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Abstract. In the present paper, a class of optimization problems to impulsive control of 
smooth dynamical processes is investigated. Necessary and sufficiently conditions for existence 
of optimal impulsive controllability of the initial-value problem for a dynamical system are 
obtained. The derived results are applied to the analysis of some classical problems from 
population dynamics. 
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1. Introduction 
Impulsive differential systems are suitable mathematical models to simulate evolution 
of large classes of real processes: human intervention in the evolution of one or some 
populations, proceeding and controlling chemical reactions - catalyze reactions, etc. 
The common feature of these processes is the existence of short temporary perturba-
tions during their evaluation. The continuation of these perturbations is insignificant 
compared to the duration of the whole process. That is why the perturbations occur 
"immediately" as impulses. Basic monographs on this subject are [3 - 5, 7]. 

In the present paper, we consider some problems for impulsive (discrete) control-
lability of the solutions of smooth dynamical systems. Rapid out-side actions over the 
evolutionary system result in research of its impulsive control. We shall introduce some 
examples from population dynamics. 

Most of models of single species dynamics have been derived from a differential 
equation in the form

= xf(t,x) + g(t,x),	 (1.1) 

where the solution x = x(t) is treated as population size (or biomass) in time t > 0, the 
function f = f(t, x) is characterized as population change at the moment t, the function 
g = g(i, x) describes the continuous influence of out-side factors. Various choices of the 
functions f and g lead us to various differential equation models. For instance: 
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(1) If f(t, x) = S (b - x), we obtain the Verhulsi differential equation 

a 
x= x(b—x)+g(t,x)	 (1.2) 

where a E R+ = [0, oo) is the reproductive potential of population and b E R+ is the 
capacity of environment. 

(2) If f(t,x) = a - clnx, we obtain the Gompertz differential equation 

=x(a—clnx)+g(t,x)	 (1.3) 

where c E R+ is the coefficient of interspecies competition. 

(3) If f(t,x) = 1(x), then (1.1) is an evolutionary model of stationary population. 

(4) If g(t, x) = 0, then (1.1) is an evolutionary model of isolated population. 

Let i = ij(t; to, xo) be a solution of the differential equation (1.1) with initial condi- 
tion

77(to; to, xo) = xo	((to, x 0 ) E Ri).	 (1.4) 

Let 7- 1 < ... < i, (t	Ti, p E N) be moments of out-side perturbations on the evolution 
of the considered population system. For example, subtracting or adding some quantity 
of biomass and etc. Then 

x(r +0; to, xo) = I(rj,x(T; to, xo))	(i E N = {l,...,p})	(1.5) 

where x(T1 + 0; to, x 0 ) = limg... r o X(t ) to, xo), '1 = 4(t, x) is a map, which characterized 
the out-side action in the moments r1 ,. . . , T,. For example, if cI(T, x) = x - d1 (d > 
0,i E Np ), then in each moment T, we subtract the quantity di from the population 
biomass. 

The system (1.1), (1.5) is called an impulsive system. 

In general, impulsive systems describe out-side actions on the investigated popu-
lation. Moreover, there is a possibility to control moments of perturbations and some 
parameters of impulsive out-side influence. That is why optimal choosing of impulsive 
moments ri and impulsive map is very important. For instance, let us consider the 
Verhulst's model (1.2) and let x) = x — d. There arise the following question: How 
shall we choose the numbers r1 and di so that the population output d1 + ... + d will 
be maximum on a i-interval [0, T]? On Figure 1, we present the time-portrait of Ver-
huist equation (1.2), where a = 0.03, b = 100, t E [0, 1001 and co-responding impulsive 
time-portrait, p 3.
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Figure 1 

The present paper consists of the following three features: 

(1) Mathematical definition of impulsive systems - Subsection 2.1. 

(2) Statement of impulsive control problem - Subsection 2.2. In Section 3, we 
obtain some necessary conditions for the existence of solution of considered optimal 
impulsive control problems. The present method is based on investigation of classical 
Lagrange's function for a proper optimal problem. Moreover, we shall present some 
necessary and sufficiently conditions for existence and/or uniqueness of solution of im-
pulsive problem. 

(3) Applications in population dynamics - Section 4. In this section we shall 
apply obtained results to investigate some optimization problems related to Verhulst 
and Gompertz differential equations. 

2. Impulsive systems. Impulsive control 

Let (.,.) be the Euclidean scalar product in Rn and 11 . li the corresponding norm. Let 
C'(A,R') be the space of all C 1 -smooth maps form Ac Rn into R with Ulam's C°-
topology. Let h E C°(A,R'). We set ll h lIo = SUPXEA II h (x)ll . Let a ER", h  C1(R",R) 
and X( m) = (z l ,... ,	where mn. We set 

V x(m)h(a) = (h1,.. . ,h),	Vh(a) = Vh(a),	x = 

2.1 Impulsive systems. Let p € N; I € C 1 (R+ x R", R"), = {r1 ,... , r} be a finite 
increasing sequence and (D E C'(F x R", R"). We say that the system 

	

x=f(t,x)	(t€R+\)	 (2.1) 
x(t + 0)	(t, x)	(t € )	 (2.2) 

is an impulsive system of differential equations with fixed moments (see [3 - 5]).
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Definition 1. We say that the map 

x : [to, T) -. lR', t -.^ x(t; to, xo) 
is a solution of the impulsive system (2.1), (2.2) with initial condition 

x(to; to, xo) = xo	((to,xo) E R. x R')	 (2.3)

if the following assertions are valid: 

1. If to < ri , then x(to; to, xo) = x 0 . If t 0 = 7-1 , then x(to; to, xo) =(1(to, xo). 
2. The map xI([to,T)\F) is C'-smooth. 
3. Equality (2.1) is valid, for each t E [to, T) \ T. 
4. The equalities x(t; to, xo) = x(t - 0; to, xo) and x(t + 0; t0 , xo) = 1(t, x(t; to, x0)) 

are valid, for each t E [t 0 , T) fl T. 

The numbers T = {r1 ,.. ,r,,} are called impulsive moments. The map 4 is called 
impulsive map. 

We shall consider the following non-impulsive initial-value problem: 

± = f(t,x)	((t, x) E R+ x R'1 )	 (2.4) 
x(to; to, xo) = xo	((to,xo) E R+ x R'1 ).	 (2.5)


Let us introduce the following hypotheses (Hi): 
(Hi) 1 f e C 1 (IR., x R'1 , R), and there exists a number M E 1R such that 1111k < M-
(H

l

) 2 For each couple (to, xci ) E R+ x R', the solution 17 = 71(t; to, xo) of non-impulsive 
initial-value problem (2.4), (2.5) is defined in [to, oo). 

2.2 Impulsive control. Let h i C CI(RTI, IR), Vh(x) 9k 0 if h(x) = 0, D	{x E R' 
h(x) < 01, where i E N2 , and let 0 0 D2 C D2 C D 1 . Let xci E .L) and t 0 ,T E R+ 
with to < T. Let p E N, and let 1,, denote the set of all ordered couples (, 1) such that: 
1. = {Ti,. . . ,r,} C [to,?'], with T < T1 1 (i E N_1). 
2. 4 E C'(Y x IRTt,R'1). 
3. {x(t; to, x0 ) : t E [t 0 ,T)} C 
4. x(T; to, xo) ED2. 

Let (, ) E I,,. We set 

a1 = x(r1 ; to, xo), b i 	(r1 , a 1 )	(i E N) 
a0 = bo = xo, ap+l = x(T; to, xo)	 (2.6) 

Let ir : I, - R 2- ') ir(?',cI) = (,,ap+i) and F : -p [0,1] be a C 1 —
smooth bounded function. We set P : 4 - [0, 1], i(, ) = F(ir(F, 4)). Now, we 
shall formulate the problem of optimal impulsive control: 

Does there exist a couple (rO , 40) E I,, such that 

(°)=inf{r,4): (7 , 1b) 	1p 1?	 (2.7)
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3. Main results 

In the present section, we shall derive some necessary conditions for existence of the so-
lutions of optimal impulsive problem (2.7). For this purpose, we introduce the following 
hypothesis (H2): 

(H2) One of the following two implications is valid: 

mi {(f(t, x), Vh i (r)): (t, x) E (to, T) x ôD1 } 2 0	(3.1) 

or	
{ (f(t, x), Vh 1 (x)): (t, x) € (t 0 , T) x ôD1 }

	
0,	(3.2) sup 

i.e. the scalar product (f(t,x),Vhi(x)) has one and the same sign on (to, T) x 
0D1. 

3.1 Lagrange's form of the optimal impulsive problem. Let gi € C'(R", Ro) be 
the characteristic function of the domain D1 , i.e. 

ifx€b g,(x) = 
texp(—h'(x)) •f €	

(i € 1, 2).
7 '(X))  

We set

= (xi, . . . , x,) ( x 1 E R"),	(y',... yr,) (yt € R i')	(i € N)	(3.3) 
P 

C: R(1 +	—4 R, G(,x+1) = 92(Xp+1)+91(Xi). 
i=1 

Let {I'i(t,x),. .. ,W,,(t,x)} be the independent first integrals of system (2.4) in the 
domain containing the closed set [t 0 , T] x 15 1 . We consider the following extremum 
problem:

—i mm	 (3.4) 

under conditions

(3.5) 
'F j (9., x 1 ) = W(82 _. , y1-1)	 (3.6) 

where  E N, i E N+i, Oo = t0 , 9= {O,... ,9} E R, 9p+1 = T and yo = xo. 

In the following theorem, we shall prove the equivalence of impulsive control problem 
(see the end of Subsection 2.2) and Lagrange's extremum problem (3.4) - (3.6). 

Theorem 1. Let hypotheses (Hi) and (H2) are satisfied and let p € N. Then: 

1. The next two statements are equivalent: 
(a) There exists a couple	'°) E I,, for which equality (2.7) is valid. 

(b) The extremum problem (3.4) - (3.6) possesses a solution
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2. If? <+i (i E N_ 1 ), then 9	rO,	
= , go	x1 = a 1 (see (2.6)). 

Proof. Let us suppose that condition (3.1) is valid (the proof is similar if condition 
(3.2) holds). Let	 be a solution of extremum problem (3.4)- (3.6) and 

< 9	(i € N_ 1 ). We set	= °, IV € C— (-T0 x R",IR Th ), 40(r,x) = 
where i e N, YO = (x?,. .. ,x) and 7° = (y,.. . ,y). We shall prove that the solution 
X = x(t; to, xo) of the impulsive initial problem 

	

x=f(t,x)	(te[t0,T]\) 

	

x(t+O)= (t,z)	(tE°) 
x(to;to,xo) = xo 

satisfies the inclusions {x(t; to, xo) : t G [t 0 , T]} C D and x(T; to, xo) € D2. 
Let us assume that there exists t E (to, T) such that x(t; to, xo) € R' \ DI. We 

set t = inf{t E (O,t] x(t; to, xo) € IR" \	Then, t.	or t € 
Let t. V °. We choose an integer i E N,, 1 such that 9 < t < 9. From 

condition (3.5), it follows that x_ 1 = x(9_ 1 ;to,xo) E D and x(t; to, xo) € 4- \D1. 
Therefore x(t.; to, xo) E ôD 1 and t. € (8_ 1) t'). From condition (2) and the obtained 
inclusion, it follows that

{x(t; to, xo) : t E (9_ 1) t.]} C 
{x(t; to, xo) : t E (t,,9j} C IR Th \T'. 

Hence x = x(9; to,xo) € R" \ i . The inclusion x € R" \ D i contradicts to condition 
(3.5). 

Let t = Oj , where i € N. Then hypothesis (H2), inclusions y9 € ôD 1 and 
x(t; to, xo) E IR T' \i yield x9 € R" \ D 1 . The derived inclusion contradicts equality 
(3.5) and the definition of the function C = 

Therefore {x(t; to, xo) t € [to, TI) C Di. From the definitions of the functions 
92 = 92(Xp-+i) and G = C(,x+1) and from equality (3.5) it follows that = 
x(T;to,xo) E V2. Hence (°,°) E I,,. Equality (2.7) follows from the fact that 

is a solution of extremum problem (3.4). 
Let equality (2.7) be valid for a couple (,V) € 1,,. Then from the definitions of 

-	 i	 .-.o_o the set I, function C = G(x,x+1) and equality (2.7) t follows that (9 ,__xo ,y , xo +1) 
-o  is a solution of problem (3.4) - (3.6), wh ___ y	- ere 9 = T, x = a,	= b and x 0 1	a+i 

(see (2.6)) U 

From Theorem 1 and closeness of the set of all points	 for which

equalities (3.5) and (3.6) are valid, solvability of the impulsive control problem follows. 

Corollary 1. Let the following conditions are valid: 

1. The hypotheses (Hi) and (H2) are fulfilled, p € N.
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2. The domain D 1 is bounded. 

Then there exists a couple (?°, °) E I, satisfying equality (2.7). 

3.2 Necessary conditions for existence of solutions of the optimal impulsive 
problem. In the present subsection we shall prove the following theorem. 

Theorem 2. Let the following conditions hold: 

1. Hypotheses (Hi) and (112) are valid, p E N. 

2. Equality (2.7) is valid for the couple (0,40) E I,,, To = (r10 ,... ,7). 

Then there exist numbers C and 77 ij (i E N 1 ,j E N) such that: 
p-f1 

	

hI+I:I:I?ilIo	 (3.7) 
i=1 j=1

n 
=	 + V.G(,a 1 )	( 3.8) 

j= 1
1, 

	

-	 (3.9) 

j= 1 
n	 n 

=	 (3.iO) 
j=1	 j=1 

	

where a = z(r,°;to,xo) and b? =	r,°,a?) for i E N, ° = ( a?,... ,a°), ° =

(b?,.. . ,b°) and a + 1 = x(T; to, xo). 

Proof. From Theorem i it follows that the assertion of Theorem 2 is equivalent 
with the next statement. Equations (3.8) - (3.10) are necessary conditions for the 
existence of solution of optimal impulsive problem (3.4) - (3.6). 

We construct the Lagrangian function of problem (3.4) - (3.6): 

= F(,,x+1)+ eG(,+1) 
p-fl n 

	

+	 - 
i=1 j=1 

The derivatives of the Lagrangian function are: 

L. 
=

x) - ii+ I ( j)( Oi, y)]	 (3.11) 

=	 +	('Fjk(9,Xi)
	

(3.12) 

L'k	 (3.13) 

where k E N. Equalities (3.8) - (3.10) follow from Lagrange Theorem and (3.11) - 
(3.13), respectively U
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Corollary 2. Let the following conditions are satisfied: 
1. The hypotheses (Hi) and (H2) are valid, p E N. 
2. The equalities D 1 = D2 = R" are fulfilled. 
3. Equality (2.7) is valid for a couple (°, °) E 1,,. 

Then

=	 (3.14) 
where i € N+,. 

Proof. From equation (3.8) and formulae 

(j) (t, x) =	f(t, x)( j )(t, x)	(j E N) 

where f(t, x) = ( 1' (t, x),. . , f,, (t, x)) with x = (x',. . . , x e') there follows that

n 

('!)(7-t0,a) =	
(3.15) k=I 

= (VF(°,b 
-0 

,a1),f(Tj°,a)). 

Similarly we can obtain the next formulae 

—KVyF(°,°,a+i),f(T,°, b)).	 (3.16) 
Formulas (3.15), (3.16) and (3.1) imply (3.14) I 

The following result improves previous results in terms of sufficiency and necessity 
to optimal controllability of the considered problem. For simplification, we shall suppose 
that the domain of the problem under consideration is R't. 

Theorem 3. Let the following conditions hold: 

1. The hypotheses (Hi) and (H2) are valid, p E N. 
2. D 1 = D2 = 

3. All first integrals 'P 3 (t, x) (j € N) are convex functions. 

Then equality (2.7) is valid for the couple (°, °) € I,, (if = (r°,. . . , r,,°)) if and only 
if there exist numbers 77 ij (i € N+ 1 , j E Ne,) such that i7l. > 0 and 

n
(3.17) 

i=I
n 

= -	 (3.18) 
j= 1 

	

n	 n 
=	 (3.19) 

	

j=1	 j=1 

j(O' , x 1 )	'P(O1 _ ' , yt-i)	 (3.20) 

i (W(9,, x) - 'I'(O —i , Yi—i)) = 0	 (3.21)
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where a? = x(r10 ; to, xo) and b? = (D(7- 9 , a9) for i € N, ° = (a?,... ,a), 
O = 

(b?,... ,b°) and a° 1 = x(T; to, xo). 

Proof. The proof of Theorem 3 is similar to that of Theorem 2, using H. W. Kuhn's 
and A. W. Tacker's theorem. So, we omit any details U 

4. Application in population dynamics 

We say that hypotheses (113) are valid if: 

(H3) 1 Hypotheses (Hi) and (H2) hold, where f E C'(R2,R). 

(H3) 2 D 1 = D2 = R. 

(H3) 3 P = 'F(t, x) is a first integral of differential equation (2.4). 

We consider the optimal impulsive problem of the solution i = 77(t; to, xo) of initial-value 
problem (2.4), (2.5) with optimizing function 

	

F(,a i ) = a 1 +	(a - b).	 (4.1) 

Theorem 4. Let the following conditions hold: 

1. Hypotheses (H3) are valid. 

2. Equality (2.7) is fulfilled for a couple	4°) E I. 

3. The optimization function F is defined by formula (4.1). 

Then

	

W(r10,b?) = 'P(r_i,a?_i)	(i E N+ 1 )	 (4.2) 
= W(r10 ,a?)	(i € N)	 (4.3) 

	

f(r10,a?)=f(r,°,b?)	(iEN).	 (4.4)


Proof. From Theorem 2, formulae (3.8) and (3.9) it follows that 

	

—i = ij'F(r,a?), 1 = —?1+lW(r,a?)	(i € N) 

where {y, : i € N+1} C R. Hence i, = and formula (4.3) is true. Note that 
condition (3) of Theorem 4 and formulae (3.8) and (3.9) imply that ,, 0 0 (i € N+,). 
Equation (4.4) follows from condition (3) of Theorem 4 and Corollary 21 

Remark 1. From formula (4.4) it follows that "impulsive jumps" under optimal 
controllability are realized on the level surface of the function f = f(r, .). We shall go 
into details on geometrical interpretation of Theorem 4 under the following additional 
assumptions: 

1. f(t,r i ) = f(t,r2 ) = 0, where r 1 < r2.
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2. For each t € [0, T], the function I f(t,) has a unique maximum. 
3. p = 1 and r1 € (0,T). 

Note that Verhuist equation (1.2) for an isolated population satisfies assumptions (1) 
and (2). 

Let xo € (r i ,r2 ), a 1 = t(7-1 ;0,xo) and c = f(ri ,a 1 ). From assumption (1), it follows 
that [0,T] x [r i ,r2 ] is an invariant set of equation (2.4). Hence a 1 € (r i ,r2 ). From 
assumption (2), it follows that there exist two C'-smooth functions -yj,-y : [0,T] 
(r i ,r2 ) such that 71 (t) < -y2 (t) (t € [0,T)) and f(c) = {(t,.yi(t)) : t e [0,T]} U 
{(t,72 (t)) : t € [O , TI} . Moreover, assumption (2) yield the inequality f(t,x) > 0 
for (t,z) E [0,T] x (r j , r2 ). Therefore a1 = 72(T1). Writing b 1 = 71 (ri ), we choose an 
impulsive map c1 € C'(T x R, JR) such that (a l ) = b 1 . From formula (4.4), we conclude 
that ({r1}, ') is the optimal impulsive control for initial problem (2.4), (2.5). 

Figure 2 

Example 1. Let the evolution of an isolated population be described by the Ver-
huist equation

= x(b - z)	 (4.4) 
where a = 0.03 is the reproductive potential of population and b = 100 is the capacity 
of environment. We take from the biomass three times in the time interval [0, 1001. 
We shall determinate the moments i1, T2 and 7-3 of subtracting in such a way that the 
general subtract quantity will be maximum 

Without loss of generality, we shall assume that at the moment to = 0 there is 
x O = 15 biomass units. Denote i j(t; 0, 15) the solution of equation (4.4) with initial 
condition x(0; 0, 15) = 15. So, the impulsive analogue to the considered models is: 

x=x(b—x)	(tg{ri,r2,73} 

x(r + 0) = (r,z(r1; 0, 15))	(i EN3) 
x(0; 0, 15) = 15.
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The optimization function is 

F(z1,x2,x3,y1,y2,y3)=(x—y). 

From Theorem 4 it follows that if (ri°,r2°,r30,a?,a20,a30,b?,b°2,b?,a40) is a solution of the 
examined optimization impulsive problem, then 

	

tJI(T1 , a) = 'I'(T, _ j , b1 _ 1 )	(i E N4) 

	

= J!'(r1_1,b1_1)	(i E JV3) 
f(r1 ,a 1 ) = f(r1 ,b)	(i EN3) 

where 'I'(t, x) =	is the first integral of differential equation (4.4). We use 
Newton's method to solve this system. The initial data is 

	

7=55	 a?=60	b?=40 

	

7-=85	 a=60	14=40 

	

T3 =100	a?=60	14=0 

The solution is

	

To = 66.2851	a? = 56.3004	b? = 43.6996 

	

= 83.176	a = 56.3004	= 43.6996 

T3 =100	a?=56.2436	i4=0 

Thus the subtracting quantity is F(°,°) = 81.4455. 

Example 2. In this example we shall study Gompertz's equation (1.3) for an iso-
lated population, i.e. g(t,x) = 0, where a = 0.03, c = 1, Xo = 0.2 and T = 5. We take 
from the biomass two times, so p = 2. We shall determine the impulsive moments r1 
and r2 such that the general subtract quantity will be maximum. 

0.8 

0.6 0.6 

X	

t	

I 

0.4 0.4 

0.2 0.2 

I	2	3	4	5

Figure 3
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Certainly the optimization function is

2 

F(x 1 ,x2 ,y i ,y2 ) = E(X i - y) 
i= 1 

and the first integral of Gompertz's equation (1.3) is 

'P(t, x) = i + ln(0.03 - ln(x)). 

From equalities

	

	
(t,z)\ =0 41 " (t, x) = det 'I'(t, x) 'I" (t, x)) Zr 

it follows that the first integral tI(t, x) is a convex function. Therefore, we may use 
Theorem 3. The solution of the corresponding system is 

To = 2.20117	a? = 0.859467	bo = 0.0523254 
r2°=5	 a=0.859467	b°2=0 

The subtracting quantity is F(a ,b ) = 1.6666086. From Theorem 3 it follows that 
there exist only one global solution of the considered problem. On Figure 3, the time 
portrait of Gompertz's equation and the impulsive analogue are present. 
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