn.2 

liIflKIIUnIIm.IIVnIIm,2 

= K'lIuIIwrn,2IIvIIw..,2. 

In particular,
IUVIIWm,2 = KIuvIIwm,2 

K*(K*IIuIIwrn,2IIvIIw,,,,) 

= IIUIIWm,2IIVIIWm,2, 

i.e. the thesis I 
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